1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-12-29 02:29:06 -05:00
denoland-deno/core/core_isolate.rs

1467 lines
46 KiB
Rust
Raw Normal View History

// Copyright 2018-2020 the Deno authors. All rights reserved. MIT license.
2019-08-07 12:55:39 -04:00
// Do not add any dependency to modules.rs!
// modules.rs is complex and should remain decoupled from isolate.rs to keep the
// Isolate struct from becoming too bloating for users who do not need
// asynchronous module loading.
use rusty_v8 as v8;
use crate::bindings;
2019-09-30 14:59:44 -04:00
use crate::ops::*;
use crate::shared_queue::SharedQueue;
use crate::shared_queue::RECOMMENDED_SIZE;
2020-05-28 13:36:43 -04:00
use crate::ErrBox;
use crate::JSError;
use crate::ResourceTable;
2020-05-28 13:36:43 -04:00
use crate::ZeroCopyBuf;
2019-11-16 19:17:47 -05:00
use futures::future::FutureExt;
2019-08-07 12:55:39 -04:00
use futures::stream::FuturesUnordered;
2019-11-16 19:17:47 -05:00
use futures::stream::StreamExt;
use futures::task::AtomicWaker;
use futures::Future;
use serde_json::json;
use serde_json::Value;
use std::any::Any;
use std::cell::RefCell;
use std::collections::HashMap;
use std::convert::From;
use std::ffi::c_void;
2020-02-24 18:53:29 -05:00
use std::mem::forget;
use std::ops::Deref;
use std::ops::DerefMut;
use std::option::Option;
2019-11-16 19:17:47 -05:00
use std::pin::Pin;
use std::rc::Rc;
use std::sync::Once;
2019-11-16 19:17:47 -05:00
use std::task::Context;
use std::task::Poll;
2020-01-24 15:10:49 -05:00
2020-04-18 20:05:13 -04:00
type PendingOpFuture = Pin<Box<dyn Future<Output = (OpId, Buf)>>>;
Fix typos across the repo (#5295) Corrections made: * cli/js/tests/README.md:44:7: corrected "discoveres" to "discovers" * cli/js/tests/chown_test.ts:111:37: corrected "priviledge" to "privilege" * cli/worker.rs:231:56: corrected "decendants" to "descendants" * deno_typescript/lib.rs:136:50: corrected "emmited" to "emitted" * core/es_isolate.rs:492:67: corrected "registerd" to "registered" * core/isolate.rs:103:28: corrected "initalize" to "initialize" * docs/runtime.md:29:14: corrected "ect" to "etc" * docs/tools/debugger.md:122:16: corrected "implementes" to "implements" * std/encoding/_yaml/dumper/dumper_state.ts:57:63: corrected "everwhere" to "everywhere" * std/encoding/csv.ts:37:43: corrected "referal" to "referral" * std/fmt/sprintf.ts:209:20: corrected "unusuable" to "unusable" * std/fmt/README.md:21:40: corrected "Alternativly" to "Alternatively" * std/fmt/README.md:35:68: corrected "seperated" to "separated" * std/fmt/README.md:179:59: corrected "provded" to "provided" * std/mime/multipart.ts:581:46: corrected "writen" to "written" * std/path/_globrex.ts:19:52: corrected "equivelant" to "equivalent" * std/node/events_test.ts:447:9: corrected "asyncronous" to "asynchronous" * std/node/events_test.ts:475:9: corrected "asyncronous" to "asynchronous" * std/node/events_test.ts:500:29: corrected "asyncronous" to "asynchronous" * std/node/events_test.ts:530:40: corrected "asyncronous" to "asynchronous" * std/node/events_test.ts:555:9: corrected "asyncronous" to "asynchronous" * tools/deno_tcp_proxy.ts:1:42: corrected "perfromance" to "performance" * std/node/module.ts:1003:18: corrected "existend" to "existed"
2020-05-14 00:38:42 -04:00
/// Stores a script used to initialize a Isolate
pub struct Script<'a> {
pub source: &'a str,
pub filename: &'a str,
}
// TODO(ry) It's ugly that we have both Script and OwnedScript. Ideally we
// wouldn't expose such twiddly complexity.
struct OwnedScript {
pub source: String,
pub filename: String,
}
impl From<Script<'_>> for OwnedScript {
fn from(s: Script) -> OwnedScript {
OwnedScript {
source: s.source.to_string(),
filename: s.filename.to_string(),
}
}
}
2020-04-22 14:24:49 -04:00
pub enum Snapshot {
Static(&'static [u8]),
JustCreated(v8::StartupData),
Boxed(Box<[u8]>),
2020-04-22 14:24:49 -04:00
}
/// Represents data used to initialize an isolate at startup, either
/// in the form of a binary snapshot or a JavaScript source file.
pub enum StartupData<'a> {
Script(Script<'a>),
2020-04-22 14:24:49 -04:00
Snapshot(Snapshot),
None,
}
impl StartupData<'_> {
fn into_options(self) -> (Option<OwnedScript>, Option<Snapshot>) {
match self {
Self::Script(script) => (Some(script.into()), None),
Self::Snapshot(snapshot) => (None, Some(snapshot)),
Self::None => (None, None),
}
}
}
type JSErrorCreateFn = dyn Fn(JSError) -> ErrBox;
pub type GetErrorClassFn = &'static dyn for<'e> Fn(&'e ErrBox) -> &'static str;
/// Objects that need to live as long as the isolate
#[derive(Default)]
struct IsolateAllocations {
near_heap_limit_callback_data:
Option<(Box<RefCell<dyn Any>>, v8::NearHeapLimitCallback)>,
}
/// A single execution context of JavaScript. Corresponds roughly to the "Web
/// Worker" concept in the DOM. An CoreIsolate is a Future that can be used with
/// Tokio. The CoreIsolate future completes when there is an error or when all
/// pending ops have completed.
///
2019-04-04 09:35:52 -04:00
/// Ops are created in JavaScript by calling Deno.core.dispatch(), and in Rust
/// by implementing dispatcher function that takes control buffer and optional zero copy buffer
/// as arguments. An async Op corresponds exactly to a Promise in JavaScript.
pub struct CoreIsolate {
// This is an Option<OwnedIsolate> instead of just OwnedIsolate to workaround
// an safety issue with SnapshotCreator. See CoreIsolate::drop.
v8_isolate: Option<v8::OwnedIsolate>,
snapshot_creator: Option<v8::SnapshotCreator>,
has_snapshotted: bool,
needs_init: bool,
startup_script: Option<OwnedScript>,
allocations: IsolateAllocations,
}
/// Internal state for CoreIsolate which is stored in one of v8::Isolate's
/// embedder slots.
pub struct CoreIsolateState {
pub resource_table: Rc<RefCell<ResourceTable>>,
2020-07-18 16:32:11 -04:00
pub global_context: Option<v8::Global<v8::Context>>,
pub(crate) shared_ab: Option<v8::Global<v8::SharedArrayBuffer>>,
pub(crate) js_recv_cb: Option<v8::Global<v8::Function>>,
pub(crate) js_macrotask_cb: Option<v8::Global<v8::Function>>,
pub(crate) pending_promise_exceptions: HashMap<i32, v8::Global<v8::Value>>,
pub(crate) js_error_create_fn: Box<JSErrorCreateFn>,
pub get_error_class_fn: GetErrorClassFn,
pub(crate) shared: SharedQueue,
pending_ops: FuturesUnordered<PendingOpFuture>,
pending_unref_ops: FuturesUnordered<PendingOpFuture>,
have_unpolled_ops: bool,
pub op_registry: OpRegistry,
2019-11-16 19:17:47 -05:00
waker: AtomicWaker,
}
impl Deref for CoreIsolate {
type Target = v8::Isolate;
fn deref(&self) -> &v8::Isolate {
self.v8_isolate.as_ref().unwrap()
}
}
impl DerefMut for CoreIsolate {
fn deref_mut(&mut self) -> &mut v8::Isolate {
self.v8_isolate.as_mut().unwrap()
}
}
impl Drop for CoreIsolate {
fn drop(&mut self) {
if let Some(creator) = self.snapshot_creator.take() {
2020-02-24 18:53:29 -05:00
// TODO(ry): in rusty_v8, `SnapShotCreator::get_owned_isolate()` returns
// a `struct OwnedIsolate` which is not actually owned, hence the need
// here to leak the `OwnedIsolate` in order to avoid a double free and
// the segfault that it causes.
let v8_isolate = self.v8_isolate.take().unwrap();
forget(v8_isolate);
// TODO(ry) V8 has a strange assert which prevents a SnapshotCreator from
// being deallocated if it hasn't created a snapshot yet.
// https://github.com/v8/v8/blob/73212783fbd534fac76cc4b66aac899c13f71fc8/src/api.cc#L603
// If that assert is removed, this if guard could be removed.
// WARNING: There may be false positive LSAN errors here.
if self.has_snapshotted {
drop(creator);
}
}
}
}
#[allow(clippy::missing_safety_doc)]
pub unsafe fn v8_init() {
2020-04-22 14:24:49 -04:00
let platform = v8::new_default_platform().unwrap();
v8::V8::initialize_platform(platform);
v8::V8::initialize();
// TODO(ry) This makes WASM compile synchronously. Eventually we should
// remove this to make it work asynchronously too. But that requires getting
// PumpMessageLoop and RunMicrotasks setup correctly.
// See https://github.com/denoland/deno/issues/2544
let argv = vec![
"".to_string(),
"--wasm-test-streaming".to_string(),
"--no-wasm-async-compilation".to_string(),
"--harmony-top-level-await".to_string(),
"--experimental-wasm-bigint".to_string(),
];
v8::V8::set_flags_from_command_line(argv);
}
/// Minimum and maximum bytes of heap used in an isolate
pub struct HeapLimits {
/// By default V8 starts with a small heap and dynamically grows it to match
/// the set of live objects. This may lead to ineffective garbage collections
/// at startup if the live set is large. Setting the initial heap size avoids
/// such garbage collections. Note that this does not affect young generation
/// garbage collections.
pub initial: usize,
/// When the heap size approaches `max`, V8 will perform series of
/// garbage collections and invoke the
/// [NearHeapLimitCallback](TODO).
/// If the garbage collections do not help and the callback does not
/// increase the limit, then V8 will crash with V8::FatalProcessOutOfMemory.
pub max: usize,
}
pub(crate) struct IsolateOptions {
will_snapshot: bool,
startup_script: Option<OwnedScript>,
startup_snapshot: Option<Snapshot>,
heap_limits: Option<HeapLimits>,
}
impl CoreIsolate {
/// startup_data defines the snapshot or script used at startup to initialize
/// the isolate.
pub fn new(startup_data: StartupData, will_snapshot: bool) -> Self {
let (startup_script, startup_snapshot) = startup_data.into_options();
let options = IsolateOptions {
will_snapshot,
startup_script,
startup_snapshot,
heap_limits: None,
};
Self::from_options(options)
}
/// This is useful for controlling memory usage of scripts.
///
/// See [`HeapLimits`](struct.HeapLimits.html) for more details.
///
/// Make sure to use [`add_near_heap_limit_callback`](#method.add_near_heap_limit_callback)
/// to prevent v8 from crashing when reaching the upper limit.
pub fn with_heap_limits(
startup_data: StartupData,
heap_limits: HeapLimits,
) -> Self {
let (startup_script, startup_snapshot) = startup_data.into_options();
let options = IsolateOptions {
will_snapshot: false,
startup_script,
startup_snapshot,
heap_limits: Some(heap_limits),
};
Self::from_options(options)
}
fn from_options(options: IsolateOptions) -> Self {
static DENO_INIT: Once = Once::new();
DENO_INIT.call_once(|| {
unsafe { v8_init() };
});
2020-07-18 16:32:11 -04:00
let global_context;
let (mut isolate, maybe_snapshot_creator) = if options.will_snapshot {
// TODO(ry) Support loading snapshots before snapshotting.
assert!(options.startup_snapshot.is_none());
let mut creator =
v8::SnapshotCreator::new(Some(&bindings::EXTERNAL_REFERENCES));
let isolate = unsafe { creator.get_owned_isolate() };
let mut isolate = CoreIsolate::setup_isolate(isolate);
{
let scope = &mut v8::HandleScope::new(&mut isolate);
let context = bindings::initialize_context(scope);
2020-07-18 16:32:11 -04:00
global_context = v8::Global::new(scope, context);
creator.set_default_context(context);
}
(isolate, Some(creator))
} else {
2020-04-22 14:24:49 -04:00
let mut params = v8::Isolate::create_params()
.external_references(&**bindings::EXTERNAL_REFERENCES);
let snapshot_loaded = if let Some(snapshot) = options.startup_snapshot {
2020-04-22 14:24:49 -04:00
params = match snapshot {
Snapshot::Static(data) => params.snapshot_blob(data),
Snapshot::JustCreated(data) => params.snapshot_blob(data),
Snapshot::Boxed(data) => params.snapshot_blob(data),
2020-04-22 14:24:49 -04:00
};
true
} else {
false
};
if let Some(heap_limits) = options.heap_limits {
params = params.heap_limits(heap_limits.initial, heap_limits.max)
}
let isolate = v8::Isolate::new(params);
let mut isolate = CoreIsolate::setup_isolate(isolate);
{
let scope = &mut v8::HandleScope::new(&mut isolate);
let context = if snapshot_loaded {
v8::Context::new(scope)
} else {
// If no snapshot is provided, we initialize the context with empty
// main source code and source maps.
bindings::initialize_context(scope)
};
2020-07-18 16:32:11 -04:00
global_context = v8::Global::new(scope, context);
}
(isolate, None)
};
isolate.set_slot(Rc::new(RefCell::new(CoreIsolateState {
2020-07-18 16:32:11 -04:00
global_context: Some(global_context),
resource_table: Rc::new(RefCell::new(ResourceTable::default())),
pending_promise_exceptions: HashMap::new(),
2020-07-18 16:32:11 -04:00
shared_ab: None,
js_recv_cb: None,
js_macrotask_cb: None,
js_error_create_fn: Box::new(JSError::create),
get_error_class_fn: &|_| "Error",
shared: SharedQueue::new(RECOMMENDED_SIZE),
pending_ops: FuturesUnordered::new(),
pending_unref_ops: FuturesUnordered::new(),
have_unpolled_ops: false,
op_registry: OpRegistry::new(),
2019-11-16 19:17:47 -05:00
waker: AtomicWaker::new(),
})));
Self {
v8_isolate: Some(isolate),
snapshot_creator: maybe_snapshot_creator,
has_snapshotted: false,
needs_init: true,
startup_script: options.startup_script,
allocations: IsolateAllocations::default(),
}
}
fn setup_isolate(mut isolate: v8::OwnedIsolate) -> v8::OwnedIsolate {
isolate.set_capture_stack_trace_for_uncaught_exceptions(true, 10);
isolate.set_promise_reject_callback(bindings::promise_reject_callback);
isolate
}
pub fn state(isolate: &v8::Isolate) -> Rc<RefCell<CoreIsolateState>> {
let s = isolate.get_slot::<Rc<RefCell<CoreIsolateState>>>().unwrap();
s.clone()
}
/// Executes a bit of built-in JavaScript to provide Deno.sharedQueue.
pub(crate) fn shared_init(&mut self) {
if self.needs_init {
self.needs_init = false;
2020-05-12 11:09:28 -04:00
js_check(self.execute("core.js", include_str!("core.js")));
// Maybe execute the startup script.
if let Some(s) = self.startup_script.take() {
self.execute(&s.filename, &s.source).unwrap()
}
}
}
/// Executes traditional JavaScript code (traditional = not ES modules)
///
/// ErrBox can be downcast to a type that exposes additional information about
/// the V8 exception. By default this type is JSError, however it may be a
/// different type if CoreIsolate::set_js_error_create_fn() has been used.
pub fn execute(
&mut self,
js_filename: &str,
js_source: &str,
) -> Result<(), ErrBox> {
self.shared_init();
let state_rc = Self::state(self);
let state = state_rc.borrow();
2020-02-24 18:53:29 -05:00
2020-07-18 16:32:11 -04:00
let scope = &mut v8::HandleScope::with_context(
self.v8_isolate.as_mut().unwrap(),
state.global_context.as_ref().unwrap(),
);
2020-01-21 14:24:31 -05:00
drop(state);
2020-01-21 14:24:31 -05:00
let source = v8::String::new(scope, js_source).unwrap();
let name = v8::String::new(scope, js_filename).unwrap();
let origin = bindings::script_origin(scope, name);
let tc_scope = &mut v8::TryCatch::new(scope);
let script = match v8::Script::compile(tc_scope, source, Some(&origin)) {
Some(script) => script,
None => {
let exception = tc_scope.exception().unwrap();
return exception_to_err_result(tc_scope, exception);
}
};
match script.run(tc_scope) {
Some(_) => Ok(()),
None => {
assert!(tc_scope.has_caught());
let exception = tc_scope.exception().unwrap();
exception_to_err_result(tc_scope, exception)
}
}
}
/// Takes a snapshot. The isolate should have been created with will_snapshot
/// set to true.
///
/// ErrBox can be downcast to a type that exposes additional information about
/// the V8 exception. By default this type is JSError, however it may be a
/// different type if CoreIsolate::set_js_error_create_fn() has been used.
2020-04-22 14:24:49 -04:00
pub fn snapshot(&mut self) -> v8::StartupData {
assert!(self.snapshot_creator.is_some());
let state = Self::state(self);
// Note: create_blob() method must not be called from within a HandleScope.
// TODO(piscisaureus): The rusty_v8 type system should enforce this.
2020-07-18 16:32:11 -04:00
state.borrow_mut().global_context.take();
let snapshot_creator = self.snapshot_creator.as_mut().unwrap();
let snapshot = snapshot_creator
.create_blob(v8::FunctionCodeHandling::Keep)
.unwrap();
self.has_snapshotted = true;
2020-02-24 18:53:29 -05:00
snapshot
}
/// Defines the how Deno.core.dispatch() acts.
/// Called whenever Deno.core.dispatch() is called in JavaScript. zero_copy_buf
/// corresponds to the second argument of Deno.core.dispatch().
///
/// Requires runtime to explicitly ask for op ids before using any of the ops.
pub fn register_op<F>(&mut self, name: &str, op: F) -> OpId
where
F: Fn(&mut CoreIsolateState, &mut [ZeroCopyBuf]) -> Op + 'static,
{
let state_rc = Self::state(self);
let mut state = state_rc.borrow_mut();
state.op_registry.register(name, op)
}
pub fn register_op_json_sync<F>(&mut self, name: &str, op: F) -> OpId
where
F: 'static
+ Fn(
&mut CoreIsolateState,
serde_json::Value,
&mut [ZeroCopyBuf],
) -> Result<serde_json::Value, ErrBox>,
{
let core_op =
move |state: &mut CoreIsolateState, bufs: &mut [ZeroCopyBuf]| -> Op {
let value = serde_json::from_slice(&bufs[0]).unwrap();
let result = op(state, value, &mut bufs[1..]);
let buf = serialize_result(None, result, state.get_error_class_fn);
Op::Sync(buf)
};
let state_rc = Self::state(self);
let mut state = state_rc.borrow_mut();
state.op_registry.register(name, core_op)
}
pub fn register_op_json_async<F, Fut>(&mut self, name: &str, op: F) -> OpId
where
Fut: 'static + Future<Output = Result<serde_json::Value, ErrBox>>,
F: 'static
+ Fn(&mut CoreIsolateState, serde_json::Value, &mut [ZeroCopyBuf]) -> Fut,
{
let core_op = move |state: &mut CoreIsolateState,
bufs: &mut [ZeroCopyBuf]|
-> Op {
let get_error_class_fn = state.get_error_class_fn;
let value: serde_json::Value = serde_json::from_slice(&bufs[0]).unwrap();
let promise_id = value.get("promiseId").unwrap().as_u64().unwrap();
let fut = op(state, value, &mut bufs[1..]);
let fut2 = fut.map(move |result| {
serialize_result(Some(promise_id), result, get_error_class_fn)
});
Op::Async(Box::pin(fut2))
};
let state_rc = Self::state(self);
let mut state = state_rc.borrow_mut();
state.op_registry.register(name, core_op)
}
/// Registers a callback on the isolate when the memory limits are approached.
/// Use this to prevent V8 from crashing the process when reaching the limit.
///
/// Calls the closure with the current heap limit and the initial heap limit.
/// The return value of the closure is set as the new limit.
pub fn add_near_heap_limit_callback<C>(&mut self, cb: C)
where
C: FnMut(usize, usize) -> usize + 'static,
{
let boxed_cb = Box::new(RefCell::new(cb));
let data = boxed_cb.as_ptr() as *mut c_void;
let prev = self
.allocations
.near_heap_limit_callback_data
.replace((boxed_cb, near_heap_limit_callback::<C>));
if let Some((_, prev_cb)) = prev {
self
.v8_isolate
.as_mut()
.unwrap()
.remove_near_heap_limit_callback(prev_cb, 0);
}
self
.v8_isolate
.as_mut()
.unwrap()
.add_near_heap_limit_callback(near_heap_limit_callback::<C>, data);
}
pub fn remove_near_heap_limit_callback(&mut self, heap_limit: usize) {
if let Some((_, cb)) = self.allocations.near_heap_limit_callback_data.take()
{
self
.v8_isolate
.as_mut()
.unwrap()
.remove_near_heap_limit_callback(cb, heap_limit);
}
}
}
extern "C" fn near_heap_limit_callback<F>(
data: *mut c_void,
current_heap_limit: usize,
initial_heap_limit: usize,
) -> usize
where
F: FnMut(usize, usize) -> usize,
{
let callback = unsafe { &mut *(data as *mut F) };
callback(current_heap_limit, initial_heap_limit)
}
fn serialize_result(
promise_id: Option<u64>,
result: Result<Value, ErrBox>,
get_error_class_fn: GetErrorClassFn,
) -> Buf {
let value = match result {
Ok(v) => json!({ "ok": v, "promiseId": promise_id }),
Err(err) => json!({
"promiseId": promise_id ,
"err": {
"className": (get_error_class_fn)(&err),
"message": err.to_string(),
}
}),
};
serde_json::to_vec(&value).unwrap().into_boxed_slice()
}
impl Future for CoreIsolate {
2019-11-16 19:17:47 -05:00
type Output = Result<(), ErrBox>;
2019-11-16 19:17:47 -05:00
fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let core_isolate = self.get_mut();
core_isolate.shared_init();
let state_rc = Self::state(core_isolate);
{
let state = state_rc.borrow();
state.waker.register(cx.waker());
}
2020-02-24 18:53:29 -05:00
2020-07-18 16:32:11 -04:00
let scope = &mut v8::HandleScope::with_context(
&mut **core_isolate,
state_rc.borrow().global_context.as_ref().unwrap(),
);
check_promise_exceptions(scope)?;
let mut overflow_response: Option<(OpId, Buf)> = None;
loop {
let mut state = state_rc.borrow_mut();
2019-06-10 15:27:34 -04:00
// Now handle actual ops.
state.have_unpolled_ops = false;
let pending_r = state.pending_ops.poll_next_unpin(cx);
match pending_r {
2019-11-16 19:17:47 -05:00
Poll::Ready(None) => break,
Poll::Pending => break,
2020-04-18 20:05:13 -04:00
Poll::Ready(Some((op_id, buf))) => {
let successful_push = state.shared.push(op_id, &buf);
if !successful_push {
// If we couldn't push the response to the shared queue, because
// there wasn't enough size, we will return the buffer via the
// legacy route, using the argument of deno_respond.
overflow_response = Some((op_id, buf));
break;
}
}
};
}
loop {
let mut state = state_rc.borrow_mut();
let unref_r = state.pending_unref_ops.poll_next_unpin(cx);
#[allow(clippy::match_wild_err_arm)]
match unref_r {
Poll::Ready(None) => break,
Poll::Pending => break,
Poll::Ready(Some((op_id, buf))) => {
let successful_push = state.shared.push(op_id, &buf);
if !successful_push {
// If we couldn't push the response to the shared queue, because
// there wasn't enough size, we will return the buffer via the
// legacy route, using the argument of deno_respond.
overflow_response = Some((op_id, buf));
break;
}
}
};
}
{
let state = state_rc.borrow();
if state.shared.size() > 0 {
drop(state);
async_op_response(scope, None)?;
// The other side should have shifted off all the messages.
let state = state_rc.borrow();
assert_eq!(state.shared.size(), 0);
}
}
{
if let Some((op_id, buf)) = overflow_response.take() {
async_op_response(scope, Some((op_id, buf)))?;
}
drain_macrotasks(scope)?;
check_promise_exceptions(scope)?;
}
let state = state_rc.borrow();
// We're idle if pending_ops is empty.
if state.pending_ops.is_empty() {
2019-11-16 19:17:47 -05:00
Poll::Ready(Ok(()))
} else {
if state.have_unpolled_ops {
state.waker.wake();
}
2019-11-16 19:17:47 -05:00
Poll::Pending
}
}
}
impl CoreIsolateState {
/// Defines the how Deno.core.dispatch() acts.
/// Called whenever Deno.core.dispatch() is called in JavaScript. zero_copy_buf
/// corresponds to the second argument of Deno.core.dispatch().
///
/// Requires runtime to explicitly ask for op ids before using any of the ops.
pub fn register_op<F>(&mut self, name: &str, op: F) -> OpId
where
F: Fn(&mut CoreIsolateState, &mut [ZeroCopyBuf]) -> Op + 'static,
{
self.op_registry.register(name, op)
}
/// Allows a callback to be set whenever a V8 exception is made. This allows
/// the caller to wrap the JSError into an error. By default this callback
/// is set to JSError::create.
pub fn set_js_error_create_fn(
&mut self,
f: impl Fn(JSError) -> ErrBox + 'static,
) {
self.js_error_create_fn = Box::new(f);
}
pub fn set_get_error_class_fn(&mut self, f: GetErrorClassFn) {
self.get_error_class_fn = f;
}
pub fn dispatch_op<'s>(
&mut self,
scope: &mut v8::HandleScope<'s>,
op_id: OpId,
zero_copy_bufs: &mut [ZeroCopyBuf],
) -> Option<(OpId, Box<[u8]>)> {
let op = if let Some(dispatcher) = self.op_registry.get(op_id) {
dispatcher(self, zero_copy_bufs)
} else {
let message =
v8::String::new(scope, &format!("Unknown op id: {}", op_id)).unwrap();
let exception = v8::Exception::type_error(scope, message);
scope.throw_exception(exception);
return None;
};
debug_assert_eq!(self.shared.size(), 0);
match op {
Op::Sync(buf) => {
// For sync messages, we always return the response via Deno.core.send's
// return value. Sync messages ignore the op_id.
let op_id = 0;
Some((op_id, buf))
}
Op::Async(fut) => {
let fut2 = fut.map(move |buf| (op_id, buf));
self.pending_ops.push(fut2.boxed_local());
self.have_unpolled_ops = true;
None
}
Op::AsyncUnref(fut) => {
let fut2 = fut.map(move |buf| (op_id, buf));
self.pending_unref_ops.push(fut2.boxed_local());
self.have_unpolled_ops = true;
None
}
}
}
}
2020-02-24 18:53:29 -05:00
fn async_op_response<'s>(
scope: &mut v8::HandleScope<'s>,
2020-02-24 18:53:29 -05:00
maybe_buf: Option<(OpId, Box<[u8]>)>,
) -> Result<(), ErrBox> {
let context = scope.get_current_context();
2020-02-24 18:53:29 -05:00
let global: v8::Local<v8::Value> = context.global(scope).into();
2020-07-18 16:32:11 -04:00
let js_recv_cb = CoreIsolate::state(scope)
.borrow()
.js_recv_cb
2020-07-18 16:32:11 -04:00
.as_ref()
.map(|cb| v8::Local::new(scope, cb))
2020-02-24 18:53:29 -05:00
.expect("Deno.core.recv has not been called.");
let tc_scope = &mut v8::TryCatch::new(scope);
2020-02-24 18:53:29 -05:00
match maybe_buf {
Some((op_id, buf)) => {
let op_id: v8::Local<v8::Value> =
v8::Integer::new(tc_scope, op_id as i32).into();
2020-02-24 18:53:29 -05:00
let ui8: v8::Local<v8::Value> =
bindings::boxed_slice_to_uint8array(tc_scope, buf).into();
js_recv_cb.call(tc_scope, global, &[op_id, ui8])
2020-02-24 18:53:29 -05:00
}
None => js_recv_cb.call(tc_scope, global, &[]),
2020-02-24 18:53:29 -05:00
};
match tc_scope.exception() {
2020-02-24 18:53:29 -05:00
None => Ok(()),
Some(exception) => exception_to_err_result(tc_scope, exception),
2020-02-24 18:53:29 -05:00
}
}
fn drain_macrotasks<'s>(scope: &mut v8::HandleScope<'s>) -> Result<(), ErrBox> {
let context = scope.get_current_context();
let global: v8::Local<v8::Value> = context.global(scope).into();
2020-07-18 16:32:11 -04:00
let js_macrotask_cb = match CoreIsolate::state(scope)
.borrow_mut()
.js_macrotask_cb
.as_ref()
{
Some(cb) => v8::Local::new(scope, cb),
None => return Ok(()),
};
// Repeatedly invoke macrotask callback until it returns true (done),
// such that ready microtasks would be automatically run before
// next macrotask is processed.
2020-07-18 16:32:11 -04:00
let tc_scope = &mut v8::TryCatch::new(scope);
2020-07-18 16:32:11 -04:00
loop {
let is_done = js_macrotask_cb.call(tc_scope, global, &[]);
if let Some(exception) = tc_scope.exception() {
return exception_to_err_result(tc_scope, exception);
}
let is_done = is_done.unwrap();
if is_done.is_true() {
break;
}
}
Ok(())
}
pub(crate) fn exception_to_err_result<'s, T>(
scope: &mut v8::HandleScope<'s>,
2020-02-24 18:53:29 -05:00
exception: v8::Local<v8::Value>,
) -> Result<T, ErrBox> {
// TODO(piscisaureus): in rusty_v8, `is_execution_terminating()` should
// also be implemented on `struct Isolate`.
let is_terminating_exception =
scope.thread_safe_handle().is_execution_terminating();
2020-02-24 18:53:29 -05:00
let mut exception = exception;
if is_terminating_exception {
// TerminateExecution was called. Cancel exception termination so that the
// exception can be created..
// TODO(piscisaureus): in rusty_v8, `cancel_terminate_execution()` should
// also be implemented on `struct Isolate`.
scope.thread_safe_handle().cancel_terminate_execution();
2020-02-24 18:53:29 -05:00
// Maybe make a new exception object.
if exception.is_null_or_undefined() {
let message = v8::String::new(scope, "execution terminated").unwrap();
exception = v8::Exception::error(scope, message);
}
}
2020-02-24 18:53:29 -05:00
let js_error = JSError::from_v8_exception(scope, exception);
let state_rc = CoreIsolate::state(scope);
let state = state_rc.borrow();
let js_error = (state.js_error_create_fn)(js_error);
2020-02-24 18:53:29 -05:00
if is_terminating_exception {
// Re-enable exception termination.
// TODO(piscisaureus): in rusty_v8, `terminate_execution()` should also
// be implemented on `struct Isolate`.
scope.thread_safe_handle().terminate_execution();
2020-02-24 18:53:29 -05:00
}
Err(js_error)
2020-02-24 18:53:29 -05:00
}
fn check_promise_exceptions<'s>(
scope: &mut v8::HandleScope<'s>,
2020-02-24 18:53:29 -05:00
) -> Result<(), ErrBox> {
let state_rc = CoreIsolate::state(scope);
let mut state = state_rc.borrow_mut();
if let Some(&key) = state.pending_promise_exceptions.keys().next() {
let handle = state.pending_promise_exceptions.remove(&key).unwrap();
drop(state);
2020-07-18 16:32:11 -04:00
let exception = v8::Local::new(scope, handle);
exception_to_err_result(scope, exception)
2020-02-24 18:53:29 -05:00
} else {
Ok(())
}
}
pub fn js_check<T>(r: Result<T, ErrBox>) -> T {
if let Err(e) = r {
panic!(e.to_string());
}
r.unwrap()
}
#[cfg(test)]
pub mod tests {
use super::*;
use futures::future::lazy;
use std::ops::FnOnce;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
2019-11-16 19:17:47 -05:00
pub fn run_in_task<F>(f: F)
where
2019-11-16 19:17:47 -05:00
F: FnOnce(&mut Context) + Send + 'static,
{
futures::executor::block_on(lazy(move |cx| f(cx)));
}
2019-11-16 19:17:47 -05:00
fn poll_until_ready<F>(future: &mut F, max_poll_count: usize) -> F::Output
where
2019-11-16 19:17:47 -05:00
F: Future + Unpin,
{
2019-11-16 19:17:47 -05:00
let mut cx = Context::from_waker(futures::task::noop_waker_ref());
for _ in 0..max_poll_count {
2019-11-16 19:17:47 -05:00
match future.poll_unpin(&mut cx) {
Poll::Pending => continue,
Poll::Ready(val) => return val,
}
}
panic!(
"CoreIsolate still not ready after polling {} times.",
max_poll_count
)
}
pub enum Mode {
Async,
AsyncUnref,
AsyncZeroCopy(u8),
OverflowReqSync,
OverflowResSync,
OverflowReqAsync,
OverflowResAsync,
}
pub fn setup(mode: Mode) -> (CoreIsolate, Arc<AtomicUsize>) {
let dispatch_count = Arc::new(AtomicUsize::new(0));
let dispatch_count_ = dispatch_count.clone();
let mut isolate = CoreIsolate::new(StartupData::None, false);
let dispatcher = move |_state: &mut CoreIsolateState,
zero_copy: &mut [ZeroCopyBuf]|
-> Op {
dispatch_count_.fetch_add(1, Ordering::Relaxed);
match mode {
Mode::Async => {
assert_eq!(zero_copy.len(), 1);
assert_eq!(zero_copy[0].len(), 1);
assert_eq!(zero_copy[0][0], 42);
let buf = vec![43u8].into_boxed_slice();
Op::Async(futures::future::ready(buf).boxed())
}
Mode::AsyncUnref => {
assert_eq!(zero_copy.len(), 1);
assert_eq!(zero_copy[0].len(), 1);
assert_eq!(zero_copy[0][0], 42);
let fut = async {
// This future never finish.
futures::future::pending::<()>().await;
vec![43u8].into_boxed_slice()
};
Op::AsyncUnref(fut.boxed())
}
Mode::AsyncZeroCopy(count) => {
assert_eq!(zero_copy.len(), count as usize);
zero_copy.iter().enumerate().for_each(|(idx, buf)| {
assert_eq!(buf.len(), 1);
assert_eq!(idx, buf[0] as usize);
});
let buf = vec![43u8].into_boxed_slice();
Op::Async(futures::future::ready(buf).boxed())
}
Mode::OverflowReqSync => {
assert_eq!(zero_copy.len(), 1);
assert_eq!(zero_copy[0].len(), 100 * 1024 * 1024);
let buf = vec![43u8].into_boxed_slice();
Op::Sync(buf)
}
Mode::OverflowResSync => {
assert_eq!(zero_copy.len(), 1);
assert_eq!(zero_copy[0].len(), 1);
assert_eq!(zero_copy[0][0], 42);
let mut vec = Vec::<u8>::new();
vec.resize(100 * 1024 * 1024, 0);
vec[0] = 99;
let buf = vec.into_boxed_slice();
Op::Sync(buf)
}
Mode::OverflowReqAsync => {
assert_eq!(zero_copy.len(), 1);
assert_eq!(zero_copy[0].len(), 100 * 1024 * 1024);
let buf = vec![43u8].into_boxed_slice();
Op::Async(futures::future::ready(buf).boxed())
}
Mode::OverflowResAsync => {
assert_eq!(zero_copy.len(), 1);
assert_eq!(zero_copy[0].len(), 1);
assert_eq!(zero_copy[0][0], 42);
let mut vec = Vec::<u8>::new();
vec.resize(100 * 1024 * 1024, 0);
vec[0] = 4;
let buf = vec.into_boxed_slice();
Op::Async(futures::future::ready(buf).boxed())
}
}
};
isolate.register_op("test", dispatcher);
js_check(isolate.execute(
"setup.js",
r#"
function assert(cond) {
if (!cond) {
throw Error("assert");
}
}
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 0);
(isolate, dispatch_count)
}
#[test]
fn test_dispatch() {
let (mut isolate, dispatch_count) = setup(Mode::Async);
js_check(isolate.execute(
"filename.js",
r#"
let control = new Uint8Array([42]);
Deno.core.send(1, control);
async function main() {
Deno.core.send(1, control);
}
main();
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
}
#[test]
fn test_dispatch_no_zero_copy_buf() {
let (mut isolate, dispatch_count) = setup(Mode::AsyncZeroCopy(0));
js_check(isolate.execute(
"filename.js",
r#"
Deno.core.send(1);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn test_dispatch_stack_zero_copy_bufs() {
let (mut isolate, dispatch_count) = setup(Mode::AsyncZeroCopy(2));
js_check(isolate.execute(
"filename.js",
r#"
let zero_copy_a = new Uint8Array([0]);
let zero_copy_b = new Uint8Array([1]);
Deno.core.send(1, zero_copy_a, zero_copy_b);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn test_dispatch_heap_zero_copy_bufs() {
let (mut isolate, dispatch_count) = setup(Mode::AsyncZeroCopy(5));
js_check(isolate.execute(
"filename.js",
r#"
let zero_copy_a = new Uint8Array([0]);
let zero_copy_b = new Uint8Array([1]);
let zero_copy_c = new Uint8Array([2]);
let zero_copy_d = new Uint8Array([3]);
let zero_copy_e = new Uint8Array([4]);
Deno.core.send(1, zero_copy_a, zero_copy_b, zero_copy_c, zero_copy_d, zero_copy_e);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn test_poll_async_delayed_ops() {
2019-11-16 19:17:47 -05:00
run_in_task(|cx| {
let (mut isolate, dispatch_count) = setup(Mode::Async);
js_check(isolate.execute(
"setup2.js",
r#"
let nrecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
nrecv++;
});
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 0);
js_check(isolate.execute(
"check1.js",
r#"
assert(nrecv == 0);
let control = new Uint8Array([42]);
Deno.core.send(1, control);
assert(nrecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
assert!(matches!(isolate.poll_unpin(cx), Poll::Ready(Ok(_))));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
js_check(isolate.execute(
"check2.js",
r#"
assert(nrecv == 1);
Deno.core.send(1, control);
assert(nrecv == 1);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
assert!(matches!(isolate.poll_unpin(cx), Poll::Ready(Ok(_))));
js_check(isolate.execute("check3.js", "assert(nrecv == 2)"));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
// We are idle, so the next poll should be the last.
assert!(matches!(isolate.poll_unpin(cx), Poll::Ready(Ok(_))));
});
}
#[test]
fn test_poll_async_optional_ops() {
run_in_task(|cx| {
let (mut isolate, dispatch_count) = setup(Mode::AsyncUnref);
js_check(isolate.execute(
"check1.js",
r#"
Deno.core.setAsyncHandler(1, (buf) => {
// This handler will never be called
assert(false);
});
let control = new Uint8Array([42]);
Deno.core.send(1, control);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
// The above op never finish, but isolate can finish
// because the op is an unreffed async op.
assert!(matches!(isolate.poll_unpin(cx), Poll::Ready(Ok(_))));
})
}
#[test]
fn terminate_execution() {
let (mut isolate, _dispatch_count) = setup(Mode::Async);
2020-02-24 18:53:29 -05:00
// TODO(piscisaureus): in rusty_v8, the `thread_safe_handle()` method
// should not require a mutable reference to `struct rusty_v8::Isolate`.
let v8_isolate_handle =
isolate.v8_isolate.as_mut().unwrap().thread_safe_handle();
2020-02-24 18:53:29 -05:00
let terminator_thread = std::thread::spawn(move || {
// allow deno to boot and run
std::thread::sleep(std::time::Duration::from_millis(100));
// terminate execution
2020-02-24 18:53:29 -05:00
let ok = v8_isolate_handle.terminate_execution();
assert!(ok);
});
2020-02-24 18:53:29 -05:00
// Rn an infinite loop, which should be terminated.
match isolate.execute("infinite_loop.js", "for(;;) {}") {
Ok(_) => panic!("execution should be terminated"),
Err(e) => {
assert_eq!(e.to_string(), "Uncaught Error: execution terminated")
}
};
2020-02-24 18:53:29 -05:00
// Cancel the execution-terminating exception in order to allow script
// execution again.
// TODO(piscisaureus): in rusty_v8, `cancel_terminate_execution()` should
// also be implemented on `struct Isolate`.
let ok = isolate
.v8_isolate
.as_mut()
.unwrap()
.thread_safe_handle()
.cancel_terminate_execution();
assert!(ok);
// Verify that the isolate usable again.
isolate
.execute("simple.js", "1 + 1")
.expect("execution should be possible again");
2020-02-24 18:53:29 -05:00
terminator_thread.join().unwrap();
}
#[test]
fn dangling_shared_isolate() {
2020-02-24 18:53:29 -05:00
let v8_isolate_handle = {
// isolate is dropped at the end of this block
let (mut isolate, _dispatch_count) = setup(Mode::Async);
2020-02-24 18:53:29 -05:00
// TODO(piscisaureus): in rusty_v8, the `thread_safe_handle()` method
// should not require a mutable reference to `struct rusty_v8::Isolate`.
isolate.v8_isolate.as_mut().unwrap().thread_safe_handle()
};
// this should not SEGFAULT
2020-02-24 18:53:29 -05:00
v8_isolate_handle.terminate_execution();
}
#[test]
fn overflow_req_sync() {
let (mut isolate, dispatch_count) = setup(Mode::OverflowReqSync);
js_check(isolate.execute(
"overflow_req_sync.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => { asyncRecv++ });
// Large message that will overflow the shared space.
let control = new Uint8Array(100 * 1024 * 1024);
let response = Deno.core.dispatch(1, control);
assert(response instanceof Uint8Array);
assert(response.length == 1);
assert(response[0] == 43);
assert(asyncRecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn overflow_res_sync() {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
let (mut isolate, dispatch_count) = setup(Mode::OverflowResSync);
js_check(isolate.execute(
"overflow_res_sync.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => { asyncRecv++ });
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(1, control);
assert(response instanceof Uint8Array);
assert(response.length == 100 * 1024 * 1024);
assert(response[0] == 99);
assert(asyncRecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn overflow_req_async() {
2019-11-16 19:17:47 -05:00
run_in_task(|cx| {
let (mut isolate, dispatch_count) = setup(Mode::OverflowReqAsync);
js_check(isolate.execute(
"overflow_req_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
assert(buf.byteLength === 1);
assert(buf[0] === 43);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array(100 * 1024 * 1024);
let response = Deno.core.dispatch(1, control);
// Async messages always have null response.
assert(response == null);
assert(asyncRecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
assert!(matches!(isolate.poll_unpin(cx), Poll::Ready(Ok(_))));
js_check(isolate.execute("check.js", "assert(asyncRecv == 1);"));
});
}
#[test]
fn overflow_res_async() {
2019-11-16 19:17:47 -05:00
run_in_task(|_cx| {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
let (mut isolate, dispatch_count) = setup(Mode::OverflowResAsync);
js_check(isolate.execute(
"overflow_res_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
assert(buf.byteLength === 100 * 1024 * 1024);
assert(buf[0] === 4);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(1, control);
assert(response == null);
assert(asyncRecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
poll_until_ready(&mut isolate, 3).unwrap();
js_check(isolate.execute("check.js", "assert(asyncRecv == 1);"));
});
}
#[test]
fn overflow_res_multiple_dispatch_async() {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
2019-11-16 19:17:47 -05:00
run_in_task(|_cx| {
let (mut isolate, dispatch_count) = setup(Mode::OverflowResAsync);
js_check(isolate.execute(
"overflow_res_multiple_dispatch_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
assert(buf.byteLength === 100 * 1024 * 1024);
assert(buf[0] === 4);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(1, control);
assert(response == null);
assert(asyncRecv == 0);
// Dispatch another message to verify that pending ops
// are done even if shared space overflows
Deno.core.dispatch(1, control);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
poll_until_ready(&mut isolate, 3).unwrap();
js_check(isolate.execute("check.js", "assert(asyncRecv == 2);"));
});
}
#[test]
fn test_pre_dispatch() {
2019-11-16 19:17:47 -05:00
run_in_task(|mut cx| {
let (mut isolate, _dispatch_count) = setup(Mode::OverflowResAsync);
js_check(isolate.execute(
"bad_op_id.js",
r#"
let thrown;
try {
Deno.core.dispatch(100);
} catch (e) {
thrown = e;
}
assert(String(thrown) === "TypeError: Unknown op id: 100");
"#,
));
2019-11-16 19:17:47 -05:00
if let Poll::Ready(Err(_)) = isolate.poll_unpin(&mut cx) {
unreachable!();
}
});
}
#[test]
2020-05-12 11:09:28 -04:00
fn core_test_js() {
2019-11-16 19:17:47 -05:00
run_in_task(|mut cx| {
let (mut isolate, _dispatch_count) = setup(Mode::Async);
2020-05-12 11:09:28 -04:00
js_check(isolate.execute("core_test.js", include_str!("core_test.js")));
2019-11-16 19:17:47 -05:00
if let Poll::Ready(Err(_)) = isolate.poll_unpin(&mut cx) {
unreachable!();
}
});
}
#[test]
fn syntax_error() {
let mut isolate = CoreIsolate::new(StartupData::None, false);
let src = "hocuspocus(";
let r = isolate.execute("i.js", src);
let e = r.unwrap_err();
let js_error = e.downcast::<JSError>().unwrap();
assert_eq!(js_error.end_column, Some(11));
}
#[test]
fn test_encode_decode() {
run_in_task(|mut cx| {
let (mut isolate, _dispatch_count) = setup(Mode::Async);
js_check(isolate.execute(
"encode_decode_test.js",
include_str!("encode_decode_test.js"),
));
if let Poll::Ready(Err(_)) = isolate.poll_unpin(&mut cx) {
unreachable!();
}
});
}
#[test]
fn will_snapshot() {
let snapshot = {
let mut isolate = CoreIsolate::new(StartupData::None, true);
js_check(isolate.execute("a.js", "a = 1 + 2"));
isolate.snapshot()
};
2020-04-22 14:24:49 -04:00
let startup_data = StartupData::Snapshot(Snapshot::JustCreated(snapshot));
let mut isolate2 = CoreIsolate::new(startup_data, false);
js_check(isolate2.execute("check.js", "if (a != 3) throw Error('x')"));
}
#[test]
fn test_from_boxed_snapshot() {
let snapshot = {
let mut isolate = CoreIsolate::new(StartupData::None, true);
js_check(isolate.execute("a.js", "a = 1 + 2"));
let snap: &[u8] = &*isolate.snapshot();
Vec::from(snap).into_boxed_slice()
};
let startup_data = StartupData::Snapshot(Snapshot::Boxed(snapshot));
let mut isolate2 = CoreIsolate::new(startup_data, false);
js_check(isolate2.execute("check.js", "if (a != 3) throw Error('x')"));
}
#[test]
fn test_heap_limits() {
let heap_limits = HeapLimits {
initial: 0,
max: 20 * 1024, // 20 kB
};
let mut isolate =
CoreIsolate::with_heap_limits(StartupData::None, heap_limits);
let cb_handle = isolate.thread_safe_handle();
let callback_invoke_count = Rc::new(AtomicUsize::default());
let inner_invoke_count = Rc::clone(&callback_invoke_count);
isolate.add_near_heap_limit_callback(
move |current_limit, _initial_limit| {
inner_invoke_count.fetch_add(1, Ordering::SeqCst);
cb_handle.terminate_execution();
current_limit * 2
},
);
let err = isolate
.execute(
"script name",
r#"let s = ""; while(true) { s += "Hello"; }"#,
)
.expect_err("script should fail");
assert_eq!(
"Uncaught Error: execution terminated",
err.downcast::<JSError>().unwrap().message
);
assert!(callback_invoke_count.load(Ordering::SeqCst) > 0)
}
#[test]
fn test_heap_limit_cb_remove() {
let mut isolate = CoreIsolate::new(StartupData::None, false);
isolate.add_near_heap_limit_callback(|current_limit, _initial_limit| {
current_limit * 2
});
isolate.remove_near_heap_limit_callback(20 * 1024);
assert!(isolate.allocations.near_heap_limit_callback_data.is_none());
}
#[test]
fn test_heap_limit_cb_multiple() {
let heap_limits = HeapLimits {
initial: 0,
max: 20 * 1024, // 20 kB
};
let mut isolate =
CoreIsolate::with_heap_limits(StartupData::None, heap_limits);
let cb_handle = isolate.thread_safe_handle();
let callback_invoke_count_first = Rc::new(AtomicUsize::default());
let inner_invoke_count_first = Rc::clone(&callback_invoke_count_first);
isolate.add_near_heap_limit_callback(
move |current_limit, _initial_limit| {
inner_invoke_count_first.fetch_add(1, Ordering::SeqCst);
current_limit * 2
},
);
let callback_invoke_count_second = Rc::new(AtomicUsize::default());
let inner_invoke_count_second = Rc::clone(&callback_invoke_count_second);
isolate.add_near_heap_limit_callback(
move |current_limit, _initial_limit| {
inner_invoke_count_second.fetch_add(1, Ordering::SeqCst);
cb_handle.terminate_execution();
current_limit * 2
},
);
let err = isolate
.execute(
"script name",
r#"let s = ""; while(true) { s += "Hello"; }"#,
)
.expect_err("script should fail");
assert_eq!(
"Uncaught Error: execution terminated",
err.downcast::<JSError>().unwrap().message
);
assert_eq!(0, callback_invoke_count_first.load(Ordering::SeqCst));
assert!(callback_invoke_count_second.load(Ordering::SeqCst) > 0);
}
}