1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-07 06:46:59 -05:00
denoland-deno/test_ffi/tests/test.js

723 lines
24 KiB
JavaScript
Raw Normal View History

// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license.
// deno-lint-ignore-file
// Run using cargo test or `--v8-options=--allow-natives-syntax`
import { assertEquals, assertInstanceOf, assertNotEquals } from "https://deno.land/std@0.149.0/testing/asserts.ts";
import {
assertThrows,
assert,
} from "../../test_util/std/testing/asserts.ts";
const targetDir = Deno.execPath().replace(/[^\/\\]+$/, "");
const [libPrefix, libSuffix] = {
darwin: ["lib", "dylib"],
linux: ["lib", "so"],
windows: ["", "dll"],
}[Deno.build.os];
const libPath = `${targetDir}/${libPrefix}test_ffi.${libSuffix}`;
const resourcesPre = Deno.resources();
// dlopen shouldn't panic
assertThrows(() => {
Deno.dlopen("cli/src/main.rs", {});
});
assertThrows(
() => {
Deno.dlopen(libPath, {
non_existent_symbol: {
parameters: [],
result: "void",
},
});
},
Error,
"Failed to register symbol non_existent_symbol",
);
const Point = ["f64", "f64"];
const Size = ["f64", "f64"];
const Rect = ["f64", "f64", "f64", "f64"];
const RectNested = [{ struct: Point }, { struct: Size }];
const Mixed = ["u8", "f32", { struct: Rect }, "usize", { struct: ["u32", "u32"] }];
const dylib = Deno.dlopen(libPath, {
"printSomething": {
name: "print_something",
parameters: [],
result: "void",
},
"print_buffer": { parameters: ["buffer", "usize"], result: "void" },
"print_pointer": { name: "print_buffer", parameters: ["pointer", "usize"], result: "void" },
"print_buffer2": {
parameters: ["buffer", "usize", "buffer", "usize"],
result: "void",
},
"return_buffer": { parameters: [], result: "buffer" },
fix(ext/ffi): Null buffer pointer value is inconsistent (#16625) Currently, slow call path will always create a dangling pointer to replace a null pointer when called with eg. a `new Uint8Array()` parameter, which V8 initialises as a null pointer backed buffer. However, the fast call path will never change the pointer value and will thus expose a null pointer. Thus, it's possible that the pointer value that a native call sees coming from Deno changes between two sequential invocations of the same function with the exact same parameters. Since null pointers can be quite important, and `Uint8Array` is the chosen fast path for Deno FFI `"buffer"` parameters, I think it is fairly important that the null pointer be properly exposed to the native code. Thus this PR. ### `*mut c_void` While here, I also changed the type of our pointer values to `*mut c_void`. This is mainly due to JS buffers always being `*mut`, and because we offer a way to turn a pointer into a JS `ArrayBuffer` (`op_ffi_get_buf`) which is read-write. I'm not exactly sure which way we should really go here, we have pointers that are definitely mut but we also cannot assume all of our pointers are. So, do we go with the maxima or the minima? ### `optimisedCall(new Uint8Array())` V8 seems to have a bug where calling an optimised function with a newly created empty `Uint8Array` (no argument or 0) will not see the data pointer being null but instead it's some stable pointer, perhaps pointing to some internal null-backing-store. The pointer value is also an odd (not even) number, so it might specifically be a tagged pointer. This will probably be an issue for some users, if they try to use eg. `method(cstr("something"), new Uint8Array())` as a way to do a fast call to `method` with a null pointer as the second parameter. If instead of a `new Uint8Array()` the user instead uses some `const NULL = new Uint8Array()` where the `NULL` buffer has been passed to a slow call previously, then the fast call will properly see a null pointer. I'll take this up with some V8 engineers to see if this couldn't be fixed.
2022-11-27 09:38:54 -05:00
"is_null_ptr": { parameters: ["pointer"], result: "bool" },
"is_null_buf": { name: "is_null_ptr", parameters: ["buffer"], result: "bool" },
"add_u32": { parameters: ["u32", "u32"], result: "u32" },
"add_i32": { parameters: ["i32", "i32"], result: "i32" },
"add_u64": { parameters: ["u64", "u64"], result: "u64" },
"add_i64": { parameters: ["i64", "i64"], result: "i64" },
"add_usize": { parameters: ["usize", "usize"], result: "usize" },
"add_usize_fast": { parameters: ["usize", "usize"], result: "u32" },
"add_isize": { parameters: ["isize", "isize"], result: "isize" },
"add_f32": { parameters: ["f32", "f32"], result: "f32" },
"add_f64": { parameters: ["f64", "f64"], result: "f64" },
"and": { parameters: ["bool", "bool"], result: "bool" },
"add_u32_nonblocking": {
name: "add_u32",
parameters: ["u32", "u32"],
result: "u32",
nonblocking: true,
},
"add_i32_nonblocking": {
name: "add_i32",
parameters: ["i32", "i32"],
result: "i32",
nonblocking: true,
},
"add_u64_nonblocking": {
name: "add_u64",
parameters: ["u64", "u64"],
result: "u64",
nonblocking: true,
},
"add_i64_nonblocking": {
name: "add_i64",
parameters: ["i64", "i64"],
result: "i64",
nonblocking: true,
},
"add_usize_nonblocking": {
name: "add_usize",
parameters: ["usize", "usize"],
result: "usize",
nonblocking: true,
},
"add_isize_nonblocking": {
name: "add_isize",
parameters: ["isize", "isize"],
result: "isize",
nonblocking: true,
},
"add_f32_nonblocking": {
name: "add_f32",
parameters: ["f32", "f32"],
result: "f32",
nonblocking: true,
},
"add_f64_nonblocking": {
name: "add_f64",
parameters: ["f64", "f64"],
result: "f64",
nonblocking: true,
},
"fill_buffer": { parameters: ["u8", "buffer", "usize"], result: "void" },
"sleep_nonblocking": {
name: "sleep_blocking",
parameters: ["u64"],
result: "void",
nonblocking: true,
},
"sleep_blocking": { parameters: ["u64"], result: "void" },
"nonblocking_buffer": {
parameters: ["buffer", "usize"],
result: "void",
nonblocking: true,
},
"get_add_u32_ptr": {
parameters: [],
result: "pointer",
},
"get_sleep_blocking_ptr": {
parameters: [],
result: "pointer",
},
// Callback function
call_fn_ptr: {
parameters: ["function"],
result: "void",
},
call_fn_ptr_thread_safe: {
name: "call_fn_ptr",
parameters: ["function"],
result: "void",
nonblocking: true,
},
call_fn_ptr_many_parameters: {
parameters: ["function"],
result: "void",
},
call_fn_ptr_return_u8: {
parameters: ["function"],
result: "void",
},
call_fn_ptr_return_u8_thread_safe: {
name: "call_fn_ptr_return_u8",
parameters: ["function"],
result: "void",
},
call_fn_ptr_return_buffer: {
parameters: ["function"],
result: "void",
},
store_function: {
parameters: ["function"],
result: "void",
},
store_function_2: {
parameters: ["function"],
result: "void",
},
call_stored_function: {
parameters: [],
result: "void",
callback: true,
},
call_stored_function_2: {
parameters: ["u8"],
result: "void",
callback: true,
},
log_many_parameters: {
parameters: ["u8", "u16", "u32", "u64", "f64", "f32", "i64", "i32", "i16", "i8", "isize", "usize", "f64", "f32", "f64", "f32", "f64", "f32", "f64"],
result: "void",
},
cast_u8_u32: {
parameters: ["u8"],
result: "u32",
},
cast_u32_u8: {
parameters: ["u32"],
result: "u8",
},
add_many_u16: {
parameters: ["u16", "u16", "u16", "u16", "u16", "u16", "u16", "u16", "u16", "u16", "u16", "u16", "u16"],
result: "u16",
},
// Statics
"static_u32": {
type: "u32",
},
"static_i64": {
type: "i64",
},
"static_ptr": {
type: "pointer",
},
/**
* Invalid UTF-8 characters, buffer of length 14
*/
"static_char": {
type: "pointer",
},
"hash": { parameters: ["buffer", "u32"], result: "u32" },
make_rect: {
parameters: ["f64", "f64", "f64", "f64"],
result: { struct: Rect },
},
make_rect_async: {
name: "make_rect",
nonblocking: true,
parameters: ["f64", "f64", "f64", "f64"],
result: { struct: RectNested },
},
print_rect: {
parameters: [{ struct: Rect }],
result: "void",
},
print_rect_async: {
name: "print_rect",
nonblocking: true,
parameters: [{ struct: Rect }],
result: "void",
},
create_mixed: {
parameters: ["u8", "f32", { struct: Rect }, "pointer", "buffer"],
result: { struct: Mixed }
},
print_mixed: {
parameters: [{ struct: Mixed }],
result: "void",
},
});
const { symbols } = dylib;
symbols.printSomething();
const buffer = new Uint8Array([1, 2, 3, 4, 5, 6, 7, 8]);
const buffer2 = new Uint8Array([9, 10]);
dylib.symbols.print_buffer(buffer, buffer.length);
// Test subarrays
const subarray = buffer.subarray(3);
dylib.symbols.print_buffer(subarray, subarray.length - 2);
dylib.symbols.print_buffer2(buffer, buffer.length, buffer2, buffer2.length);
const { return_buffer } = symbols;
function returnBuffer() { return return_buffer(); };
%PrepareFunctionForOptimization(returnBuffer);
returnBuffer();
%OptimizeFunctionOnNextCall(returnBuffer);
const ptr0 = returnBuffer();
assertIsOptimized(returnBuffer);
dylib.symbols.print_pointer(ptr0, 8);
const ptrView = new Deno.UnsafePointerView(ptr0);
const into = new Uint8Array(6);
const into2 = new Uint8Array(3);
const into2ptr = Deno.UnsafePointer.of(into2);
const into2ptrView = new Deno.UnsafePointerView(into2ptr);
const into3 = new Uint8Array(3);
ptrView.copyInto(into);
console.log([...into]);
ptrView.copyInto(into2, 3);
console.log([...into2]);
into2ptrView.copyInto(into3);
console.log([...into3]);
const string = new Uint8Array([
...new TextEncoder().encode("Hello from pointer!"),
0,
]);
const stringPtr = Deno.UnsafePointer.of(string);
const stringPtrview = new Deno.UnsafePointerView(stringPtr);
console.log(stringPtrview.getCString());
console.log(stringPtrview.getCString(11));
fix(ext/ffi): Null buffer pointer value is inconsistent (#16625) Currently, slow call path will always create a dangling pointer to replace a null pointer when called with eg. a `new Uint8Array()` parameter, which V8 initialises as a null pointer backed buffer. However, the fast call path will never change the pointer value and will thus expose a null pointer. Thus, it's possible that the pointer value that a native call sees coming from Deno changes between two sequential invocations of the same function with the exact same parameters. Since null pointers can be quite important, and `Uint8Array` is the chosen fast path for Deno FFI `"buffer"` parameters, I think it is fairly important that the null pointer be properly exposed to the native code. Thus this PR. ### `*mut c_void` While here, I also changed the type of our pointer values to `*mut c_void`. This is mainly due to JS buffers always being `*mut`, and because we offer a way to turn a pointer into a JS `ArrayBuffer` (`op_ffi_get_buf`) which is read-write. I'm not exactly sure which way we should really go here, we have pointers that are definitely mut but we also cannot assume all of our pointers are. So, do we go with the maxima or the minima? ### `optimisedCall(new Uint8Array())` V8 seems to have a bug where calling an optimised function with a newly created empty `Uint8Array` (no argument or 0) will not see the data pointer being null but instead it's some stable pointer, perhaps pointing to some internal null-backing-store. The pointer value is also an odd (not even) number, so it might specifically be a tagged pointer. This will probably be an issue for some users, if they try to use eg. `method(cstr("something"), new Uint8Array())` as a way to do a fast call to `method` with a null pointer as the second parameter. If instead of a `new Uint8Array()` the user instead uses some `const NULL = new Uint8Array()` where the `NULL` buffer has been passed to a slow call previously, then the fast call will properly see a null pointer. I'll take this up with some V8 engineers to see if this couldn't be fixed.
2022-11-27 09:38:54 -05:00
console.log(dylib.symbols.is_null_ptr(ptr0));
console.log(dylib.symbols.is_null_ptr(null));
console.log(dylib.symbols.is_null_ptr(Deno.UnsafePointer.of(into)));
const emptyBuffer = new Uint8Array(0);
console.log(dylib.symbols.is_null_ptr(Deno.UnsafePointer.of(emptyBuffer)));
const emptySlice = into.subarray(6);
fix(ext/ffi): Null buffer pointer value is inconsistent (#16625) Currently, slow call path will always create a dangling pointer to replace a null pointer when called with eg. a `new Uint8Array()` parameter, which V8 initialises as a null pointer backed buffer. However, the fast call path will never change the pointer value and will thus expose a null pointer. Thus, it's possible that the pointer value that a native call sees coming from Deno changes between two sequential invocations of the same function with the exact same parameters. Since null pointers can be quite important, and `Uint8Array` is the chosen fast path for Deno FFI `"buffer"` parameters, I think it is fairly important that the null pointer be properly exposed to the native code. Thus this PR. ### `*mut c_void` While here, I also changed the type of our pointer values to `*mut c_void`. This is mainly due to JS buffers always being `*mut`, and because we offer a way to turn a pointer into a JS `ArrayBuffer` (`op_ffi_get_buf`) which is read-write. I'm not exactly sure which way we should really go here, we have pointers that are definitely mut but we also cannot assume all of our pointers are. So, do we go with the maxima or the minima? ### `optimisedCall(new Uint8Array())` V8 seems to have a bug where calling an optimised function with a newly created empty `Uint8Array` (no argument or 0) will not see the data pointer being null but instead it's some stable pointer, perhaps pointing to some internal null-backing-store. The pointer value is also an odd (not even) number, so it might specifically be a tagged pointer. This will probably be an issue for some users, if they try to use eg. `method(cstr("something"), new Uint8Array())` as a way to do a fast call to `method` with a null pointer as the second parameter. If instead of a `new Uint8Array()` the user instead uses some `const NULL = new Uint8Array()` where the `NULL` buffer has been passed to a slow call previously, then the fast call will properly see a null pointer. I'll take this up with some V8 engineers to see if this couldn't be fixed.
2022-11-27 09:38:54 -05:00
console.log(dylib.symbols.is_null_ptr(Deno.UnsafePointer.of(emptySlice)));
const { is_null_buf } = symbols;
function isNullBuffer(buffer) { return is_null_buf(buffer); };
function isNullBufferDeopt(buffer) { return is_null_buf(buffer); };
%PrepareFunctionForOptimization(isNullBuffer);
isNullBuffer(emptyBuffer);
%NeverOptimizeFunction(isNullBufferDeopt);
%OptimizeFunctionOnNextCall(isNullBuffer);
isNullBuffer(emptyBuffer);
assertIsOptimized(isNullBuffer);
// ==== ZERO LENGTH BUFFER TESTS ====
assertEquals(isNullBuffer(emptyBuffer), true, "isNullBuffer(emptyBuffer) !== true");
assertEquals(isNullBufferDeopt(emptyBuffer), true, "isNullBufferDeopt(emptyBuffer) !== true");
assertEquals(isNullBuffer(emptySlice), false, "isNullBuffer(emptySlice) !== false");
assertEquals(isNullBufferDeopt(emptySlice), false, "isNullBufferDeopt(emptySlice) !== false");
assertEquals(isNullBufferDeopt(new Uint8Array()), true, "isNullBufferDeopt(new Uint8Array()) !== true");
// ==== V8 ZERO LENGTH BUFFER ANOMALIES ====
// V8 bug: inline Uint8Array creation to fast call sees non-null pointer
// https://bugs.chromium.org/p/v8/issues/detail?id=13489
assertEquals(isNullBuffer(new Uint8Array()), false, "isNullBuffer(new Uint8Array()) !== false");
// Externally backed ArrayBuffer has a non-null data pointer, even though its length is zero.
const externalZeroBuffer = new Uint8Array(Deno.UnsafePointerView.getArrayBuffer(ptr0, 0));
// However: V8 Fast calls get null pointers for zero-sized buffers.
assertEquals(isNullBuffer(externalZeroBuffer), true, "isNullBuffer(externalZeroBuffer) !== true");
// Also: V8's `Local<ArrayBuffer>->Data()` method returns null pointers for zero-sized buffers.
// Using `Local<ArrayBuffer>->GetBackingStore()->Data()` would give the original pointer.
assertEquals(isNullBufferDeopt(externalZeroBuffer), true, "isNullBufferDeopt(externalZeroBuffer) !== true");
// The same pointer with a non-zero byte length for the buffer will return non-null pointers in
// both Fast call and V8 API calls.
const externalOneBuffer = new Uint8Array(Deno.UnsafePointerView.getArrayBuffer(ptr0, 1));
assertEquals(isNullBuffer(externalOneBuffer), false, "isNullBuffer(externalOneBuffer) !== false");
assertEquals(isNullBufferDeopt(externalOneBuffer), false, "isNullBufferDeopt(externalOneBuffer) !== false");
// Due to ops macro using `Local<ArrayBuffer>->Data()` to get the pointer for the slice that is then used to get
// the pointer of an ArrayBuffer / TypedArray, the same effect can be seen where a zero byte length buffer returns
// a null pointer as its pointer value.
assertEquals(Deno.UnsafePointer.of(externalZeroBuffer), 0, "Deno.UnsafePointer.of(externalZeroBuffer) !== 0");
assertNotEquals(Deno.UnsafePointer.of(externalOneBuffer), 0, "Deno.UnsafePointer.of(externalOneBuffer) !== 0");
const addU32Ptr = dylib.symbols.get_add_u32_ptr();
const addU32 = new Deno.UnsafeFnPointer(addU32Ptr, {
parameters: ["u32", "u32"],
result: "u32",
});
console.log(addU32.call(123, 456));
const sleepBlockingPtr = dylib.symbols.get_sleep_blocking_ptr();
const sleepNonBlocking = new Deno.UnsafeFnPointer(sleepBlockingPtr, {
nonblocking: true,
parameters: ["u64"],
result: "void",
});
const before = performance.now();
await sleepNonBlocking.call(100);
console.log(performance.now() - before >= 100);
const { add_u32, add_usize_fast } = symbols;
function addU32Fast(a, b) {
return add_u32(a, b);
};
testOptimized(addU32Fast, () => addU32Fast(123, 456));
function addU64Fast(a, b) { return add_usize_fast(a, b); };
testOptimized(addU64Fast, () => addU64Fast(2, 3));
console.log(dylib.symbols.add_i32(123, 456));
console.log(dylib.symbols.add_u64(0xffffffffn, 0xffffffffn));
console.log(dylib.symbols.add_i64(-0xffffffffn, -0xffffffffn));
console.log(dylib.symbols.add_usize(0xffffffffn, 0xffffffffn));
console.log(dylib.symbols.add_isize(-0xffffffffn, -0xffffffffn));
console.log(dylib.symbols.add_u64(Number.MAX_SAFE_INTEGER, 1));
console.log(dylib.symbols.add_i64(Number.MAX_SAFE_INTEGER, 1));
console.log(dylib.symbols.add_i64(Number.MIN_SAFE_INTEGER, -1));
console.log(dylib.symbols.add_usize(Number.MAX_SAFE_INTEGER, 1));
console.log(dylib.symbols.add_isize(Number.MAX_SAFE_INTEGER, 1));
console.log(dylib.symbols.add_isize(Number.MIN_SAFE_INTEGER, -1));
console.log(dylib.symbols.add_f32(123.123, 456.789));
console.log(dylib.symbols.add_f64(123.123, 456.789));
console.log(dylib.symbols.and(true, true));
console.log(dylib.symbols.and(true, false));
function addF32Fast(a, b) {
return dylib.symbols.add_f32(a, b);
};
testOptimized(addF32Fast, () => addF32Fast(123.123, 456.789));
function addF64Fast(a, b) {
return dylib.symbols.add_f64(a, b);
};
testOptimized(addF64Fast, () => addF64Fast(123.123, 456.789));
// Test adders as nonblocking calls
console.log(await dylib.symbols.add_i32_nonblocking(123, 456));
console.log(await dylib.symbols.add_u64_nonblocking(0xffffffffn, 0xffffffffn));
console.log(
await dylib.symbols.add_i64_nonblocking(-0xffffffffn, -0xffffffffn),
);
console.log(
await dylib.symbols.add_usize_nonblocking(0xffffffffn, 0xffffffffn),
);
console.log(
await dylib.symbols.add_isize_nonblocking(-0xffffffffn, -0xffffffffn),
);
console.log(await dylib.symbols.add_u64_nonblocking(Number.MAX_SAFE_INTEGER, 1));
console.log(await dylib.symbols.add_i64_nonblocking(Number.MAX_SAFE_INTEGER, 1));
console.log(await dylib.symbols.add_i64_nonblocking(Number.MIN_SAFE_INTEGER, -1));
console.log(await dylib.symbols.add_usize_nonblocking(Number.MAX_SAFE_INTEGER, 1));
console.log(await dylib.symbols.add_isize_nonblocking(Number.MAX_SAFE_INTEGER, 1));
console.log(await dylib.symbols.add_isize_nonblocking(Number.MIN_SAFE_INTEGER, -1));
console.log(await dylib.symbols.add_f32_nonblocking(123.123, 456.789));
console.log(await dylib.symbols.add_f64_nonblocking(123.123, 456.789));
// test mutating sync calls
function test_fill_buffer(fillValue, arr) {
let buf = new Uint8Array(arr);
dylib.symbols.fill_buffer(fillValue, buf, buf.length);
for (let i = 0; i < buf.length; i++) {
if (buf[i] !== fillValue) {
throw new Error(`Found '${buf[i]}' in buffer, expected '${fillValue}'.`);
}
}
}
test_fill_buffer(0, [2, 3, 4]);
test_fill_buffer(5, [2, 7, 3, 2, 1]);
// Test non blocking calls
function deferred() {
let methods;
const promise = new Promise((resolve, reject) => {
methods = {
async resolve(value) {
await value;
resolve(value);
},
reject(reason) {
reject(reason);
},
};
});
return Object.assign(promise, methods);
}
const promise = deferred();
const buffer3 = new Uint8Array([1, 2, 3, 4, 5, 6, 7, 8]);
dylib.symbols.nonblocking_buffer(buffer3, buffer3.length).then(() => {
promise.resolve();
});
await promise;
let start = performance.now();
dylib.symbols.sleep_blocking(100);
console.log("After sleep_blocking");
console.log(performance.now() - start >= 100);
start = performance.now();
const promise_2 = dylib.symbols.sleep_nonblocking(100).then(() => {
console.log("After");
console.log(performance.now() - start >= 100);
});
console.log("Before");
console.log(performance.now() - start < 100);
// Await to make sure `sleep_nonblocking` calls and logs before we proceed
await promise_2;
// Test calls with callback parameters
const logCallback = new Deno.UnsafeCallback(
{ parameters: [], result: "void" },
() => console.log("logCallback"),
);
const logManyParametersCallback = new Deno.UnsafeCallback({
parameters: [
"u8",
"i8",
"u16",
"i16",
"u32",
"i32",
"u64",
"i64",
"f32",
"f64",
"pointer",
],
result: "void",
}, (u8, i8, u16, i16, u32, i32, u64, i64, f32, f64, pointer) => {
const view = new Deno.UnsafePointerView(pointer);
const copy_buffer = new Uint8Array(8);
view.copyInto(copy_buffer);
console.log(u8, i8, u16, i16, u32, i32, u64, i64, f32, f64, ...copy_buffer);
});
const returnU8Callback = new Deno.UnsafeCallback(
{ parameters: [], result: "u8" },
() => 8,
);
const returnBufferCallback = new Deno.UnsafeCallback({
parameters: [],
result: "pointer",
}, () => {
return buffer;
});
const add10Callback = new Deno.UnsafeCallback({
parameters: ["u8"],
result: "u8",
}, (value) => value + 10);
const throwCallback = new Deno.UnsafeCallback({
parameters: [],
result: "void",
}, () => {
throw new TypeError("hi");
});
assertThrows(
() => {
dylib.symbols.call_fn_ptr(throwCallback.pointer);
},
TypeError,
"hi",
);
const { call_stored_function } = dylib.symbols;
dylib.symbols.call_fn_ptr(logCallback.pointer);
dylib.symbols.call_fn_ptr_many_parameters(logManyParametersCallback.pointer);
dylib.symbols.call_fn_ptr_return_u8(returnU8Callback.pointer);
dylib.symbols.call_fn_ptr_return_buffer(returnBufferCallback.pointer);
dylib.symbols.store_function(logCallback.pointer);
call_stored_function();
dylib.symbols.store_function_2(add10Callback.pointer);
dylib.symbols.call_stored_function_2(20);
function logManyParametersFast(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) {
return symbols.log_many_parameters(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s);
};
testOptimized(
logManyParametersFast,
() => logManyParametersFast(
255, 65535, 4294967295, 4294967296, 123.456, 789.876, -1, -2, -3, -4, -1000, 1000,
12345.678910, 12345.678910, 12345.678910, 12345.678910, 12345.678910, 12345.678910, 12345.678910
)
);
// Some ABIs rely on the convention to zero/sign-extend arguments by the caller to optimize the callee function.
// If the trampoline did not zero/sign-extend arguments, this would return 256 instead of the expected 0 (in optimized builds)
function castU8U32Fast(x) { return symbols.cast_u8_u32(x); };
testOptimized(castU8U32Fast, () => castU8U32Fast(256));
// Some ABIs rely on the convention to expect garbage in the bits beyond the size of the return value to optimize the callee function.
// If the trampoline did not zero/sign-extend the return value, this would return 256 instead of the expected 0 (in optimized builds)
function castU32U8Fast(x) { return symbols.cast_u32_u8(x); };
testOptimized(castU32U8Fast, () => castU32U8Fast(256));
// Generally the trampoline tail-calls into the FFI function, but in certain cases (e.g. when returning 8 or 16 bit integers)
// the tail call is not possible and a new stack frame must be created. We need enough parameters to have some on the stack
function addManyU16Fast(a, b, c, d, e, f, g, h, i, j, k, l, m) {
return symbols.add_many_u16(a, b, c, d, e, f, g, h, i, j, k, l, m);
};
// N.B. V8 does not currently follow Aarch64 Apple's calling convention.
// The current implementation of the JIT trampoline follows the V8 incorrect calling convention. This test covers the use-case
// and is expected to fail once Deno uses a V8 version with the bug fixed.
// The V8 bug is being tracked in https://bugs.chromium.org/p/v8/issues/detail?id=13171
testOptimized(addManyU16Fast, () => addManyU16Fast(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12));
const nestedCallback = new Deno.UnsafeCallback(
{ parameters: [], result: "void" },
() => {
dylib.symbols.call_stored_function_2(10);
},
);
dylib.symbols.store_function(nestedCallback.pointer);
dylib.symbols.store_function(null);
dylib.symbols.store_function_2(null);
let counter = 0;
const addToFooCallback = new Deno.UnsafeCallback({
parameters: [],
result: "void",
}, () => counter++);
// Test thread safe callbacks
console.log("Thread safe call counter:", counter);
addToFooCallback.ref();
await dylib.symbols.call_fn_ptr_thread_safe(addToFooCallback.pointer);
addToFooCallback.unref();
logCallback.ref();
await dylib.symbols.call_fn_ptr_thread_safe(logCallback.pointer);
logCallback.unref();
console.log("Thread safe call counter:", counter);
returnU8Callback.ref();
await dylib.symbols.call_fn_ptr_return_u8_thread_safe(returnU8Callback.pointer);
// Purposefully do not unref returnU8Callback: Instead use it to test close() unrefing.
// Test statics
console.log("Static u32:", dylib.symbols.static_u32);
console.log("Static i64:", dylib.symbols.static_i64);
console.log(
"Static ptr:",
typeof dylib.symbols.static_ptr === "number",
);
const view = new Deno.UnsafePointerView(dylib.symbols.static_ptr);
console.log("Static ptr value:", view.getUint32());
// Test struct returning
const rect_sync = dylib.symbols.make_rect(10, 20, 100, 200);
assertInstanceOf(rect_sync, Uint8Array);
assertEquals(rect_sync.length, 4 * 8);
assertEquals(Array.from(new Float64Array(rect_sync.buffer)), [10, 20, 100, 200]);
// Test struct passing
dylib.symbols.print_rect(rect_sync);
// Test struct passing asynchronously
await dylib.symbols.print_rect_async(rect_sync);
dylib.symbols.print_rect(new Float64Array([20, 20, 100, 200]));
// Test struct returning asynchronously
const rect_async = await dylib.symbols.make_rect_async(10, 20, 100, 200);
assertInstanceOf(rect_async, Uint8Array);
assertEquals(rect_async.length, 4 * 8);
assertEquals(Array.from(new Float64Array(rect_async.buffer)), [10, 20, 100, 200]);
// Test complex, mixed struct returning and passing
const mixedStruct = dylib.symbols.create_mixed(3, 12.515000343322754, rect_async, 12456789, new Uint32Array([8, 32]));
assertEquals(mixedStruct.length, 56);
assertEquals(Array.from(mixedStruct.subarray(0, 4)), [3, 0, 0, 0]);
assertEquals(new Float32Array(mixedStruct.buffer, 4, 1)[0], 12.515000343322754);
assertEquals(new Float64Array(mixedStruct.buffer, 8, 4), new Float64Array(rect_async.buffer));
assertEquals(new BigUint64Array(mixedStruct.buffer, 40, 1)[0], 12456789n);
assertEquals(new Uint32Array(mixedStruct.buffer, 48, 2), new Uint32Array([8, 32]));
dylib.symbols.print_mixed(mixedStruct);
const cb = new Deno.UnsafeCallback({
parameters: [{ struct: Rect }],
result: { struct: Rect },
}, (innerRect) => {
innerRect = new Float64Array(innerRect.buffer);
return new Float64Array([innerRect[0] + 10, innerRect[1] + 10, innerRect[2] + 10, innerRect[3] + 10]);
});
const cbFfi = new Deno.UnsafeFnPointer(cb.pointer, cb.definition);
const cbResult = new Float64Array(cbFfi.call(rect_async).buffer);
assertEquals(Array.from(cbResult), [20, 30, 110, 210]);
cb.close();
const arrayBuffer = view.getArrayBuffer(4);
const uint32Array = new Uint32Array(arrayBuffer);
console.log("arrayBuffer.byteLength:", arrayBuffer.byteLength);
console.log("uint32Array.length:", uint32Array.length);
console.log("uint32Array[0]:", uint32Array[0]);
uint32Array[0] = 55; // MUTATES!
console.log("uint32Array[0] after mutation:", uint32Array[0]);
console.log("Static ptr value after mutation:", view.getUint32());
// Test non-UTF-8 characters
const charView = new Deno.UnsafePointerView(dylib.symbols.static_char);
const charArrayBuffer = charView.getArrayBuffer(14);
const uint8Array = new Uint8Array(charArrayBuffer);
assertEquals([...uint8Array], [
0xC0, 0xC1, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF,
0x00
]);
try {
assertThrows(() => charView.getCString(), TypeError, "Invalid CString pointer, not valid UTF-8");
} catch (_err) {
console.log("Invalid UTF-8 characters to `v8::String`:", charView.getCString());
}
const bytes = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
function hash() { return dylib.symbols.hash(bytes, bytes.byteLength); };
testOptimized(hash, () => hash());
(function cleanup() {
dylib.close();
throwCallback.close();
logCallback.close();
logManyParametersCallback.close();
returnU8Callback.close();
returnBufferCallback.close();
add10Callback.close();
nestedCallback.close();
addToFooCallback.close();
const resourcesPost = Deno.resources();
const preStr = JSON.stringify(resourcesPre, null, 2);
const postStr = JSON.stringify(resourcesPost, null, 2);
if (preStr !== postStr) {
throw new Error(
`Difference in open resources before dlopen and after closing:
Before: ${preStr}
After: ${postStr}`,
);
}
console.log("Correct number of resources");
})();
function assertIsOptimized(fn) {
const status = %GetOptimizationStatus(fn);
assert(status & (1 << 4), `expected ${fn.name} to be optimized, but wasn't`);
}
function testOptimized(fn, callback) {
%PrepareFunctionForOptimization(fn);
const r1 = callback();
if (r1 !== undefined) {
console.log(r1);
}
%OptimizeFunctionOnNextCall(fn);
const r2 = callback();
if (r2 !== undefined) {
console.log(r2);
}
assertIsOptimized(fn);
}