1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-14 18:08:52 -05:00
denoland-deno/ext/crypto/x25519.rs

133 lines
3.5 KiB
Rust
Raw Normal View History

// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license.
use curve25519_dalek::montgomery::MontgomeryPoint;
use deno_core::error::AnyError;
use deno_core::op;
use deno_core::ZeroCopyBuf;
use elliptic_curve::pkcs8::PrivateKeyInfo;
use elliptic_curve::subtle::ConstantTimeEq;
use rand::rngs::OsRng;
use rand::RngCore;
use spki::der::Decode;
use spki::der::Encode;
#[op(fast)]
pub fn op_crypto_generate_x25519_keypair(pkey: &mut [u8], pubkey: &mut [u8]) {
// u-coordinate of the base point.
const X25519_BASEPOINT_BYTES: [u8; 32] = [
9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
];
let mut rng = OsRng;
rng.fill_bytes(pkey);
// https://www.rfc-editor.org/rfc/rfc7748#section-6.1
// pubkey = x25519(a, 9) which is constant-time Montgomery ladder.
// https://eprint.iacr.org/2014/140.pdf page 4
// https://eprint.iacr.org/2017/212.pdf algorithm 8
// pubkey is in LE order.
let pkey: [u8; 32] = pkey.try_into().expect("Expected byteLength 32");
pubkey.copy_from_slice(&x25519_dalek::x25519(pkey, X25519_BASEPOINT_BYTES));
}
const MONTGOMERY_IDENTITY: MontgomeryPoint = MontgomeryPoint([0; 32]);
#[op(fast)]
pub fn op_crypto_derive_bits_x25519(
k: &[u8],
u: &[u8],
secret: &mut [u8],
) -> bool {
let k: [u8; 32] = k.try_into().expect("Expected byteLength 32");
let u: [u8; 32] = u.try_into().expect("Expected byteLength 32");
let sh_sec = x25519_dalek::x25519(k, u);
let point = MontgomeryPoint(sh_sec);
if point.ct_eq(&MONTGOMERY_IDENTITY).unwrap_u8() == 1 {
return false;
}
secret.copy_from_slice(&sh_sec);
true
}
// id-X25519 OBJECT IDENTIFIER ::= { 1 3 101 110 }
pub const X25519_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.3.101.110");
#[op(fast)]
pub fn op_crypto_import_spki_x25519(key_data: &[u8], out: &mut [u8]) -> bool {
// 2-3.
let pk_info = match spki::SubjectPublicKeyInfo::from_der(key_data) {
Ok(pk_info) => pk_info,
Err(_) => return false,
};
// 4.
let alg = pk_info.algorithm.oid;
if alg != X25519_OID {
return false;
}
// 5.
if pk_info.algorithm.parameters.is_some() {
return false;
}
out.copy_from_slice(pk_info.subject_public_key);
true
}
#[op(fast)]
pub fn op_crypto_import_pkcs8_x25519(key_data: &[u8], out: &mut [u8]) -> bool {
// 2-3.
// This should probably use OneAsymmetricKey instead
let pk_info = match PrivateKeyInfo::from_der(key_data) {
Ok(pk_info) => pk_info,
Err(_) => return false,
};
// 4.
let alg = pk_info.algorithm.oid;
if alg != X25519_OID {
return false;
}
// 5.
if pk_info.algorithm.parameters.is_some() {
return false;
}
// 6.
// CurvePrivateKey ::= OCTET STRING
if pk_info.private_key.len() != 34 {
return false;
}
out.copy_from_slice(&pk_info.private_key[2..]);
true
}
#[op]
pub fn op_crypto_export_spki_x25519(
pubkey: &[u8],
) -> Result<ZeroCopyBuf, AnyError> {
let key_info = spki::SubjectPublicKeyInfo {
algorithm: spki::AlgorithmIdentifier {
// id-X25519
oid: X25519_OID,
parameters: None,
},
subject_public_key: pubkey,
};
Ok(key_info.to_vec()?.into())
}
#[op]
pub fn op_crypto_export_pkcs8_x25519(
pkey: &[u8],
) -> Result<ZeroCopyBuf, AnyError> {
// This should probably use OneAsymmetricKey instead
let pk_info = rsa::pkcs8::PrivateKeyInfo {
public_key: None,
algorithm: rsa::pkcs8::AlgorithmIdentifier {
// id-X25519
oid: X25519_OID,
parameters: None,
},
private_key: pkey, // OCTET STRING
};
Ok(pk_info.to_vec()?.into())
}