1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-11-30 16:40:57 -05:00
denoland-deno/tests/unit/webcrypto_test.ts

2088 lines
57 KiB
TypeScript
Raw Normal View History

// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
import {
assert,
assertEquals,
assertNotEquals,
assertRejects,
} from "./test_util.ts";
// https://github.com/denoland/deno/issues/11664
Deno.test(async function testImportArrayBufferKey() {
const subtle = globalThis.crypto.subtle;
assert(subtle);
// deno-fmt-ignore
const key = new Uint8Array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
const cryptoKey = await subtle.importKey(
"raw",
key.buffer,
{ name: "HMAC", hash: "SHA-1" },
true,
["sign"],
);
assert(cryptoKey);
// Test key usage
await subtle.sign({ name: "HMAC" }, cryptoKey, new Uint8Array(8));
});
Deno.test(async function testSignVerify() {
const subtle = globalThis.crypto.subtle;
assert(subtle);
for (const algorithm of ["RSA-PSS", "RSASSA-PKCS1-v1_5"]) {
for (
const hash of [
"SHA-1",
"SHA-256",
"SHA-384",
"SHA-512",
]
) {
const keyPair = await subtle.generateKey(
{
name: algorithm,
modulusLength: 2048,
publicExponent: new Uint8Array([1, 0, 1]),
hash,
},
true,
["sign", "verify"],
);
const data = new Uint8Array([1, 2, 3]);
const signAlgorithm = { name: algorithm, saltLength: 32 };
const signature = await subtle.sign(
signAlgorithm,
keyPair.privateKey,
data,
);
assert(signature);
assert(signature.byteLength > 0);
assert(signature.byteLength % 8 == 0);
assert(signature instanceof ArrayBuffer);
const verified = await subtle.verify(
signAlgorithm,
keyPair.publicKey,
signature,
data,
);
assert(verified);
}
}
});
// deno-fmt-ignore
const plainText = new Uint8Array([95, 77, 186, 79, 50, 12, 12, 232, 118, 114, 90, 252, 229, 251, 210, 91, 248, 62, 90, 113, 37, 160, 140, 175, 231, 60, 62, 186, 196, 33, 119, 157, 249, 213, 93, 24, 12, 58, 233, 148, 38, 69, 225, 216, 47, 238, 140, 157, 41, 75, 60, 177, 160, 138, 153, 49, 32, 27, 60, 14, 129, 252, 71, 202, 207, 131, 21, 162, 175, 102, 50, 65, 19, 195, 182, 98, 48, 195, 70, 8, 196, 244, 89, 54, 52, 206, 2, 178, 103, 54, 34, 119, 240, 168, 64, 202, 116, 188, 61, 26, 98, 54, 149, 44, 94, 215, 170, 248, 168, 254, 203, 221, 250, 117, 132, 230, 151, 140, 234, 93, 42, 91, 159, 183, 241, 180, 140, 139, 11, 229, 138, 48, 82, 2, 117, 77, 131, 118, 16, 115, 116, 121, 60, 240, 38, 170, 238, 83, 0, 114, 125, 131, 108, 215, 30, 113, 179, 69, 221, 178, 228, 68, 70, 255, 197, 185, 1, 99, 84, 19, 137, 13, 145, 14, 163, 128, 152, 74, 144, 25, 16, 49, 50, 63, 22, 219, 204, 157, 107, 225, 104, 184, 72, 133, 56, 76, 160, 62, 18, 96, 10, 193, 194, 72, 2, 138, 243, 114, 108, 201, 52, 99, 136, 46, 168, 192, 42, 171]);
// Passing
const hashPlainTextVector = [
{
hash: "SHA-1",
plainText: plainText.slice(0, 214),
},
{
hash: "SHA-256",
plainText: plainText.slice(0, 190),
},
{
hash: "SHA-384",
plainText: plainText.slice(0, 158),
},
{
hash: "SHA-512",
plainText: plainText.slice(0, 126),
},
];
Deno.test(async function testEncryptDecrypt() {
const subtle = globalThis.crypto.subtle;
assert(subtle);
for (
const { hash, plainText } of hashPlainTextVector
) {
const keyPair = await subtle.generateKey(
{
name: "RSA-OAEP",
modulusLength: 2048,
publicExponent: new Uint8Array([1, 0, 1]),
hash,
},
true,
["encrypt", "decrypt"],
);
const encryptAlgorithm = { name: "RSA-OAEP" };
const cipherText = await subtle.encrypt(
encryptAlgorithm,
keyPair.publicKey,
plainText,
);
assert(cipherText);
assert(cipherText.byteLength > 0);
assertEquals(cipherText.byteLength * 8, 2048);
assert(cipherText instanceof ArrayBuffer);
const decrypted = await subtle.decrypt(
encryptAlgorithm,
keyPair.privateKey,
cipherText,
);
assert(decrypted);
assert(decrypted instanceof ArrayBuffer);
assertEquals(new Uint8Array(decrypted), plainText);
const badPlainText = new Uint8Array(plainText.byteLength + 1);
badPlainText.set(plainText, 0);
badPlainText.set(new Uint8Array([32]), plainText.byteLength);
await assertRejects(async () => {
// Should fail
await subtle.encrypt(
encryptAlgorithm,
keyPair.publicKey,
badPlainText,
);
throw new TypeError("unreachable");
}, DOMException);
}
});
Deno.test(async function testGenerateRSAKey() {
const subtle = globalThis.crypto.subtle;
assert(subtle);
const keyPair = await subtle.generateKey(
{
name: "RSA-PSS",
modulusLength: 2048,
publicExponent: new Uint8Array([1, 0, 1]),
hash: "SHA-256",
},
true,
["sign", "verify"],
);
assert(keyPair.privateKey);
assert(keyPair.publicKey);
assertEquals(keyPair.privateKey.extractable, true);
assert(keyPair.privateKey.usages.includes("sign"));
});
Deno.test(async function testGenerateHMACKey() {
const key = await globalThis.crypto.subtle.generateKey(
{
name: "HMAC",
hash: "SHA-512",
},
true,
["sign", "verify"],
);
assert(key);
assertEquals(key.extractable, true);
assert(key.usages.includes("sign"));
});
Deno.test(async function testECDSASignVerify() {
const key = await globalThis.crypto.subtle.generateKey(
{
name: "ECDSA",
namedCurve: "P-384",
},
true,
["sign", "verify"],
);
const encoder = new TextEncoder();
const encoded = encoder.encode("Hello, World!");
const signature = await globalThis.crypto.subtle.sign(
{ name: "ECDSA", hash: "SHA-384" },
key.privateKey,
encoded,
);
assert(signature);
assert(signature instanceof ArrayBuffer);
const verified = await globalThis.crypto.subtle.verify(
{ hash: { name: "SHA-384" }, name: "ECDSA" },
key.publicKey,
signature,
encoded,
);
assert(verified);
});
// Tests the "bad paths" as a temporary replacement for sign_verify/ecdsa WPT.
Deno.test(async function testECDSASignVerifyFail() {
const key = await globalThis.crypto.subtle.generateKey(
{
name: "ECDSA",
namedCurve: "P-384",
},
true,
["sign", "verify"],
);
const encoded = new Uint8Array([1]);
// Signing with a public key (InvalidAccessError)
await assertRejects(async () => {
await globalThis.crypto.subtle.sign(
{ name: "ECDSA", hash: "SHA-384" },
key.publicKey,
new Uint8Array([1]),
);
throw new TypeError("unreachable");
}, DOMException);
// Do a valid sign for later verifying.
const signature = await globalThis.crypto.subtle.sign(
{ name: "ECDSA", hash: "SHA-384" },
key.privateKey,
encoded,
);
// Verifying with a private key (InvalidAccessError)
await assertRejects(async () => {
await globalThis.crypto.subtle.verify(
{ hash: { name: "SHA-384" }, name: "ECDSA" },
key.privateKey,
signature,
encoded,
);
throw new TypeError("unreachable");
}, DOMException);
});
// https://github.com/denoland/deno/issues/11313
Deno.test(async function testSignRSASSAKey() {
const subtle = globalThis.crypto.subtle;
assert(subtle);
const keyPair = await subtle.generateKey(
{
name: "RSASSA-PKCS1-v1_5",
modulusLength: 2048,
publicExponent: new Uint8Array([1, 0, 1]),
hash: "SHA-256",
},
true,
["sign", "verify"],
);
assert(keyPair.privateKey);
assert(keyPair.publicKey);
assertEquals(keyPair.privateKey.extractable, true);
assert(keyPair.privateKey.usages.includes("sign"));
const encoder = new TextEncoder();
const encoded = encoder.encode("Hello, World!");
const signature = await globalThis.crypto.subtle.sign(
{ name: "RSASSA-PKCS1-v1_5" },
keyPair.privateKey,
encoded,
);
assert(signature);
});
// deno-fmt-ignore
const rawKey = new Uint8Array([
1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16
]);
const jwk: JsonWebKey = {
kty: "oct",
// unpadded base64 for rawKey.
k: "AQIDBAUGBwgJCgsMDQ4PEA",
alg: "HS256",
ext: true,
"key_ops": ["sign"],
};
Deno.test(async function subtleCryptoHmacImportExport() {
const key1 = await crypto.subtle.importKey(
"raw",
rawKey,
{ name: "HMAC", hash: "SHA-256" },
true,
["sign"],
);
const key2 = await crypto.subtle.importKey(
"jwk",
jwk,
{ name: "HMAC", hash: "SHA-256" },
true,
["sign"],
);
const actual1 = await crypto.subtle.sign(
{ name: "HMAC" },
key1,
new Uint8Array([1, 2, 3, 4]),
);
const actual2 = await crypto.subtle.sign(
{ name: "HMAC" },
key2,
new Uint8Array([1, 2, 3, 4]),
);
// deno-fmt-ignore
const expected = new Uint8Array([
59, 170, 255, 216, 51, 141, 51, 194,
213, 48, 41, 191, 184, 40, 216, 47,
130, 165, 203, 26, 163, 43, 38, 71,
23, 122, 222, 1, 146, 46, 182, 87,
]);
assertEquals(
new Uint8Array(actual1),
expected,
);
assertEquals(
new Uint8Array(actual2),
expected,
);
const exportedKey1 = await crypto.subtle.exportKey("raw", key1);
assertEquals(new Uint8Array(exportedKey1), rawKey);
const exportedKey2 = await crypto.subtle.exportKey("jwk", key2);
assertEquals(exportedKey2, jwk);
});
// https://github.com/denoland/deno/issues/12085
Deno.test(async function generateImportHmacJwk() {
const key = await crypto.subtle.generateKey(
{
name: "HMAC",
hash: "SHA-512",
},
true,
["sign"],
);
assert(key);
assertEquals(key.type, "secret");
assertEquals(key.extractable, true);
assertEquals(key.usages, ["sign"]);
const exportedKey = await crypto.subtle.exportKey("jwk", key);
assertEquals(exportedKey.kty, "oct");
assertEquals(exportedKey.alg, "HS512");
assertEquals(exportedKey.key_ops, ["sign"]);
assertEquals(exportedKey.ext, true);
assert(typeof exportedKey.k == "string");
assertEquals(exportedKey.k.length, 171);
});
// 2048-bits publicExponent=65537
const pkcs8TestVectors = [
// rsaEncryption
{ pem: "tests/testdata/webcrypto/id_rsaEncryption.pem", hash: "SHA-256" },
];
Deno.test({ permissions: { read: true } }, async function importRsaPkcs8() {
const pemHeader = "-----BEGIN PRIVATE KEY-----";
const pemFooter = "-----END PRIVATE KEY-----";
for (const { pem, hash } of pkcs8TestVectors) {
const keyFile = await Deno.readTextFile(pem);
const pemContents = keyFile.substring(
pemHeader.length,
keyFile.length - pemFooter.length,
);
const binaryDerString = atob(pemContents);
const binaryDer = new Uint8Array(binaryDerString.length);
for (let i = 0; i < binaryDerString.length; i++) {
binaryDer[i] = binaryDerString.charCodeAt(i);
}
const key = await crypto.subtle.importKey(
"pkcs8",
binaryDer,
{ name: "RSA-PSS", hash },
true,
["sign"],
);
assert(key);
assertEquals(key.type, "private");
assertEquals(key.extractable, true);
assertEquals(key.usages, ["sign"]);
const algorithm = key.algorithm as RsaHashedKeyAlgorithm;
assertEquals(algorithm.name, "RSA-PSS");
assertEquals(algorithm.hash.name, hash);
assertEquals(algorithm.modulusLength, 2048);
assertEquals(algorithm.publicExponent, new Uint8Array([1, 0, 1]));
}
});
const nonInteroperableVectors = [
// id-RSASSA-PSS (sha256)
// `openssl genpkey -algorithm rsa-pss -pkeyopt rsa_pss_keygen_md:sha256 -out id_rsassaPss.pem`
{ pem: "tests/testdata/webcrypto/id_rsassaPss.pem", hash: "SHA-256" },
// id-RSASSA-PSS (default parameters)
// `openssl genpkey -algorithm rsa-pss -out id_rsassaPss.pem`
{
pem: "tests/testdata/webcrypto/id_rsassaPss_default.pem",
hash: "SHA-1",
},
// id-RSASSA-PSS (default hash)
// `openssl genpkey -algorithm rsa-pss -pkeyopt rsa_pss_keygen_saltlen:30 -out rsaPss_saltLen_30.pem`
{
pem: "tests/testdata/webcrypto/id_rsassaPss_saltLen_30.pem",
hash: "SHA-1",
},
];
Deno.test(
{ permissions: { read: true } },
async function importNonInteroperableRsaPkcs8() {
const pemHeader = "-----BEGIN PRIVATE KEY-----";
const pemFooter = "-----END PRIVATE KEY-----";
for (const { pem, hash } of nonInteroperableVectors) {
const keyFile = await Deno.readTextFile(pem);
const pemContents = keyFile.substring(
pemHeader.length,
keyFile.length - pemFooter.length,
);
const binaryDerString = atob(pemContents);
const binaryDer = new Uint8Array(binaryDerString.length);
for (let i = 0; i < binaryDerString.length; i++) {
binaryDer[i] = binaryDerString.charCodeAt(i);
}
await assertRejects(
() =>
crypto.subtle.importKey(
"pkcs8",
binaryDer,
{ name: "RSA-PSS", hash },
true,
["sign"],
),
DOMException,
"unsupported algorithm",
);
}
},
);
// deno-fmt-ignore
const asn1AlgorithmIdentifier = new Uint8Array([
0x02, 0x01, 0x00, // INTEGER
0x30, 0x0d, // SEQUENCE (2 elements)
0x06, 0x09, // OBJECT IDENTIFIER
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01, // 1.2.840.113549.1.1.1 (rsaEncryption)
0x05, 0x00, // NULL
]);
Deno.test(async function rsaExport() {
for (const algorithm of ["RSASSA-PKCS1-v1_5", "RSA-PSS", "RSA-OAEP"]) {
const keyPair = await crypto.subtle.generateKey(
{
name: algorithm,
modulusLength: 2048,
publicExponent: new Uint8Array([1, 0, 1]),
hash: "SHA-256",
},
true,
algorithm !== "RSA-OAEP" ? ["sign", "verify"] : ["encrypt", "decrypt"],
);
assert(keyPair.privateKey);
assert(keyPair.publicKey);
assertEquals(keyPair.privateKey.extractable, true);
const exportedPrivateKey = await crypto.subtle.exportKey(
"pkcs8",
keyPair.privateKey,
);
assert(exportedPrivateKey);
assert(exportedPrivateKey instanceof ArrayBuffer);
const pkcs8 = new Uint8Array(exportedPrivateKey);
assert(pkcs8.length > 0);
assertEquals(
pkcs8.slice(4, asn1AlgorithmIdentifier.byteLength + 4),
asn1AlgorithmIdentifier,
);
const exportedPublicKey = await crypto.subtle.exportKey(
"spki",
keyPair.publicKey,
);
const spki = new Uint8Array(exportedPublicKey);
assert(spki.length > 0);
assertEquals(
spki.slice(4, asn1AlgorithmIdentifier.byteLength + 1),
asn1AlgorithmIdentifier.slice(3),
);
}
});
Deno.test(async function testHkdfDeriveBits() {
const rawKey = crypto.getRandomValues(new Uint8Array(16));
const key = await crypto.subtle.importKey(
"raw",
rawKey,
{ name: "HKDF", hash: "SHA-256" },
false,
["deriveBits"],
);
const salt = crypto.getRandomValues(new Uint8Array(16));
const info = crypto.getRandomValues(new Uint8Array(16));
const result = await crypto.subtle.deriveBits(
{
name: "HKDF",
hash: "SHA-256",
salt: salt,
info: info,
},
key,
128,
);
assertEquals(result.byteLength, 128 / 8);
});
Deno.test(async function testHkdfDeriveBitsWithLargeKeySize() {
const key = await crypto.subtle.importKey(
"raw",
new Uint8Array([0x00]),
"HKDF",
false,
["deriveBits"],
);
await assertRejects(
() =>
crypto.subtle.deriveBits(
{
name: "HKDF",
hash: "SHA-1",
salt: new Uint8Array(),
info: new Uint8Array(),
},
key,
((20 * 255) << 3) + 8,
),
DOMException,
"The length provided for HKDF is too large",
);
});
Deno.test(async function testEcdhDeriveBitsWithShorterLength() {
const keypair = await crypto.subtle.generateKey(
{
name: "ECDH",
namedCurve: "P-384",
},
true,
["deriveBits", "deriveKey"],
);
const result = await crypto.subtle.deriveBits(
{
name: "ECDH",
public: keypair.publicKey,
},
keypair.privateKey,
256,
);
assertEquals(result.byteLength * 8, 256);
});
Deno.test(async function testEcdhDeriveBitsWithLongerLength() {
const keypair = await crypto.subtle.generateKey(
{
name: "ECDH",
namedCurve: "P-384",
},
true,
["deriveBits", "deriveKey"],
);
await assertRejects(
() =>
crypto.subtle.deriveBits(
{
name: "ECDH",
public: keypair.publicKey,
},
keypair.privateKey,
512,
),
DOMException,
"Invalid length",
);
});
Deno.test(async function testEcdhDeriveBitsWithNullLength() {
const keypair = await crypto.subtle.generateKey(
{
name: "ECDH",
namedCurve: "P-384",
},
true,
["deriveBits", "deriveKey"],
);
const result = await crypto.subtle.deriveBits(
{
name: "ECDH",
public: keypair.publicKey,
},
keypair.privateKey,
// @ts-ignore: necessary until .d.ts file allows passing null (see https://github.com/microsoft/TypeScript-DOM-lib-generator/pull/1416)
null,
);
assertEquals(result.byteLength * 8, 384);
});
Deno.test(async function testDeriveKey() {
// Test deriveKey
const rawKey = crypto.getRandomValues(new Uint8Array(16));
const key = await crypto.subtle.importKey(
"raw",
rawKey,
"PBKDF2",
false,
["deriveKey", "deriveBits"],
);
const salt = crypto.getRandomValues(new Uint8Array(16));
const derivedKey = await crypto.subtle.deriveKey(
{
name: "PBKDF2",
salt,
iterations: 1000,
hash: "SHA-256",
},
key,
{ name: "HMAC", hash: "SHA-256" },
true,
["sign"],
);
assert(derivedKey instanceof CryptoKey);
assertEquals(derivedKey.type, "secret");
assertEquals(derivedKey.extractable, true);
assertEquals(derivedKey.usages, ["sign"]);
const algorithm = derivedKey.algorithm as HmacKeyAlgorithm;
assertEquals(algorithm.name, "HMAC");
assertEquals(algorithm.hash.name, "SHA-256");
assertEquals(algorithm.length, 512);
});
Deno.test(async function testAesCbcEncryptDecrypt() {
const key = await crypto.subtle.generateKey(
{ name: "AES-CBC", length: 128 },
true,
["encrypt", "decrypt"],
);
const iv = crypto.getRandomValues(new Uint8Array(16));
const encrypted = await crypto.subtle.encrypt(
{
name: "AES-CBC",
iv,
},
key as CryptoKey,
new Uint8Array([1, 2, 3, 4, 5, 6]),
);
assert(encrypted instanceof ArrayBuffer);
assertEquals(encrypted.byteLength, 16);
const decrypted = await crypto.subtle.decrypt(
{
name: "AES-CBC",
iv,
},
key as CryptoKey,
encrypted,
);
assert(decrypted instanceof ArrayBuffer);
assertEquals(decrypted.byteLength, 6);
assertEquals(new Uint8Array(decrypted), new Uint8Array([1, 2, 3, 4, 5, 6]));
});
Deno.test(async function testAesCtrEncryptDecrypt() {
async function aesCtrRoundTrip(
key: CryptoKey,
counter: Uint8Array,
length: number,
plainText: Uint8Array,
) {
const cipherText = await crypto.subtle.encrypt(
{
name: "AES-CTR",
counter,
length,
},
key,
plainText,
);
assert(cipherText instanceof ArrayBuffer);
assertEquals(cipherText.byteLength, plainText.byteLength);
assertNotEquals(new Uint8Array(cipherText), plainText);
const decryptedText = await crypto.subtle.decrypt(
{
name: "AES-CTR",
counter,
length,
},
key,
cipherText,
);
assert(decryptedText instanceof ArrayBuffer);
assertEquals(decryptedText.byteLength, plainText.byteLength);
assertEquals(new Uint8Array(decryptedText), plainText);
}
for (const keySize of [128, 192, 256]) {
const key = await crypto.subtle.generateKey(
{ name: "AES-CTR", length: keySize },
true,
["encrypt", "decrypt"],
) as CryptoKey;
// test normal operation
for (const length of [128 /*, 64, 128 */]) {
const counter = crypto.getRandomValues(new Uint8Array(16));
await aesCtrRoundTrip(
key,
counter,
length,
new Uint8Array([1, 2, 3, 4, 5, 6]),
);
}
// test counter-wrapping
for (const length of [32, 64, 128]) {
const plaintext1 = crypto.getRandomValues(new Uint8Array(32));
const counter = new Uint8Array(16);
// fixed upper part
for (let off = 0; off < 16 - (length / 8); ++off) {
counter[off] = off;
}
const ciphertext1 = await crypto.subtle.encrypt(
{
name: "AES-CTR",
counter,
length,
},
key,
plaintext1,
);
// Set lower [length] counter bits to all '1's
for (let off = 16 - (length / 8); off < 16; ++off) {
counter[off] = 0xff;
}
// = [ 1 block of 0x00 + plaintext1 ]
const plaintext2 = new Uint8Array(48);
plaintext2.set(plaintext1, 16);
const ciphertext2 = await crypto.subtle.encrypt(
{
name: "AES-CTR",
counter,
length,
},
key,
plaintext2,
);
// If counter wrapped, 2nd block of ciphertext2 should be equal to 1st block of ciphertext1
// since ciphertext1 used counter = 0x00...00
// and ciphertext2 used counter = 0xFF..FF which should wrap to 0x00..00 without affecting
// higher bits
assertEquals(
new Uint8Array(ciphertext1),
new Uint8Array(ciphertext2).slice(16),
);
}
}
});
Deno.test(async function testECDH() {
for (const keySize of [256, 384]) {
const keyPair = await crypto.subtle.generateKey(
{
name: "ECDH",
namedCurve: "P-" + keySize,
},
true,
["deriveBits"],
);
const derivedKey = await crypto.subtle.deriveBits(
{
name: "ECDH",
public: keyPair.publicKey,
},
keyPair.privateKey,
keySize,
);
assert(derivedKey instanceof ArrayBuffer);
assertEquals(derivedKey.byteLength, keySize / 8);
}
});
Deno.test(async function testWrapKey() {
// Test wrapKey
const key = await crypto.subtle.generateKey(
{
name: "RSA-OAEP",
modulusLength: 4096,
publicExponent: new Uint8Array([1, 0, 1]),
hash: "SHA-256",
},
true,
["wrapKey", "unwrapKey"],
);
const hmacKey = await crypto.subtle.generateKey(
{
name: "HMAC",
hash: "SHA-256",
length: 128,
},
true,
["sign"],
);
const wrappedKey = await crypto.subtle.wrapKey(
"raw",
hmacKey,
key.publicKey,
{
name: "RSA-OAEP",
label: new Uint8Array(8),
},
);
assert(wrappedKey instanceof ArrayBuffer);
assertEquals(wrappedKey.byteLength, 512);
});
// Doesn't need to cover all cases.
// Only for testing types.
Deno.test(async function testAesKeyGen() {
const key = await crypto.subtle.generateKey(
{
name: "AES-GCM",
length: 256,
},
true,
["encrypt", "decrypt"],
);
assert(key);
assertEquals(key.type, "secret");
assertEquals(key.extractable, true);
assertEquals(key.usages, ["encrypt", "decrypt"]);
const algorithm = key.algorithm as AesKeyAlgorithm;
assertEquals(algorithm.name, "AES-GCM");
assertEquals(algorithm.length, 256);
});
Deno.test(async function testUnwrapKey() {
const subtle = crypto.subtle;
const AES_KEY: AesKeyAlgorithm & AesCbcParams = {
name: "AES-CBC",
length: 128,
iv: new Uint8Array(16),
};
const RSA_KEY: RsaHashedKeyGenParams & RsaOaepParams = {
name: "RSA-OAEP",
modulusLength: 2048,
publicExponent: new Uint8Array([1, 0, 1]),
hash: "SHA-1",
};
const aesKey = await subtle.generateKey(AES_KEY, true, [
"encrypt",
"decrypt",
]);
const rsaKeyPair = await subtle.generateKey(
{
name: "RSA-OAEP",
hash: "SHA-1",
publicExponent: new Uint8Array([1, 0, 1]),
modulusLength: 2048,
},
false,
["wrapKey", "encrypt", "unwrapKey", "decrypt"],
);
const enc = await subtle.wrapKey(
"raw",
aesKey,
rsaKeyPair.publicKey,
RSA_KEY,
);
const unwrappedKey = await subtle.unwrapKey(
"raw",
enc,
rsaKeyPair.privateKey,
RSA_KEY,
AES_KEY,
false,
["encrypt", "decrypt"],
);
assert(unwrappedKey instanceof CryptoKey);
assertEquals(unwrappedKey.type, "secret");
assertEquals(unwrappedKey.extractable, false);
assertEquals(unwrappedKey.usages, ["encrypt", "decrypt"]);
});
Deno.test(async function testDecryptWithInvalidIntializationVector() {
// deno-fmt-ignore
const data = new Uint8Array([42,42,42,42,42,42,42,42,42,42,42,42,42,42,42]);
const key = await crypto.subtle.importKey(
"raw",
new Uint8Array(16),
{ name: "AES-CBC", length: 256 },
true,
["encrypt", "decrypt"],
);
// deno-fmt-ignore
const initVector = new Uint8Array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]);
const encrypted = await crypto.subtle.encrypt(
{ name: "AES-CBC", iv: initVector },
key,
data,
);
// deno-fmt-ignore
const initVector2 = new Uint8Array([15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0]);
await assertRejects(async () => {
await crypto.subtle.decrypt(
{ name: "AES-CBC", iv: initVector2 },
key,
encrypted,
);
}, DOMException);
});
const jwtRSAKeys = {
"1024": {
size: 1024,
publicJWK: {
kty: "RSA",
n: "zZn4sRGfjQos56yL_Qy1R9NI-THMnFynn94g5RxA6wGrJh4BJT3x6I9x0IbpS3q-d4ORA6R2vuDMh8dDFRr9RDH6XY-gUScc9U5Jz3UA2KmVfsCbnUPvcAmMV_ENA7_TF0ivVjuIFodyDTx7EKHNVTrHHSlrbt7spbmcivs23Zc",
e: "AQAB",
},
privateJWK: {
kty: "RSA",
n: "zZn4sRGfjQos56yL_Qy1R9NI-THMnFynn94g5RxA6wGrJh4BJT3x6I9x0IbpS3q-d4ORA6R2vuDMh8dDFRr9RDH6XY-gUScc9U5Jz3UA2KmVfsCbnUPvcAmMV_ENA7_TF0ivVjuIFodyDTx7EKHNVTrHHSlrbt7spbmcivs23Zc",
e: "AQAB",
d: "YqIK_GdH85F-GWZdgfgmv15NE78gOaL5h2g4v7DeM9-JC7A5PHSLKNYn87HFGcC4vv0PBIBRtyCA_mJJfEaGWORVCOXSBpWNepMYpio52n3w5uj5UZEsBnbtZc0EtWhVF2Auqa7VbiKrWcQUEgEI8V0gE5D4tyBg8GXv9975dQE",
p: "9BrAg5L1zfqGPuWJDuDCBX-TmtZdrOI3Ys4ZaN-yMPlTjwWSEPO0qnfjEZcw2VgXHgJJmbVco6TxckJCmEYqeQ",
q: "157jDJ1Ya5nmQvTPbhKAPAeMWogxCyaQTkBrp30pEKd6mGSB385hqr4BIk8s3f7MdXpM-USpaZgUoT4o_2VEjw",
dp:
"qdd_QUzcaB-6jkKo1Ug-1xKIAgDLFsIjJUUfWt_iHL8ti2Kl2dOnTcCypgebPm5TT1bqHN-agGYAdK5zpX2UiQ",
dq:
"hNRfwOSplNfhLvxLUN7a2qA3yYm-1MSz_1DWQP7srlLORlUcYPht2FZmsnEeDcAqynBGPQUcbG2Av_hgHz2OZw",
qi:
"zbpJQAhinrxSbVKxBQ2EZGFUD2e3WCXbAJRYpk8HVQ5AA52OhKTicOye2hEHnrgpFKzC8iznTsCG3FMkvwcj4Q",
},
},
"2048": {
size: 2048,
publicJWK: {
kty: "RSA",
// unpadded base64 for rawKey.
n: "09eVwAhT9SPBxdEN-74BBeEANGaVGwqH-YglIc4VV7jfhR2by5ivzVq8NCeQ1_ACDIlTDY8CTMQ5E1c1SEXmo_T7q84XUGXf8U9mx6uRg46sV7fF-hkwJR80BFVsvWxp4ahPlVJYj__94ft7rIVvchb5tyalOjrYFCJoFnSgq-i3ZjU06csI9XnO5klINucD_Qq0vUhO23_Add2HSYoRjab8YiJJR_Eths7Pq6HHd2RSXmwYp5foRnwe0_U75XmesHWDJlJUHYbwCZo0kP9G8g4QbucwU-MSNBkZOO2x2ZtZNexpHd0ThkATbnNlpVG_z2AGNORp_Ve3rlXwrGIXXw",
e: "AQAB",
},
privateJWK: {
kty: "RSA",
// unpadded base64 for rawKey.
n: "09eVwAhT9SPBxdEN-74BBeEANGaVGwqH-YglIc4VV7jfhR2by5ivzVq8NCeQ1_ACDIlTDY8CTMQ5E1c1SEXmo_T7q84XUGXf8U9mx6uRg46sV7fF-hkwJR80BFVsvWxp4ahPlVJYj__94ft7rIVvchb5tyalOjrYFCJoFnSgq-i3ZjU06csI9XnO5klINucD_Qq0vUhO23_Add2HSYoRjab8YiJJR_Eths7Pq6HHd2RSXmwYp5foRnwe0_U75XmesHWDJlJUHYbwCZo0kP9G8g4QbucwU-MSNBkZOO2x2ZtZNexpHd0ThkATbnNlpVG_z2AGNORp_Ve3rlXwrGIXXw",
e: "AQAB",
d: "H4xboN2co0VP9kXL71G8lUOM5EDis8Q9u8uqu_4U75t4rjpamVeD1vFMVfgOehokM_m_hKVnkkcmuNqj9L90ObaiRFPM5QxG7YkFpXbHlPAKeoXD1hsqMF0VQg_2wb8DhberInHA_rEA_kaVhHvavQLu7Xez45gf1d_J4I4931vjlCB6cupbLL0H5hHsxbMsX_5nnmAJdL_U3gD-U7ZdQheUPhDBJR2KeGzvnTm3KVKpOnwn-1Cd45MU4-KDdP0FcBVEuBsSrsQHliTaciBgkbyj__BangPj3edDxTkb-fKkEvhkXRjAoJs1ixt8nfSGDce9cM_GqAX9XGb4s2QkAQ",
dp:
"mM82RBwzGzi9LAqjGbi-badLtHRRBoH9sfMrJuOtzxRnmwBFccg_lwy-qAhUTqnN9kvD0H1FzXWzoFPFJbyi-AOmumYGpWm_PvzQGldne5CPJ02pYaeg-t1BePsT3OpIq0Am8E2Kjf9polpRJwIjO7Kx8UJKkhg5bISnsy0V8wE",
dq:
"ZlM4AvrWIpXwqsH_5Q-6BsLJdbnN_GypFCXoT9VXniXncSBZIWCkgDndBdWkSzyzIN65NiMRBfZaf9yduTFj4kvOPwb3ch3J0OxGJk0Ary4OGSlS1zNwMl93ALGal1FzpWUuiia9L9RraGqXAUr13L7TIIMRobRjpAV-z7M-ruM",
p: "7VwGt_tJcAFQHrmDw5dM1EBru6fidM45NDv6VVOEbxKuD5Sh2EfAHfm5c6oouA1gZqwvKH0sn_XpB1NsyYyHEQd3sBVdK0zRjTo-E9mRP-1s-LMd5YDXVq6HE339nxpXsmO25slQEF6zBrj1bSNNXBFc7fgDnlq-HIeleMvsY_E",
q: "5HqMHLzb4IgXhUl4pLz7E4kjY8PH2YGzaQfK805zJMbOXzmlZK0hizKo34Qqd2nB9xos7QgzOYQrNfSWheARwVsSQzAE0vGvw3zHIPP_lTtChBlCTPctQcURjw4dXcnK1oQ-IT321FNOW3EO-YTsyGcypJqJujlZrLbxYjOjQE8",
qi:
"OQXzi9gypDnpdHatIi0FaUGP8LSzfVH0AUugURJXs4BTJpvA9y4hcpBQLrcl7H_vq6kbGmvC49V-9I5HNVX_AuxGIXKuLZr5WOxPq8gLTqHV7X5ZJDtWIP_nq2NNgCQQyNNRrxebiWlwGK9GnX_unewT6jopI_oFhwp0Q13rBR0",
},
},
"4096": {
size: 4096,
publicJWK: {
kty: "RSA",
n: "2qr2TL2c2JmbsN0OLIRnaAB_ZKb1-Gh9H0qb4lrBuDaqkW_eFPwT-JIsvnNJvDT7BLJ57tTMIj56ZMtv6efSSTWSk9MOoW2J1K_iEretZ2cegB_aRX7qQVjnoFsz9U02BKfAIUT0o_K7b9G08d1rrAUohi_SVQhwObodg7BddMbKUmz70QNIS487LN44WUVnn9OgE9atTYUARNukT0DuQb3J-K20ksTuVujXbSelohDmLobqlGoi5sY_548Qs9BtFmQ2nGuEHNB2zdlZ5EvEqbUFVZ2QboG6jXdoos6qcwdgUvAhj1Hz10Ngic_RFqL7bNDoIOzNp66hdA35uxbwuaygZ16ikxoPj7eTYud1hrkyQCgeGw2YhCiKIE6eos_U5dL7WHRD5aSkkzsgXtnF8pVmStsuf0QcdAoC-eeCex0tSTgRw9AtGTz8Yr1tGQD9l_580zAXnE6jmrwRRQ68EEA7vohGov3tnG8pGyg_zcxeADLtPlfTc1tEwmh3SGrioDClioYCipm1JvkweEgP9eMPpEC8SgRU1VNDSVe1SF4uNsH8vA7PHFKfg6juqJEc5ht-l10FYER-Qq6bZXsU2oNcfE5SLDeLTWmxiHmxK00M8ABMFIV5gUkPoMiWcl87O6XwzA2chsIERp7Vb-Vn2O-EELiXzv7lPhc6fTGQ0Nc",
e: "AQAB",
},
privateJWK: {
kty: "RSA",
n: "2qr2TL2c2JmbsN0OLIRnaAB_ZKb1-Gh9H0qb4lrBuDaqkW_eFPwT-JIsvnNJvDT7BLJ57tTMIj56ZMtv6efSSTWSk9MOoW2J1K_iEretZ2cegB_aRX7qQVjnoFsz9U02BKfAIUT0o_K7b9G08d1rrAUohi_SVQhwObodg7BddMbKUmz70QNIS487LN44WUVnn9OgE9atTYUARNukT0DuQb3J-K20ksTuVujXbSelohDmLobqlGoi5sY_548Qs9BtFmQ2nGuEHNB2zdlZ5EvEqbUFVZ2QboG6jXdoos6qcwdgUvAhj1Hz10Ngic_RFqL7bNDoIOzNp66hdA35uxbwuaygZ16ikxoPj7eTYud1hrkyQCgeGw2YhCiKIE6eos_U5dL7WHRD5aSkkzsgXtnF8pVmStsuf0QcdAoC-eeCex0tSTgRw9AtGTz8Yr1tGQD9l_580zAXnE6jmrwRRQ68EEA7vohGov3tnG8pGyg_zcxeADLtPlfTc1tEwmh3SGrioDClioYCipm1JvkweEgP9eMPpEC8SgRU1VNDSVe1SF4uNsH8vA7PHFKfg6juqJEc5ht-l10FYER-Qq6bZXsU2oNcfE5SLDeLTWmxiHmxK00M8ABMFIV5gUkPoMiWcl87O6XwzA2chsIERp7Vb-Vn2O-EELiXzv7lPhc6fTGQ0Nc",
e: "AQAB",
d: "uXPRXBhcE5-DWabBRKQuhxgU8ype5gTISWefeYP7U96ZHqu_sBByZ5ihdgyU9pgAZGVx4Ep9rnVKnH2lNr2zrP9Qhyqy99nM0aMxmypIWLAuP__DwLj4t99M4sU29c48CAq1egHfccSFjzpNuetOTCA71EJuokt70pm0OmGzgTyvjuR7VTLxd5PMXitBowSn8_cphmnFpT8tkTiuy8CH0R3DU7MOuINomDD1s8-yPBcVAVTPUnwJiauNuzestLQKMLlhT5wn-cAbYk36XRKdgkjSc2AkhHRl4WDqT1nzWYdh_DVIYSLiKSktkPO9ovMrRYiPtozfhl0m9SR9Ll0wXtcnnDlWXc_MSGpw18vmUBSJ4PIhkiFsvLn-db3wUkA8uve-iqqfk0sxlGWughWx03kGmZDmprWbXugCBHfsI4X93w4exznXH_tapxPnmjbhVUQR6p41MvO2lcHWPLwGJgLIoejBHpnn3TmMN0UjFZki7q9B_dJ3fXh0mX9DzAlC0sil1NgCPhMPq02393_giinQquMknrBvgKxGSfGUrDKuflCx611ZZlRM3R7YMX2OIy1g4DyhPzBVjxRMtm8PnIs3m3Hi-O-C_PHF93w9J8Wqd0yIw7SpavDqZXLPC6Cqi8K7MBZyVECXHtRj1bBqT-h_xZmFCDjSU0NqfOdgApE",
p: "9NrXwq4kY9kBBOwLoFZVQc4kJI_NbKa_W9FLdQdRIbMsZZHXJ3XDUR9vJAcaaR75WwIC7X6N55nVtWTq28Bys9flJ9RrCTfciOntHEphBhYaL5ZTUl-6khYmsOf_psff2VaOOCvHGff5ejuOmBQxkw2E-cv7knRgWFHoLWpku2NJIMuGHt9ks7OAUfIZVYl9YJnw4FYUzhgaxemknjLeZ8XTkGW2zckzF-d95YI9i8zD80Umubsw-YxriSfqFQ0rGHBsbQ8ZOTd_KJju42BWnXIjNDYmjFUqdzVjI4XQ8EGrCEf_8_iwphGyXD7LOJ4fqd97B3bYpoRTPnCgY_SEHQ",
q: "5J758_NeKr1XPZiLxXohYQQnh0Lb4QtGZ1xzCgjhBQLcIBeTOG_tYjCues9tmLt93LpJfypSJ-SjDLwkR2s069_IByYGpxyeGtV-ulqYhSw1nD2CXKMDGyO5jXDs9tJrS_UhfobXKQH03CRdFugyPkSNmXY-AafFynG7xLr7oYBC05FnhUXPm3VBTPt9K-BpqwYd_h9vkAWeprSPo83UlwcLMupSJY9LaHxhRdz2yi0ZKNwXXHRwcszGjDBvvzUcCYbqWqjzbEvFY6KtH8Jh4LhM46rHaoEOTernJsDF6a6W8Df88RthqTExcwnaQf0O_dlbjSxEIPfbxx8t1EQugw",
dp:
"4Y7Hu5tYAnLhMXuQqj9dgqU3PkcKYdCp7xc6f7Ah2P2JJHfYz4z4RD7Ez1eLyNKzulZ8A_PVHUjlSZiRkaYTBAEaJDrV70P6cFWuC6WpA0ZREQ1V7EgrQnANbGILa8QsPbYyhSQu4YlB1IwQq5_OmzyVBtgWA7AZIMMzMsMT0FuB_if-gWohBjmRN-vh0p45VUf6UW568-_YmgDFmMYbg1UFs7s_TwrNenPR0h7MO4CB8hP9vJLoZrooRczzIjljPbwy5bRG9CJfjTJ0vhj9MUT3kR1hHV1HJVGU5iBbfTfBKnvJGSI6-IDM4ZUm-B0R5hbs6s9cfOjhFmACIJIbMQ",
dq:
"gT4iPbfyHyVEwWyQb4X4grjvg7bXSKSwG1SXMDAOzV9tg7LwJjKYNy8gJAtJgNNVdsfVLs-E_Epzpoph1AIWO9YZZXkov6Yc9zyEVONMX9S7ReU74hTBd8E9b2lMfMg9ogYk9jtSPTt-6kigW4fOh4cHqZ6_tP3cgfLD3JZ8FDPHE4WaySvLDq49yUBO5dQKyIU_xV6OGhQjOUjP_yEoMmzn9tOittsIHTxbXTxqQ6c1FvU9O6YTv8Jl5_Cl66khfX1I1RG38xvurcHULyUbYgeuZ_Iuo9XreT73h9_owo9RguGT29XH4vcNZmRGf5GIvRb4e5lvtleIZkwJA3u78w",
qi:
"JHmVKb1zwW5iRR6RCeexYnh2fmY-3DrPSdM8Dxhr0F8dayi-tlRqEdnG0hvp45n8gLUskWWcB9EXlUJObZGKDfGuxgMa3g_xeLA2vmFQ12MxPsyH4iCNZvsgmGxx7TuOHrnDh5EBVnM4_de63crEJON2sYI8Ozi-xp2OEmAr2seWKq4sxkFni6exLhqb-NE4m9HMKlng1EtQh2rLBFG1VYD3SYYpMLc5fxzqGvSxn3Fa-Xgg-IZPY3ubrcm52KYgmLUGmnYStfVqGSWSdhDXHlNgI5pdAA0FzpyBk3ZX-JsxhwcnneKrYBBweq06kRMGWgvdbdAQ-7wSeGqqj5VPwA",
},
},
};
Deno.test(async function testImportRsaJwk() {
const subtle = globalThis.crypto.subtle;
assert(subtle);
for (const [_key, jwkData] of Object.entries(jwtRSAKeys)) {
const { size, publicJWK, privateJWK } = jwkData;
if (size < 2048) {
continue;
}
// 1. Test import PSS
for (const hash of ["SHA-1", "SHA-256", "SHA-384", "SHA-512"]) {
const hashMapPSS: Record<string, string> = {
"SHA-1": "PS1",
"SHA-256": "PS256",
"SHA-384": "PS384",
"SHA-512": "PS512",
};
if (size == 1024 && hash == "SHA-512") {
continue;
}
const privateKeyPSS = await crypto.subtle.importKey(
"jwk",
{
alg: hashMapPSS[hash],
...privateJWK,
ext: true,
"key_ops": ["sign"],
},
{ name: "RSA-PSS", hash },
true,
["sign"],
);
const publicKeyPSS = await crypto.subtle.importKey(
"jwk",
{
alg: hashMapPSS[hash],
...publicJWK,
ext: true,
"key_ops": ["verify"],
},
{ name: "RSA-PSS", hash },
true,
["verify"],
);
const signaturePSS = await crypto.subtle.sign(
{ name: "RSA-PSS", saltLength: 32 },
privateKeyPSS,
new Uint8Array([1, 2, 3, 4]),
);
const verifyPSS = await crypto.subtle.verify(
{ name: "RSA-PSS", saltLength: 32 },
publicKeyPSS,
signaturePSS,
new Uint8Array([1, 2, 3, 4]),
);
assert(verifyPSS);
}
// 2. Test import PKCS1
for (const hash of ["SHA-1", "SHA-256", "SHA-384", "SHA-512"]) {
const hashMapPKCS1: Record<string, string> = {
"SHA-1": "RS1",
"SHA-256": "RS256",
"SHA-384": "RS384",
"SHA-512": "RS512",
};
if (size == 1024 && hash == "SHA-512") {
continue;
}
const privateKeyPKCS1 = await crypto.subtle.importKey(
"jwk",
{
alg: hashMapPKCS1[hash],
...privateJWK,
ext: true,
"key_ops": ["sign"],
},
{ name: "RSASSA-PKCS1-v1_5", hash },
true,
["sign"],
);
const publicKeyPKCS1 = await crypto.subtle.importKey(
"jwk",
{
alg: hashMapPKCS1[hash],
...publicJWK,
ext: true,
"key_ops": ["verify"],
},
{ name: "RSASSA-PKCS1-v1_5", hash },
true,
["verify"],
);
const signaturePKCS1 = await crypto.subtle.sign(
{ name: "RSASSA-PKCS1-v1_5", saltLength: 32 },
privateKeyPKCS1,
new Uint8Array([1, 2, 3, 4]),
);
const verifyPKCS1 = await crypto.subtle.verify(
{ name: "RSASSA-PKCS1-v1_5", saltLength: 32 },
publicKeyPKCS1,
signaturePKCS1,
new Uint8Array([1, 2, 3, 4]),
);
assert(verifyPKCS1);
}
// 3. Test import OAEP
for (
const { hash, plainText } of hashPlainTextVector
) {
const hashMapOAEP: Record<string, string> = {
"SHA-1": "RSA-OAEP",
"SHA-256": "RSA-OAEP-256",
"SHA-384": "RSA-OAEP-384",
"SHA-512": "RSA-OAEP-512",
};
if (size == 1024 && hash == "SHA-512") {
continue;
}
const encryptAlgorithm = { name: "RSA-OAEP" };
const privateKeyOAEP = await crypto.subtle.importKey(
"jwk",
{
alg: hashMapOAEP[hash],
...privateJWK,
ext: true,
"key_ops": ["decrypt"],
},
{ ...encryptAlgorithm, hash },
true,
["decrypt"],
);
const publicKeyOAEP = await crypto.subtle.importKey(
"jwk",
{
alg: hashMapOAEP[hash],
...publicJWK,
ext: true,
"key_ops": ["encrypt"],
},
{ ...encryptAlgorithm, hash },
true,
["encrypt"],
);
const cipherText = await subtle.encrypt(
encryptAlgorithm,
publicKeyOAEP,
plainText,
);
assert(cipherText);
assert(cipherText.byteLength > 0);
assertEquals(cipherText.byteLength * 8, size);
assert(cipherText instanceof ArrayBuffer);
const decrypted = await subtle.decrypt(
encryptAlgorithm,
privateKeyOAEP,
cipherText,
);
assert(decrypted);
assert(decrypted instanceof ArrayBuffer);
assertEquals(new Uint8Array(decrypted), plainText);
}
}
});
const jwtECKeys = {
"256": {
size: 256,
algo: "ES256",
publicJWK: {
kty: "EC",
crv: "P-256",
x: "0hCwpvnZ8BKGgFi0P6T0cQGFQ7ugDJJQ35JXwqyuXdE",
y: "zgN1UtSBRQzjm00QlXAbF1v6s0uObAmeGPHBmDWDYeg",
},
privateJWK: {
kty: "EC",
crv: "P-256",
x: "0hCwpvnZ8BKGgFi0P6T0cQGFQ7ugDJJQ35JXwqyuXdE",
y: "zgN1UtSBRQzjm00QlXAbF1v6s0uObAmeGPHBmDWDYeg",
d: "E9M6LVq_nPnrsh_4YNSu_m5W53eQ9N7ptAiE69M1ROo",
},
},
"384": {
size: 384,
algo: "ES384",
publicJWK: {
kty: "EC",
crv: "P-384",
x: "IZwU1mYXs27G2IVrOFtzp000T9iude8EZDXdpU47RL1fvevR0I3Wni19wdwhjLQ1",
y: "vSgTjMd4M3qEL2vWGyQOdCSfJGZ8KlgQp2v8KOAzX4imUB3sAZdtqFr7AIactqzo",
},
privateJWK: {
kty: "EC",
crv: "P-384",
x: "IZwU1mYXs27G2IVrOFtzp000T9iude8EZDXdpU47RL1fvevR0I3Wni19wdwhjLQ1",
y: "vSgTjMd4M3qEL2vWGyQOdCSfJGZ8KlgQp2v8KOAzX4imUB3sAZdtqFr7AIactqzo",
d: "RTe1mQeE08LSLpao-S-hqkku6HPldqQVguFEGDyYiNEOa560ztSyzEAS5KxeqEBz",
},
},
};
type JWK = Record<string, string>;
function equalJwk(expected: JWK, got: JWK): boolean {
const fields = Object.keys(expected);
for (let i = 0; i < fields.length; i++) {
const fieldName = fields[i];
if (!(fieldName in got)) {
return false;
}
if (expected[fieldName] !== got[fieldName]) {
return false;
}
}
return true;
}
Deno.test(async function testImportExportEcDsaJwk() {
const subtle = crypto.subtle;
assert(subtle);
for (
const [_key, keyData] of Object.entries(jwtECKeys)
) {
const { publicJWK, privateJWK, algo } = keyData;
// 1. Test import EcDsa
const privateKeyECDSA = await subtle.importKey(
"jwk",
{
alg: algo,
...privateJWK,
ext: true,
"key_ops": ["sign"],
},
{ name: "ECDSA", namedCurve: privateJWK.crv },
true,
["sign"],
);
const expPrivateKeyJWK = await subtle.exportKey(
"jwk",
privateKeyECDSA,
);
assert(equalJwk(privateJWK, expPrivateKeyJWK as JWK));
const publicKeyECDSA = await subtle.importKey(
"jwk",
{
alg: algo,
...publicJWK,
ext: true,
"key_ops": ["verify"],
},
{ name: "ECDSA", namedCurve: publicJWK.crv },
true,
["verify"],
);
const expPublicKeyJWK = await subtle.exportKey(
"jwk",
publicKeyECDSA,
);
assert(equalJwk(publicJWK, expPublicKeyJWK as JWK));
const signatureECDSA = await subtle.sign(
{ name: "ECDSA", hash: `SHA-${keyData.size}` },
privateKeyECDSA,
new Uint8Array([1, 2, 3, 4]),
);
const verifyECDSA = await subtle.verify(
{ name: "ECDSA", hash: `SHA-${keyData.size}` },
publicKeyECDSA,
signatureECDSA,
new Uint8Array([1, 2, 3, 4]),
);
assert(verifyECDSA);
}
});
Deno.test(async function testImportEcDhJwk() {
const subtle = crypto.subtle;
assert(subtle);
for (
const [_key, jwkData] of Object.entries(jwtECKeys)
) {
const { size, publicJWK, privateJWK } = jwkData;
// 1. Test import EcDsa
const privateKeyECDH = await subtle.importKey(
"jwk",
{
...privateJWK,
ext: true,
"key_ops": ["deriveBits"],
},
{ name: "ECDH", namedCurve: privateJWK.crv },
true,
["deriveBits"],
);
const expPrivateKeyJWK = await subtle.exportKey(
"jwk",
privateKeyECDH,
);
assert(equalJwk(privateJWK, expPrivateKeyJWK as JWK));
const publicKeyECDH = await subtle.importKey(
"jwk",
{
...publicJWK,
ext: true,
"key_ops": [],
},
{ name: "ECDH", namedCurve: publicJWK.crv },
true,
[],
);
const expPublicKeyJWK = await subtle.exportKey(
"jwk",
publicKeyECDH,
);
assert(equalJwk(publicJWK, expPublicKeyJWK as JWK));
const derivedKey = await subtle.deriveBits(
{
name: "ECDH",
public: publicKeyECDH,
},
privateKeyECDH,
size,
);
assert(derivedKey instanceof ArrayBuffer);
assertEquals(derivedKey.byteLength, size / 8);
}
});
const ecTestKeys = [
{
size: 256,
namedCurve: "P-256",
signatureLength: 64,
// deno-fmt-ignore
raw: new Uint8Array([
4, 210, 16, 176, 166, 249, 217, 240, 18, 134, 128, 88, 180, 63, 164, 244,
113, 1, 133, 67, 187, 160, 12, 146, 80, 223, 146, 87, 194, 172, 174, 93,
209, 206, 3, 117, 82, 212, 129, 69, 12, 227, 155, 77, 16, 149, 112, 27,
23, 91, 250, 179, 75, 142, 108, 9, 158, 24, 241, 193, 152, 53, 131, 97,
232,
]),
// deno-fmt-ignore
spki: new Uint8Array([
48, 89, 48, 19, 6, 7, 42, 134, 72, 206, 61, 2, 1, 6, 8, 42, 134, 72, 206,
61, 3, 1, 7, 3, 66, 0, 4, 210, 16, 176, 166, 249, 217, 240, 18, 134, 128,
88, 180, 63, 164, 244, 113, 1, 133, 67, 187, 160, 12, 146, 80, 223, 146,
87, 194, 172, 174, 93, 209, 206, 3, 117, 82, 212, 129, 69, 12, 227, 155,
77, 16, 149, 112, 27, 23, 91, 250, 179, 75, 142, 108, 9, 158, 24, 241,
193, 152, 53, 131, 97, 232,
]),
// deno-fmt-ignore
pkcs8: new Uint8Array([
48, 129, 135, 2, 1, 0, 48, 19, 6, 7, 42, 134, 72, 206, 61, 2, 1, 6, 8, 42,
134, 72, 206, 61, 3, 1, 7, 4, 109, 48, 107, 2, 1, 1, 4, 32, 19, 211, 58,
45, 90, 191, 156, 249, 235, 178, 31, 248, 96, 212, 174, 254, 110, 86, 231,
119, 144, 244, 222, 233, 180, 8, 132, 235, 211, 53, 68, 234, 161, 68, 3,
66, 0, 4, 210, 16, 176, 166, 249, 217, 240, 18, 134, 128, 88, 180, 63,
164, 244, 113, 1, 133, 67, 187, 160, 12, 146, 80, 223, 146, 87, 194, 172,
174, 93, 209, 206, 3, 117, 82, 212, 129, 69, 12, 227, 155, 77, 16, 149,
112, 27, 23, 91, 250, 179, 75, 142, 108, 9, 158, 24, 241, 193, 152, 53,
131, 97, 232,
]),
},
{
size: 384,
namedCurve: "P-384",
signatureLength: 96,
// deno-fmt-ignore
raw: new Uint8Array([
4, 118, 64, 176, 165, 100, 177, 112, 49, 254, 58, 53, 158, 63, 73, 200,
148, 248, 242, 216, 186, 80, 92, 160, 53, 64, 232, 157, 19, 1, 12, 226,
115, 51, 42, 143, 98, 206, 55, 220, 108, 78, 24, 71, 157, 21, 120, 126,
104, 157, 86, 48, 226, 110, 96, 52, 48, 77, 170, 9, 231, 159, 26, 165,
200, 26, 164, 99, 46, 227, 169, 105, 172, 225, 60, 102, 141, 145, 139,
165, 47, 72, 53, 17, 17, 246, 161, 220, 26, 21, 23, 219, 1, 107, 185,
163, 215,
]),
// deno-fmt-ignore
spki: new Uint8Array([
48, 118, 48, 16, 6, 7, 42, 134, 72, 206, 61, 2, 1, 6, 5, 43, 129, 4, 0,
34, 3, 98, 0, 4, 118, 64, 176, 165, 100, 177, 112, 49, 254, 58, 53, 158,
63, 73, 200, 148, 248, 242, 216, 186, 80, 92, 160, 53, 64, 232, 157, 19,
1, 12, 226, 115, 51, 42, 143, 98, 206, 55, 220, 108, 78, 24, 71, 157, 21,
120, 126, 104, 157, 86, 48, 226, 110, 96, 52, 48, 77, 170, 9, 231, 159,
26, 165, 200, 26, 164, 99, 46, 227, 169, 105, 172, 225, 60, 102, 141,
145, 139, 165, 47, 72, 53, 17, 17, 246, 161, 220, 26, 21, 23, 219, 1,
107, 185, 163, 215,
]),
// deno-fmt-ignore
pkcs8: new Uint8Array([
48, 129, 182, 2, 1, 0, 48, 16, 6, 7, 42, 134, 72, 206, 61, 2, 1, 6, 5, 43,
129, 4, 0, 34, 4, 129, 158, 48, 129, 155, 2, 1, 1, 4, 48, 202, 7, 195,
169, 124, 170, 81, 169, 253, 127, 56, 28, 98, 90, 255, 165, 72, 142, 133,
138, 237, 200, 176, 92, 179, 192, 83, 28, 47, 118, 157, 152, 47, 65, 133,
140, 50, 83, 182, 191, 224, 96, 216, 179, 59, 150, 15, 233, 161, 100, 3,
98, 0, 4, 118, 64, 176, 165, 100, 177, 112, 49, 254, 58, 53, 158, 63, 73,
200, 148, 248, 242, 216, 186, 80, 92, 160, 53, 64, 232, 157, 19, 1, 12,
226, 115, 51, 42, 143, 98, 206, 55, 220, 108, 78, 24, 71, 157, 21, 120,
126, 104, 157, 86, 48, 226, 110, 96, 52, 48, 77, 170, 9, 231, 159, 26,
165, 200, 26, 164, 99, 46, 227, 169, 105, 172, 225, 60, 102, 141, 145,
139, 165, 47, 72, 53, 17, 17, 246, 161, 220, 26, 21, 23, 219, 1, 107,
185, 163, 215,
]),
},
];
Deno.test(async function testImportEcSpkiPkcs8() {
const subtle = globalThis.crypto.subtle;
assert(subtle);
for (
const { namedCurve, raw, spki, pkcs8, signatureLength } of ecTestKeys
) {
const rawPublicKeyECDSA = await subtle.importKey(
"raw",
raw,
{ name: "ECDSA", namedCurve },
true,
["verify"],
);
const expPublicKeyRaw = await subtle.exportKey(
"raw",
rawPublicKeyECDSA,
);
assertEquals(new Uint8Array(expPublicKeyRaw), raw);
const privateKeyECDSA = await subtle.importKey(
"pkcs8",
pkcs8,
{ name: "ECDSA", namedCurve },
true,
["sign"],
);
const expPrivateKeyPKCS8 = await subtle.exportKey(
"pkcs8",
privateKeyECDSA,
);
assertEquals(new Uint8Array(expPrivateKeyPKCS8), pkcs8);
const expPrivateKeyJWK = await subtle.exportKey(
"jwk",
privateKeyECDSA,
);
assertEquals(expPrivateKeyJWK.crv, namedCurve);
const publicKeyECDSA = await subtle.importKey(
"spki",
spki,
{ name: "ECDSA", namedCurve },
true,
["verify"],
);
const expPublicKeySPKI = await subtle.exportKey(
"spki",
publicKeyECDSA,
);
assertEquals(new Uint8Array(expPublicKeySPKI), spki);
const expPublicKeyJWK = await subtle.exportKey(
"jwk",
publicKeyECDSA,
);
assertEquals(expPublicKeyJWK.crv, namedCurve);
for (
const hash of ["SHA-1", "SHA-256", "SHA-384", "SHA-512"]
) {
if (
(hash == "SHA-256" && namedCurve == "P-256") ||
(hash == "SHA-384" && namedCurve == "P-384")
) {
const signatureECDSA = await subtle.sign(
{ name: "ECDSA", hash },
privateKeyECDSA,
new Uint8Array([1, 2, 3, 4]),
);
const verifyECDSA = await subtle.verify(
{ name: "ECDSA", hash },
publicKeyECDSA,
signatureECDSA,
new Uint8Array([1, 2, 3, 4]),
);
assert(verifyECDSA);
} else {
await assertRejects(
async () => {
await subtle.sign(
{ name: "ECDSA", hash },
privateKeyECDSA,
new Uint8Array([1, 2, 3, 4]),
);
},
DOMException,
"Not implemented",
);
await assertRejects(
async () => {
await subtle.verify(
{ name: "ECDSA", hash },
publicKeyECDSA,
new Uint8Array(signatureLength),
new Uint8Array([1, 2, 3, 4]),
);
},
DOMException,
"Not implemented",
);
}
}
}
});
Deno.test(async function testAesGcmEncrypt() {
const key = await crypto.subtle.importKey(
"raw",
new Uint8Array(16),
{ name: "AES-GCM", length: 256 },
true,
["encrypt", "decrypt"],
);
const nonces = [{
iv: new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]),
ciphertext: new Uint8Array([
50,
223,
112,
178,
166,
156,
255,
110,
125,
138,
95,
141,
82,
47,
14,
164,
134,
247,
22,
]),
}, {
iv: new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]),
ciphertext: new Uint8Array([
210,
101,
81,
216,
151,
9,
192,
197,
62,
254,
28,
132,
89,
106,
40,
29,
175,
232,
201,
]),
}];
for (const { iv, ciphertext: fixture } of nonces) {
const data = new Uint8Array([1, 2, 3]);
const cipherText = await crypto.subtle.encrypt(
{ name: "AES-GCM", iv },
key,
data,
);
assert(cipherText instanceof ArrayBuffer);
assertEquals(cipherText.byteLength, 19);
assertEquals(
new Uint8Array(cipherText),
fixture,
);
const plainText = await crypto.subtle.decrypt(
{ name: "AES-GCM", iv },
key,
cipherText,
);
assert(plainText instanceof ArrayBuffer);
assertEquals(plainText.byteLength, 3);
assertEquals(new Uint8Array(plainText), data);
}
});
async function roundTripSecretJwk(
jwk: JsonWebKey,
algId: AlgorithmIdentifier | HmacImportParams,
ops: KeyUsage[],
validateKeys: (
key: CryptoKey,
originalJwk: JsonWebKey,
exportedJwk: JsonWebKey,
) => void,
) {
const key = await crypto.subtle.importKey(
"jwk",
jwk,
algId,
true,
ops,
);
assert(key instanceof CryptoKey);
assertEquals(key.type, "secret");
const exportedKey = await crypto.subtle.exportKey("jwk", key);
validateKeys(key, jwk, exportedKey);
}
Deno.test(async function testSecretJwkBase64Url() {
// Test 16bits with "overflow" in 3rd pos of 'quartet', no padding
const keyData = `{
"kty": "oct",
"k": "xxx",
"alg": "HS512",
"key_ops": ["sign", "verify"],
"ext": true
}`;
await roundTripSecretJwk(
JSON.parse(keyData),
{ name: "HMAC", hash: "SHA-512" },
["sign", "verify"],
(key, _orig, exp) => {
assertEquals((key.algorithm as HmacKeyAlgorithm).length, 16);
assertEquals(exp.k, "xxw");
},
);
// HMAC 128bits with base64url characters (-_)
await roundTripSecretJwk(
{
kty: "oct",
k: "HnZXRyDKn-_G5Fx4JWR1YA",
alg: "HS256",
"key_ops": ["sign", "verify"],
ext: true,
},
{ name: "HMAC", hash: "SHA-256" },
["sign", "verify"],
(key, orig, exp) => {
assertEquals((key.algorithm as HmacKeyAlgorithm).length, 128);
assertEquals(orig.k, exp.k);
},
);
// HMAC 104bits/(12+1) bytes with base64url characters (-_), padding and overflow in 2rd pos of "quartet"
await roundTripSecretJwk(
{
kty: "oct",
k: "a-_AlFa-2-OmEGa_-z==",
alg: "HS384",
"key_ops": ["sign", "verify"],
ext: true,
},
{ name: "HMAC", hash: "SHA-384" },
["sign", "verify"],
(key, _orig, exp) => {
assertEquals((key.algorithm as HmacKeyAlgorithm).length, 104);
assertEquals("a-_AlFa-2-OmEGa_-w", exp.k);
},
);
// AES-CBC 128bits with base64url characters (-_) no padding
await roundTripSecretJwk(
{
kty: "oct",
k: "_u3K_gEjRWf-7cr-ASNFZw",
alg: "A128CBC",
"key_ops": ["encrypt", "decrypt"],
ext: true,
},
{ name: "AES-CBC" },
["encrypt", "decrypt"],
(_key, orig, exp) => {
assertEquals(orig.k, exp.k);
},
);
// AES-CBC 128bits of '1' with padding chars
await roundTripSecretJwk(
{
kty: "oct",
k: "_____________________w==",
alg: "A128CBC",
"key_ops": ["encrypt", "decrypt"],
ext: true,
},
{ name: "AES-CBC" },
["encrypt", "decrypt"],
(_key, _orig, exp) => {
assertEquals(exp.k, "_____________________w");
},
);
});
Deno.test(async function testAESWrapKey() {
const key = await crypto.subtle.generateKey(
{
name: "AES-KW",
length: 128,
},
true,
["wrapKey", "unwrapKey"],
);
const hmacKey = await crypto.subtle.generateKey(
{
name: "HMAC",
hash: "SHA-256",
length: 128,
},
true,
["sign"],
);
//round-trip
// wrap-unwrap-export compare
const wrappedKey = await crypto.subtle.wrapKey(
"raw",
hmacKey,
key,
{
name: "AES-KW",
},
);
assert(wrappedKey instanceof ArrayBuffer);
assertEquals(wrappedKey.byteLength, 16 + 8); // 8 = 'auth tag'
const unwrappedKey = await crypto.subtle.unwrapKey(
"raw",
wrappedKey,
key,
{
name: "AES-KW",
},
{
name: "HMAC",
hash: "SHA-256",
},
true,
["sign"],
);
assert(unwrappedKey instanceof CryptoKey);
assertEquals((unwrappedKey.algorithm as HmacKeyAlgorithm).length, 128);
const hmacKeyBytes = await crypto.subtle.exportKey("raw", hmacKey);
const unwrappedKeyBytes = await crypto.subtle.exportKey("raw", unwrappedKey);
assertEquals(new Uint8Array(hmacKeyBytes), new Uint8Array(unwrappedKeyBytes));
});
// https://github.com/denoland/deno/issues/13534
Deno.test(async function testAesGcmTagLength() {
const key = await crypto.subtle.importKey(
"raw",
new Uint8Array(32),
"AES-GCM",
false,
["encrypt", "decrypt"],
);
const iv = crypto.getRandomValues(new Uint8Array(12));
// encrypt won't fail, it will simply truncate the tag
// as expected.
const encrypted = await crypto.subtle.encrypt(
{ name: "AES-GCM", iv, tagLength: 96 },
key,
new Uint8Array(32),
);
await assertRejects(async () => {
await crypto.subtle.decrypt(
{ name: "AES-GCM", iv, tagLength: 96 },
key,
encrypted,
);
});
});
Deno.test(async function ecPrivateKeyMaterialExportSpki() {
// `generateKey` generates a key pair internally stored as "private" key.
const keys = await crypto.subtle.generateKey(
{ name: "ECDSA", namedCurve: "P-256" },
true,
["sign", "verify"],
);
assert(keys.privateKey instanceof CryptoKey);
assert(keys.publicKey instanceof CryptoKey);
// `exportKey` should be able to perform necessary conversion to export spki.
const spki = await crypto.subtle.exportKey("spki", keys.publicKey);
assert(spki instanceof ArrayBuffer);
});
// https://github.com/denoland/deno/issues/13911
Deno.test(async function importJwkWithUse() {
const jwk = {
"kty": "EC",
"use": "sig",
"crv": "P-256",
"x": "FWZ9rSkLt6Dx9E3pxLybhdM6xgR5obGsj5_pqmnz5J4",
"y": "_n8G69C-A2Xl4xUW2lF0i8ZGZnk_KPYrhv4GbTGu5G4",
};
const algorithm = { name: "ECDSA", namedCurve: "P-256" };
const key = await crypto.subtle.importKey(
"jwk",
jwk,
algorithm,
true,
["verify"],
);
assert(key instanceof CryptoKey);
});
// https://github.com/denoland/deno/issues/14215
Deno.test(async function exportKeyNotExtractable() {
const key = await crypto.subtle.generateKey(
{
name: "HMAC",
hash: "SHA-512",
},
false,
["sign", "verify"],
);
assert(key);
assertEquals(key.extractable, false);
await assertRejects(async () => {
// Should fail
await crypto.subtle.exportKey("raw", key);
}, DOMException);
});
// https://github.com/denoland/deno/issues/15126
Deno.test(async function testImportLeadingZeroesKey() {
const alg = { name: "ECDSA", namedCurve: "P-256" };
const jwk = {
kty: "EC",
crv: "P-256",
alg: "ES256",
x: "EvidcdFB1xC6tgfakqZsU9aIURxAJkcX62zHe1Nt6xU",
y: "AHsk6BioGM7MZWeXOE_49AGmtuaXFT3Ill3DYtz9uYg",
d: "WDeYo4o1heCF9l_2VIaClRyIeO16zsMlN8UG6Le9dU8",
"key_ops": ["sign"],
ext: true,
};
const key = await crypto.subtle.importKey(
"jwk",
jwk,
alg,
true,
["sign"],
);
assert(key instanceof CryptoKey);
assertEquals(key.type, "private");
});
// https://github.com/denoland/deno/issues/15523
Deno.test(async function testECspkiRoundTrip() {
const alg = { name: "ECDH", namedCurve: "P-256" };
const { publicKey } = await crypto.subtle.generateKey(alg, true, [
"deriveBits",
]);
const spki = await crypto.subtle.exportKey("spki", publicKey);
await crypto.subtle.importKey("spki", spki, alg, true, []);
});
Deno.test(async function testHmacJwkImport() {
await crypto.subtle.importKey(
"jwk",
{
kty: "oct",
use: "sig",
alg: "HS256",
k: "hJtXIZ2uSN5kbQfbtTNWbpdmhkV8FJG-Onbc6mxCcYg",
},
{ name: "HMAC", hash: "SHA-256" },
false,
["sign", "verify"],
);
});
Deno.test(async function p521Import() {
const jwk = {
"crv": "P-521",
"ext": true,
"key_ops": [
"verify",
],
"kty": "EC",
"x":
"AXkSI8nfkc6bu3fifXGuKKbu08g5LKPfxUNQJJYzzPgmN8XLDzx0C9Sdeejl1XoWGrheKPHl0k4tUmHw0cdInpfj",
"y":
"AT4vjsO0bzVRlN3Wthv9DewncDXS2tlTob5QojV8WX1GzOAikRfWFEP3nspoSv88U447acZAsk5IvgGJuVjgMDlx",
};
const algorithm = { name: "ECDSA", namedCurve: "P-521" };
const key = await crypto.subtle.importKey(
"jwk",
jwk,
algorithm,
true,
["verify"],
);
assert(key instanceof CryptoKey);
});
Deno.test(async function p521Generate() {
const algorithm = { name: "ECDSA", namedCurve: "P-521" };
const key = await crypto.subtle.generateKey(
algorithm,
true,
["sign", "verify"],
);
assert(key.privateKey instanceof CryptoKey);
assert(key.publicKey instanceof CryptoKey);
});
Deno.test(async function x25519SharedSecret() {
const alicesKeyPair = await crypto.subtle.generateKey(
{
name: "X25519",
},
false,
["deriveBits"],
) as CryptoKeyPair;
const bobsKeyPair = await crypto.subtle.generateKey(
{
name: "X25519",
},
false,
["deriveBits"],
) as CryptoKeyPair;
const sharedSecret1 = await crypto.subtle.deriveBits(
{
name: "X25519",
public: bobsKeyPair.publicKey,
},
alicesKeyPair.privateKey,
128,
);
const sharedSecret2 = await crypto.subtle.deriveBits(
{
name: "X25519",
public: alicesKeyPair.publicKey,
},
bobsKeyPair.privateKey,
128,
);
assertEquals(sharedSecret1.byteLength, sharedSecret2.byteLength);
assertEquals(sharedSecret1.byteLength, 16);
assertEquals(new Uint8Array(sharedSecret1), new Uint8Array(sharedSecret2));
});