1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-18 11:53:59 -05:00
denoland-deno/ext/http/http_next.rs

961 lines
26 KiB
Rust
Raw Normal View History

// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license.
use crate::extract_network_stream;
use crate::network_buffered_stream::NetworkStreamPrefixCheck;
use crate::request_body::HttpRequestBody;
use crate::request_properties::DefaultHttpRequestProperties;
use crate::request_properties::HttpConnectionProperties;
use crate::request_properties::HttpListenProperties;
use crate::request_properties::HttpPropertyExtractor;
use crate::response_body::CompletionHandle;
use crate::response_body::ResponseBytes;
use crate::response_body::ResponseBytesInner;
use crate::response_body::V8StreamHttpResponseBody;
use crate::websocket_upgrade::WebSocketUpgrade;
use crate::LocalExecutor;
use deno_core::error::AnyError;
use deno_core::futures::TryFutureExt;
use deno_core::op;
use deno_core::AsyncRefCell;
use deno_core::AsyncResult;
use deno_core::BufView;
use deno_core::ByteString;
use deno_core::CancelFuture;
use deno_core::CancelHandle;
use deno_core::CancelTryFuture;
use deno_core::OpState;
use deno_core::RcRef;
use deno_core::Resource;
use deno_core::ResourceId;
use deno_core::ZeroCopyBuf;
use deno_net::ops_tls::TlsStream;
use deno_net::raw::put_network_stream_resource;
use deno_net::raw::NetworkStream;
use deno_net::raw::NetworkStreamAddress;
use http::request::Parts;
use hyper1::body::Incoming;
use hyper1::header::COOKIE;
use hyper1::http::HeaderName;
use hyper1::http::HeaderValue;
use hyper1::server::conn::http1;
use hyper1::server::conn::http2;
use hyper1::service::service_fn;
use hyper1::service::HttpService;
use hyper1::upgrade::OnUpgrade;
use hyper1::StatusCode;
use pin_project::pin_project;
use pin_project::pinned_drop;
use slab::Slab;
use std::borrow::Cow;
use std::cell::RefCell;
use std::future::Future;
use std::io;
use std::net::Ipv4Addr;
use std::net::SocketAddr;
use std::net::SocketAddrV4;
use std::pin::Pin;
use std::rc::Rc;
use tokio::io::AsyncReadExt;
use tokio::io::AsyncWriteExt;
use tokio::task::spawn_local;
use tokio::task::JoinHandle;
type Request = hyper1::Request<Incoming>;
type Response = hyper1::Response<ResponseBytes>;
/// All HTTP/2 connections start with this byte string.
///
/// In HTTP/2, each endpoint is required to send a connection preface as a final confirmation
/// of the protocol in use and to establish the initial settings for the HTTP/2 connection. The
/// client and server each send a different connection preface.
///
/// The client connection preface starts with a sequence of 24 octets, which in hex notation is:
///
/// 0x505249202a20485454502f322e300d0a0d0a534d0d0a0d0a
///
/// That is, the connection preface starts with the string PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n). This sequence
/// MUST be followed by a SETTINGS frame (Section 6.5), which MAY be empty.
const HTTP2_PREFIX: &[u8] = b"PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n";
/// ALPN negotation for "h2"
const TLS_ALPN_HTTP_2: &[u8] = b"h2";
/// ALPN negotation for "http/1.1"
const TLS_ALPN_HTTP_11: &[u8] = b"http/1.1";
/// Name a trait for streams we can serve HTTP over.
trait HttpServeStream:
tokio::io::AsyncRead + tokio::io::AsyncWrite + Unpin + Send + 'static
{
}
impl<
S: tokio::io::AsyncRead + tokio::io::AsyncWrite + Unpin + Send + 'static,
> HttpServeStream for S
{
}
pub struct HttpSlabRecord {
request_info: HttpConnectionProperties,
request_parts: Parts,
request_body: Option<Incoming>,
// The response may get taken before we tear this down
response: Option<Response>,
body: Option<Rc<HttpRequestBody>>,
promise: CompletionHandle,
#[cfg(__zombie_http_tracking)]
alive: bool,
}
thread_local! {
pub static SLAB: RefCell<Slab<HttpSlabRecord>> = RefCell::new(Slab::with_capacity(1024));
}
/// Generates getters and setters for the [`SLAB`]. For example,
/// `with!(with_req, with_req_mut, Parts, http, http.request_parts);` expands to:
///
/// ```ignore
/// #[inline(always)]
/// #[allow(dead_code)]
/// pub(crate) fn with_req_mut<T>(key: usize, f: impl FnOnce(&mut Parts) -> T) -> T {
/// SLAB.with(|slab| {
/// let mut borrow = slab.borrow_mut();
/// let mut http = borrow.get_mut(key).unwrap();
/// #[cfg(__zombie_http_tracking)]
/// if !http.alive {
/// panic!("Attempted to access a dead HTTP object")
/// }
/// f(&mut http.expr)
/// })
/// }
/// #[inline(always)]
/// #[allow(dead_code)]
/// pub(crate) fn with_req<T>(key: usize, f: impl FnOnce(&Parts) -> T) -> T {
/// SLAB.with(|slab| {
/// let mut borrow = slab.borrow();
/// let mut http = borrow.get(key).unwrap();
/// #[cfg(__zombie_http_tracking)]
/// if !http.alive {
/// panic!("Attempted to access a dead HTTP object")
/// }
/// f(&http.expr)
/// })
/// }
/// ```
macro_rules! with {
($ref:ident, $mut:ident, $type:ty, $http:ident, $expr:expr) => {
#[inline(always)]
#[allow(dead_code)]
pub(crate) fn $mut<T>(key: u32, f: impl FnOnce(&mut $type) -> T) -> T {
SLAB.with(|slab| {
let mut borrow = slab.borrow_mut();
#[allow(unused_mut)] // TODO(mmastrac): compiler issue?
let mut $http = match borrow.get_mut(key as usize) {
Some(http) => http,
None => panic!(
"Attemped to access invalid request {} ({} in total available)",
key,
borrow.len()
),
};
#[cfg(__zombie_http_tracking)]
if !$http.alive {
panic!("Attempted to access a dead HTTP object")
}
f(&mut $expr)
})
}
#[inline(always)]
#[allow(dead_code)]
pub(crate) fn $ref<T>(key: u32, f: impl FnOnce(&$type) -> T) -> T {
SLAB.with(|slab| {
let borrow = slab.borrow();
let $http = borrow.get(key as usize).unwrap();
#[cfg(__zombie_http_tracking)]
if !$http.alive {
panic!("Attempted to access a dead HTTP object")
}
f(&$expr)
})
}
};
}
with!(with_req, with_req_mut, Parts, http, http.request_parts);
with!(
with_req_body,
with_req_body_mut,
Option<Incoming>,
http,
http.request_body
);
with!(
with_resp,
with_resp_mut,
Option<Response>,
http,
http.response
);
with!(
with_body,
with_body_mut,
Option<Rc<HttpRequestBody>>,
http,
http.body
);
with!(
with_promise,
with_promise_mut,
CompletionHandle,
http,
http.promise
);
with!(with_http, with_http_mut, HttpSlabRecord, http, http);
fn slab_insert(
request: Request,
request_info: HttpConnectionProperties,
) -> u32 {
SLAB.with(|slab| {
let (request_parts, request_body) = request.into_parts();
slab.borrow_mut().insert(HttpSlabRecord {
request_info,
request_parts,
request_body: Some(request_body),
response: Some(Response::new(ResponseBytes::default())),
body: None,
promise: CompletionHandle::default(),
#[cfg(__zombie_http_tracking)]
alive: true,
})
}) as u32
}
#[op]
pub fn op_upgrade_raw(
state: &mut OpState,
index: u32,
) -> Result<ResourceId, AnyError> {
// Stage 1: extract the upgrade future
let upgrade = with_http_mut(index, |http| {
// Manually perform the upgrade. We're peeking into hyper's underlying machinery here a bit
http
.request_parts
.extensions
.remove::<OnUpgrade>()
.ok_or_else(|| AnyError::msg("upgrade unavailable"))
})?;
let (read, write) = tokio::io::duplex(1024);
let (read_rx, write_tx) = tokio::io::split(read);
let (mut write_rx, mut read_tx) = tokio::io::split(write);
spawn_local(async move {
let mut upgrade_stream = WebSocketUpgrade::<ResponseBytes>::default();
// Stage 2: Extract the Upgraded connection
let mut buf = [0; 1024];
let upgraded = loop {
let read = Pin::new(&mut write_rx).read(&mut buf).await?;
match upgrade_stream.write(&buf[..read]) {
Ok(None) => continue,
Ok(Some((response, bytes))) => {
with_resp_mut(index, |resp| *resp = Some(response));
with_promise_mut(index, |promise| promise.complete(true));
let mut upgraded = upgrade.await?;
upgraded.write_all(&bytes).await?;
break upgraded;
}
Err(err) => return Err(err),
}
};
// Stage 3: Pump the data
let (mut upgraded_rx, mut upgraded_tx) = tokio::io::split(upgraded);
spawn_local(async move {
let mut buf = [0; 1024];
loop {
let read = upgraded_rx.read(&mut buf).await?;
if read == 0 {
break;
}
read_tx.write_all(&buf[..read]).await?;
}
Ok::<_, AnyError>(())
});
spawn_local(async move {
let mut buf = [0; 1024];
loop {
let read = write_rx.read(&mut buf).await?;
if read == 0 {
break;
}
upgraded_tx.write_all(&buf[..read]).await?;
}
Ok::<_, AnyError>(())
});
Ok(())
});
Ok(
state
.resource_table
.add(UpgradeStream::new(read_rx, write_tx)),
)
}
#[op]
pub async fn op_upgrade(
state: Rc<RefCell<OpState>>,
index: u32,
headers: Vec<(ByteString, ByteString)>,
) -> Result<(ResourceId, ZeroCopyBuf), AnyError> {
// Stage 1: set the respnse to 101 Switching Protocols and send it
let upgrade = with_http_mut(index, |http| {
// Manually perform the upgrade. We're peeking into hyper's underlying machinery here a bit
let upgrade = http
.request_parts
.extensions
.remove::<OnUpgrade>()
.ok_or_else(|| AnyError::msg("upgrade unavailable"))?;
let response = http.response.as_mut().unwrap();
*response.status_mut() = StatusCode::SWITCHING_PROTOCOLS;
for (name, value) in headers {
response.headers_mut().append(
HeaderName::from_bytes(&name).unwrap(),
HeaderValue::from_bytes(&value).unwrap(),
);
}
http.promise.complete(true);
Ok::<_, AnyError>(upgrade)
})?;
// Stage 2: wait for the request to finish upgrading
let upgraded = upgrade.await?;
// Stage 3: return the extracted raw network stream
let (stream, bytes) = extract_network_stream(upgraded);
// We're allocating for those extra bytes, but they are probably going to be empty most of the time
Ok((
put_network_stream_resource(
&mut state.borrow_mut().resource_table,
stream,
)?,
ZeroCopyBuf::from(bytes.to_vec()),
))
}
#[op(fast)]
pub fn op_set_promise_complete(index: u32, status: u16) {
with_resp_mut(index, |resp| {
// The Javascript code will never provide a status that is invalid here (see 23_response.js)
*resp.as_mut().unwrap().status_mut() =
StatusCode::from_u16(status).unwrap();
});
with_promise_mut(index, |promise| {
promise.complete(true);
});
}
#[op]
pub fn op_get_request_method_and_url(
index: u32,
) -> (String, Option<String>, String, String, Option<u16>) {
// TODO(mmastrac): Passing method can be optimized
with_http(index, |http| {
let request_properties = DefaultHttpRequestProperties::request_properties(
&http.request_info,
&http.request_parts.uri,
&http.request_parts.headers,
);
// Only extract the path part - we handle authority elsewhere
let path = match &http.request_parts.uri.path_and_query() {
Some(path_and_query) => path_and_query.to_string(),
None => "".to_owned(),
};
(
http.request_parts.method.as_str().to_owned(),
request_properties.authority,
path,
String::from(http.request_info.peer_address.as_ref()),
http.request_info.peer_port,
)
})
}
#[op]
pub fn op_get_request_header(index: u32, name: String) -> Option<ByteString> {
with_req(index, |req| {
let value = req.headers.get(name);
value.map(|value| value.as_bytes().into())
})
}
#[op]
pub fn op_get_request_headers(index: u32) -> Vec<(ByteString, ByteString)> {
with_req(index, |req| {
let headers = &req.headers;
let mut vec = Vec::with_capacity(headers.len());
let mut cookies: Option<Vec<&[u8]>> = None;
for (name, value) in headers {
if name == COOKIE {
if let Some(ref mut cookies) = cookies {
cookies.push(value.as_bytes());
} else {
cookies = Some(vec![value.as_bytes()]);
}
} else {
let name: &[u8] = name.as_ref();
vec.push((name.into(), value.as_bytes().into()))
}
}
// We treat cookies specially, because we don't want them to get them
// mangled by the `Headers` object in JS. What we do is take all cookie
// headers and concat them into a single cookie header, separated by
// semicolons.
// TODO(mmastrac): This should probably happen on the JS side on-demand
if let Some(cookies) = cookies {
let cookie_sep = "; ".as_bytes();
vec.push((
ByteString::from(COOKIE.as_str()),
ByteString::from(cookies.join(cookie_sep)),
));
}
vec
})
}
#[op(fast)]
pub fn op_read_request_body(state: &mut OpState, index: u32) -> ResourceId {
let incoming = with_req_body_mut(index, |body| body.take().unwrap());
let body_resource = Rc::new(HttpRequestBody::new(incoming));
let res = state.resource_table.add_rc(body_resource.clone());
with_body_mut(index, |body| {
*body = Some(body_resource);
});
res
}
#[op(fast)]
pub fn op_set_response_header(index: u32, name: &str, value: &str) {
with_resp_mut(index, |resp| {
let resp_headers = resp.as_mut().unwrap().headers_mut();
// These are valid latin-1 strings
let name = HeaderName::from_bytes(name.as_bytes()).unwrap();
let value = HeaderValue::from_bytes(value.as_bytes()).unwrap();
resp_headers.append(name, value);
});
}
#[op]
pub fn op_set_response_headers(
index: u32,
headers: Vec<(ByteString, ByteString)>,
) {
// TODO(mmastrac): Invalid headers should be handled?
with_resp_mut(index, |resp| {
let resp_headers = resp.as_mut().unwrap().headers_mut();
resp_headers.reserve(headers.len());
for (name, value) in headers {
// These are valid latin-1 strings
let name = HeaderName::from_bytes(&name).unwrap();
let value = HeaderValue::from_bytes(&value).unwrap();
resp_headers.append(name, value);
}
})
}
#[op(fast)]
pub fn op_set_response_body_resource(
state: &mut OpState,
index: u32,
stream_rid: ResourceId,
auto_close: bool,
) -> Result<(), AnyError> {
// If the stream is auto_close, we will hold the last ref to it until the response is complete.
let resource = if auto_close {
state.resource_table.take_any(stream_rid)?
} else {
state.resource_table.get_any(stream_rid)?
};
with_resp_mut(index, move |response| {
let future = resource.clone().read(64 * 1024);
response
.as_mut()
.unwrap()
.body_mut()
.initialize(ResponseBytesInner::Resource(auto_close, resource, future));
});
Ok(())
}
#[op(fast)]
pub fn op_set_response_body_stream(
state: &mut OpState,
index: u32,
) -> Result<ResourceId, AnyError> {
// TODO(mmastrac): what should this channel size be?
let (tx, rx) = tokio::sync::mpsc::channel(1);
let (tx, rx) = (
V8StreamHttpResponseBody::new(tx),
ResponseBytesInner::V8Stream(rx),
);
with_resp_mut(index, move |response| {
response.as_mut().unwrap().body_mut().initialize(rx);
});
Ok(state.resource_table.add(tx))
}
#[op(fast)]
pub fn op_set_response_body_text(index: u32, text: String) {
if !text.is_empty() {
with_resp_mut(index, move |response| {
response
.as_mut()
.unwrap()
.body_mut()
.initialize(ResponseBytesInner::Bytes(BufView::from(text.into_bytes())))
});
}
}
#[op(fast)]
pub fn op_set_response_body_bytes(index: u32, buffer: &[u8]) {
if !buffer.is_empty() {
with_resp_mut(index, |response| {
response
.as_mut()
.unwrap()
.body_mut()
.initialize(ResponseBytesInner::Bytes(BufView::from(buffer.to_vec())))
});
};
}
#[op]
pub async fn op_http_track(
state: Rc<RefCell<OpState>>,
index: u32,
server_rid: ResourceId,
) -> Result<(), AnyError> {
let handle = with_resp(index, |resp| {
resp.as_ref().unwrap().body().completion_handle()
});
let join_handle = state
.borrow_mut()
.resource_table
.get::<HttpJoinHandle>(server_rid)?;
match handle.or_cancel(join_handle.cancel_handle()).await {
Ok(true) => Ok(()),
Ok(false) => {
Err(AnyError::msg("connection closed before message completed"))
}
Err(_e) => Ok(()),
}
}
#[pin_project(PinnedDrop)]
pub struct SlabFuture<F: Future<Output = ()>>(u32, #[pin] F);
pub fn new_slab_future(
request: Request,
request_info: HttpConnectionProperties,
tx: tokio::sync::mpsc::Sender<u32>,
) -> SlabFuture<impl Future<Output = ()>> {
let index = slab_insert(request, request_info);
let rx = with_promise(index, |promise| promise.clone());
SlabFuture(index, async move {
if tx.send(index).await.is_ok() {
// We only need to wait for completion if we aren't closed
rx.await;
}
})
}
impl<F: Future<Output = ()>> SlabFuture<F> {}
#[pinned_drop]
impl<F: Future<Output = ()>> PinnedDrop for SlabFuture<F> {
fn drop(self: Pin<&mut Self>) {
SLAB.with(|slab| {
#[cfg(__zombie_http_tracking)]
{
slab.borrow_mut().get_mut(self.0 as usize).unwrap().alive = false;
}
#[cfg(not(__zombie_http_tracking))]
{
slab.borrow_mut().remove(self.0 as usize);
}
});
}
}
impl<F: Future<Output = ()>> Future for SlabFuture<F> {
type Output = Result<Response, hyper::Error>;
fn poll(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Self::Output> {
let index = self.0;
self
.project()
.1
.poll(cx)
.map(|_| Ok(with_resp_mut(index, |resp| resp.take().unwrap())))
}
}
fn serve_http11_unconditional(
io: impl HttpServeStream,
svc: impl HttpService<Incoming, ResBody = ResponseBytes> + 'static,
cancel: RcRef<CancelHandle>,
) -> impl Future<Output = Result<(), AnyError>> + 'static {
let conn = http1::Builder::new()
.keep_alive(true)
.serve_connection(io, svc);
conn
.with_upgrades()
.map_err(AnyError::from)
.try_or_cancel(cancel)
}
fn serve_http2_unconditional(
io: impl HttpServeStream,
svc: impl HttpService<Incoming, ResBody = ResponseBytes> + 'static,
cancel: RcRef<CancelHandle>,
) -> impl Future<Output = Result<(), AnyError>> + 'static {
let conn = http2::Builder::new(LocalExecutor).serve_connection(io, svc);
conn.map_err(AnyError::from).try_or_cancel(cancel)
}
async fn serve_http2_autodetect(
io: impl HttpServeStream,
svc: impl HttpService<Incoming, ResBody = ResponseBytes> + 'static,
cancel: RcRef<CancelHandle>,
) -> Result<(), AnyError> {
let prefix = NetworkStreamPrefixCheck::new(io, HTTP2_PREFIX);
let (matches, io) = prefix.match_prefix().await?;
if matches {
serve_http2_unconditional(io, svc, cancel).await
} else {
serve_http11_unconditional(io, svc, cancel).await
}
}
fn serve_https(
mut io: TlsStream,
request_info: HttpConnectionProperties,
cancel: RcRef<CancelHandle>,
tx: tokio::sync::mpsc::Sender<u32>,
) -> JoinHandle<Result<(), AnyError>> {
// TODO(mmastrac): This is faster if we can use tokio::spawn but then the send bounds get us
let svc = service_fn(move |req: Request| {
new_slab_future(req, request_info.clone(), tx.clone())
});
spawn_local(async {
io.handshake().await?;
// If the client specifically negotiates a protocol, we will use it. If not, we'll auto-detect
// based on the prefix bytes
let handshake = io.get_ref().1.alpn_protocol();
if handshake == Some(TLS_ALPN_HTTP_2) {
serve_http2_unconditional(io, svc, cancel).await
} else if handshake == Some(TLS_ALPN_HTTP_11) {
serve_http11_unconditional(io, svc, cancel).await
} else {
serve_http2_autodetect(io, svc, cancel).await
}
})
}
fn serve_http(
io: impl HttpServeStream,
request_info: HttpConnectionProperties,
cancel: RcRef<CancelHandle>,
tx: tokio::sync::mpsc::Sender<u32>,
) -> JoinHandle<Result<(), AnyError>> {
// TODO(mmastrac): This is faster if we can use tokio::spawn but then the send bounds get us
let svc = service_fn(move |req: Request| {
new_slab_future(req, request_info.clone(), tx.clone())
});
spawn_local(serve_http2_autodetect(io, svc, cancel))
}
fn serve_http_on(
network_stream: NetworkStream,
listen_properties: &HttpListenProperties,
cancel: RcRef<CancelHandle>,
tx: tokio::sync::mpsc::Sender<u32>,
) -> JoinHandle<Result<(), AnyError>> {
// We always want some sort of peer address. If we can't get one, just make up one.
let peer_address = network_stream.peer_address().unwrap_or_else(|_| {
NetworkStreamAddress::Ip(SocketAddr::V4(SocketAddrV4::new(
Ipv4Addr::new(0, 0, 0, 0),
0,
)))
});
let connection_properties: HttpConnectionProperties =
DefaultHttpRequestProperties::connection_properties(
listen_properties,
&peer_address,
);
match network_stream {
NetworkStream::Tcp(conn) => {
serve_http(conn, connection_properties, cancel, tx)
}
NetworkStream::Tls(conn) => {
serve_https(conn, connection_properties, cancel, tx)
}
#[cfg(unix)]
NetworkStream::Unix(conn) => {
serve_http(conn, connection_properties, cancel, tx)
}
}
}
struct HttpJoinHandle(
AsyncRefCell<Option<JoinHandle<Result<(), AnyError>>>>,
CancelHandle,
AsyncRefCell<tokio::sync::mpsc::Receiver<u32>>,
);
impl HttpJoinHandle {
fn cancel_handle(self: &Rc<Self>) -> RcRef<CancelHandle> {
RcRef::map(self, |this| &this.1)
}
}
impl Resource for HttpJoinHandle {
fn name(&self) -> Cow<str> {
"http".into()
}
fn close(self: Rc<Self>) {
self.1.cancel()
}
}
#[op(v8)]
pub fn op_serve_http(
state: Rc<RefCell<OpState>>,
listener_rid: ResourceId,
) -> Result<(ResourceId, &'static str, String), AnyError> {
let listener =
DefaultHttpRequestProperties::get_network_stream_listener_for_rid(
&mut state.borrow_mut(),
listener_rid,
)?;
let local_address = listener.listen_address()?;
let listen_properties = DefaultHttpRequestProperties::listen_properties(
listener.stream(),
&local_address,
);
let (tx, rx) = tokio::sync::mpsc::channel(10);
let resource: Rc<HttpJoinHandle> = Rc::new(HttpJoinHandle(
AsyncRefCell::new(None),
CancelHandle::new(),
AsyncRefCell::new(rx),
));
let cancel_clone = resource.cancel_handle();
let listen_properties_clone = listen_properties.clone();
let handle = spawn_local(async move {
loop {
let conn = listener
.accept()
.try_or_cancel(cancel_clone.clone())
.await?;
serve_http_on(
conn,
&listen_properties_clone,
cancel_clone.clone(),
tx.clone(),
);
}
#[allow(unreachable_code)]
Ok::<_, AnyError>(())
});
// Set the handle after we start the future
*RcRef::map(&resource, |this| &this.0)
.try_borrow_mut()
.unwrap() = Some(handle);
Ok((
state.borrow_mut().resource_table.add_rc(resource),
listen_properties.scheme,
listen_properties.fallback_host,
))
}
#[op(v8)]
pub fn op_serve_http_on(
state: Rc<RefCell<OpState>>,
conn: ResourceId,
) -> Result<(ResourceId, &'static str, String), AnyError> {
let network_stream =
DefaultHttpRequestProperties::get_network_stream_for_rid(
&mut state.borrow_mut(),
conn,
)?;
let local_address = network_stream.local_address()?;
let listen_properties = DefaultHttpRequestProperties::listen_properties(
network_stream.stream(),
&local_address,
);
let (tx, rx) = tokio::sync::mpsc::channel(10);
let resource: Rc<HttpJoinHandle> = Rc::new(HttpJoinHandle(
AsyncRefCell::new(None),
CancelHandle::new(),
AsyncRefCell::new(rx),
));
let handle: JoinHandle<Result<(), deno_core::anyhow::Error>> = serve_http_on(
network_stream,
&listen_properties,
resource.cancel_handle(),
tx,
);
// Set the handle after we start the future
*RcRef::map(&resource, |this| &this.0)
.try_borrow_mut()
.unwrap() = Some(handle);
Ok((
state.borrow_mut().resource_table.add_rc(resource),
listen_properties.scheme,
listen_properties.fallback_host,
))
}
#[op]
pub async fn op_http_wait(
state: Rc<RefCell<OpState>>,
rid: ResourceId,
) -> Result<u32, AnyError> {
// We will get the join handle initially, as we might be consuming requests still
let join_handle = state
.borrow_mut()
.resource_table
.get::<HttpJoinHandle>(rid)?;
let cancel = join_handle.clone().cancel_handle();
let next = async {
let mut recv = RcRef::map(&join_handle, |this| &this.2).borrow_mut().await;
recv.recv().await
}
.or_cancel(cancel)
.unwrap_or_else(|_| None)
.await;
// Do we have a request?
if let Some(req) = next {
return Ok(req);
}
// No - we're shutting down
let res = RcRef::map(join_handle, |this| &this.0)
.borrow_mut()
.await
.take()
.unwrap()
.await?;
// Drop the cancel and join handles
state
.borrow_mut()
.resource_table
.take::<HttpJoinHandle>(rid)?;
// Filter out shutdown (ENOTCONN) errors
if let Err(err) = res {
if let Some(err) = err.source() {
if let Some(err) = err.downcast_ref::<io::Error>() {
if err.kind() == io::ErrorKind::NotConnected {
return Ok(u32::MAX);
}
}
}
return Err(err);
}
Ok(u32::MAX)
}
struct UpgradeStream {
read: AsyncRefCell<tokio::io::ReadHalf<tokio::io::DuplexStream>>,
write: AsyncRefCell<tokio::io::WriteHalf<tokio::io::DuplexStream>>,
cancel_handle: CancelHandle,
}
impl UpgradeStream {
pub fn new(
read: tokio::io::ReadHalf<tokio::io::DuplexStream>,
write: tokio::io::WriteHalf<tokio::io::DuplexStream>,
) -> Self {
Self {
read: AsyncRefCell::new(read),
write: AsyncRefCell::new(write),
cancel_handle: CancelHandle::new(),
}
}
async fn read(self: Rc<Self>, buf: &mut [u8]) -> Result<usize, AnyError> {
let cancel_handle = RcRef::map(self.clone(), |this| &this.cancel_handle);
async {
let read = RcRef::map(self, |this| &this.read);
let mut read = read.borrow_mut().await;
Ok(Pin::new(&mut *read).read(buf).await?)
}
.try_or_cancel(cancel_handle)
.await
}
async fn write(self: Rc<Self>, buf: &[u8]) -> Result<usize, AnyError> {
let cancel_handle = RcRef::map(self.clone(), |this| &this.cancel_handle);
async {
let write = RcRef::map(self, |this| &this.write);
let mut write = write.borrow_mut().await;
Ok(Pin::new(&mut *write).write(buf).await?)
}
.try_or_cancel(cancel_handle)
.await
}
}
impl Resource for UpgradeStream {
fn name(&self) -> Cow<str> {
"httpRawUpgradeStream".into()
}
deno_core::impl_readable_byob!();
deno_core::impl_writable!();
fn close(self: Rc<Self>) {
self.cancel_handle.cancel();
}
}