1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-11-29 16:30:56 -05:00
denoland-deno/cli/tsc.rs

1005 lines
28 KiB
Rust
Raw Normal View History

2020-01-02 15:13:47 -05:00
// Copyright 2018-2020 the Deno authors. All rights reserved. MIT license.
use crate::ast::parse;
use crate::ast::Location;
use crate::diagnostics::Diagnostics;
use crate::disk_cache::DiskCache;
use crate::file_fetcher::SourceFile;
use crate::file_fetcher::SourceFileFetcher;
use crate::flags::Flags;
use crate::js;
2020-09-15 10:33:14 -04:00
use crate::media_type::MediaType;
use crate::module_graph::ModuleGraph;
use crate::module_graph::ModuleGraphLoader;
use crate::permissions::Permissions;
use crate::program_state::ProgramState;
use crate::tsc_config;
use crate::version;
use deno_core::error::generic_error;
use deno_core::error::AnyError;
use deno_core::error::JsError;
use deno_core::json_op_sync;
use deno_core::serde_json;
use deno_core::serde_json::json;
use deno_core::serde_json::Value;
use deno_core::url::Url;
use deno_core::JsRuntime;
use deno_core::ModuleSpecifier;
use deno_core::RuntimeOptions;
use log::debug;
use regex::Regex;
use serde::Deserialize;
use serde::Serialize;
2020-09-15 10:33:14 -04:00
use serde::Serializer;
use sourcemap::SourceMap;
use std::collections::HashMap;
use std::collections::HashSet;
use std::fs;
2019-09-20 10:19:51 -04:00
use std::io;
use std::ops::Deref;
use std::path::PathBuf;
2019-02-18 10:42:15 -05:00
use std::str;
use std::sync::Arc;
use std::sync::Mutex;
use swc_common::comments::Comment;
use swc_common::comments::CommentKind;
use swc_ecmascript::dep_graph;
pub const AVAILABLE_LIBS: &[&str] = &[
"deno.ns",
"deno.window",
"deno.worker",
"deno.shared_globals",
"deno.unstable",
"dom",
"dom.iterable",
"es5",
"es6",
"esnext",
"es2020",
"es2020.full",
"es2019",
"es2019.full",
"es2018",
"es2018.full",
"es2017",
"es2017.full",
"es2016",
"es2016.full",
"es2015",
"es2015.collection",
"es2015.core",
"es2015.generator",
"es2015.iterable",
"es2015.promise",
"es2015.proxy",
"es2015.reflect",
"es2015.symbol",
"es2015.symbol.wellknown",
"es2016.array.include",
"es2017.intl",
"es2017.object",
"es2017.sharedmemory",
"es2017.string",
"es2017.typedarrays",
"es2018.asyncgenerator",
"es2018.asynciterable",
"es2018.intl",
"es2018.promise",
"es2018.regexp",
"es2019.array",
"es2019.object",
"es2019.string",
"es2019.symbol",
"es2020.bigint",
"es2020.promise",
"es2020.string",
"es2020.symbol.wellknown",
"esnext.array",
"esnext.asynciterable",
"esnext.bigint",
"esnext.intl",
"esnext.promise",
"esnext.string",
"esnext.symbol",
"esnext.weakref",
"scripthost",
"webworker",
"webworker.importscripts",
];
#[derive(Debug, Clone)]
pub struct CompiledModule {
pub code: String,
pub name: String,
}
lazy_static! {
/// Matches the `@deno-types` pragma.
static ref DENO_TYPES_RE: Regex =
Regex::new(r#"(?i)^\s*@deno-types\s*=\s*(?:["']([^"']+)["']|(\S+))"#)
.unwrap();
/// Matches a `/// <reference ... />` comment reference.
static ref TRIPLE_SLASH_REFERENCE_RE: Regex =
Regex::new(r"(?i)^/\s*<reference\s.*?/>").unwrap();
/// Matches a path reference, which adds a dependency to a module
static ref PATH_REFERENCE_RE: Regex =
Regex::new(r#"(?i)\spath\s*=\s*["']([^"']*)["']"#).unwrap();
/// Matches a types reference, which for JavaScript files indicates the
/// location of types to use when type checking a program that includes it as
/// a dependency.
static ref TYPES_REFERENCE_RE: Regex =
Regex::new(r#"(?i)\stypes\s*=\s*["']([^"']*)["']"#).unwrap();
/// Matches a lib reference.
static ref LIB_REFERENCE_RE: Regex =
Regex::new(r#"(?i)\slib\s*=\s*["']([^"']*)["']"#).unwrap();
}
#[derive(Clone, Eq, PartialEq)]
pub enum TargetLib {
Main,
Worker,
}
/// Struct which represents the state of the compiler
/// configuration where the first is canonical name for the configuration file,
/// second is a vector of the bytes of the contents of the configuration file,
/// third is bytes of the hash of contents.
#[derive(Clone)]
pub struct CompilerConfig {
pub path: Option<PathBuf>,
pub options: Value,
pub maybe_ignored_options: Option<tsc_config::IgnoredCompilerOptions>,
pub hash: String,
pub compile_js: bool,
}
impl CompilerConfig {
/// Take the passed flag and resolve the file name relative to the cwd.
pub fn load(maybe_config_path: Option<String>) -> Result<Self, AnyError> {
if maybe_config_path.is_none() {
return Ok(Self {
path: Some(PathBuf::new()),
options: json!({}),
maybe_ignored_options: None,
hash: "".to_string(),
compile_js: false,
});
}
let raw_config_path = maybe_config_path.unwrap();
debug!("Compiler config file: {}", raw_config_path);
let cwd = std::env::current_dir().unwrap();
let config_file = cwd.join(raw_config_path);
// Convert the PathBuf to a canonicalized string. This is needed by the
// compiler to properly deal with the configuration.
let config_path = config_file.canonicalize().map_err(|_| {
io::Error::new(
io::ErrorKind::InvalidInput,
format!(
"Could not find the config file: {}",
config_file.to_string_lossy()
),
)
})?;
// Load the contents of the configuration file
debug!("Attempt to load config: {}", config_path.to_str().unwrap());
let config_bytes = fs::read(&config_file)?;
let config_hash = crate::checksum::gen(&[&config_bytes]);
let config_str = String::from_utf8(config_bytes)?;
let (options, maybe_ignored_options) = if config_str.is_empty() {
(json!({}), None)
} else {
tsc_config::parse_config(&config_str, &config_path)?
};
// If `checkJs` is set to true in `compilerOptions` then we're gonna be compiling
// JavaScript files as well
let compile_js = options["checkJs"].as_bool().unwrap_or(false);
Ok(Self {
path: Some(config_path),
options,
maybe_ignored_options,
hash: config_hash,
compile_js,
})
}
}
/// Information associated with compiled file in cache.
/// version_hash is used to validate versions of the file
/// and could be used to remove stale file in cache.
#[derive(Deserialize, Serialize)]
pub struct CompiledFileMetadata {
pub version_hash: String,
}
impl CompiledFileMetadata {
pub fn to_json_string(&self) -> Result<String, serde_json::Error> {
serde_json::to_string(self)
}
}
/// Emit a SHA256 hash based on source code, deno version and TS config.
/// Used to check if a recompilation for source code is needed.
fn source_code_version_hash(
source_code: &[u8],
version: &str,
config_hash: &[u8],
) -> String {
crate::checksum::gen(&[source_code, version.as_bytes(), config_hash])
}
pub struct TsCompilerInner {
pub file_fetcher: SourceFileFetcher,
pub flags: Flags,
pub config: CompilerConfig,
pub disk_cache: DiskCache,
/// Set of all URLs that have been compiled. This prevents double
/// compilation of module.
pub compiled: Mutex<HashSet<Url>>,
/// This setting is controlled by `--reload` flag. Unless the flag
/// is provided disk cache is used.
pub use_disk_cache: bool,
/// This setting is controlled by `compilerOptions.checkJs`
pub compile_js: bool,
}
#[derive(Clone)]
pub struct TsCompiler(Arc<TsCompilerInner>);
impl Deref for TsCompiler {
type Target = TsCompilerInner;
fn deref(&self) -> &Self::Target {
&self.0
}
}
#[derive(Deserialize, Debug)]
#[serde(rename_all = "camelCase")]
struct Stat {
key: String,
value: f64,
}
#[derive(Deserialize)]
#[serde(rename_all = "camelCase")]
struct EmittedSource {
filename: String,
contents: String,
}
// TODO(bartlomieju): possible deduplicate once TS refactor is stabilized
#[derive(Deserialize)]
#[serde(rename_all = "camelCase")]
#[allow(unused)]
struct RuntimeBundleResponse {
diagnostics: Diagnostics,
output: String,
}
#[derive(Deserialize)]
#[serde(rename_all = "camelCase")]
struct RuntimeCompileResponse {
diagnostics: Diagnostics,
emit_map: HashMap<String, EmittedSource>,
}
impl TsCompiler {
pub fn new(
file_fetcher: SourceFileFetcher,
flags: Flags,
disk_cache: DiskCache,
) -> Result<Self, AnyError> {
let config = CompilerConfig::load(flags.config_path.clone())?;
let use_disk_cache = !flags.reload;
Ok(TsCompiler(Arc::new(TsCompilerInner {
file_fetcher,
flags,
disk_cache,
compile_js: config.compile_js,
config,
compiled: Mutex::new(HashSet::new()),
use_disk_cache,
})))
}
/// Mark given module URL as compiled to avoid multiple compilations of same
/// module in single run.
fn mark_compiled(&self, url: &Url) {
let mut c = self.compiled.lock().unwrap();
c.insert(url.clone());
}
fn cache_emitted_files(
&self,
emit_map: HashMap<String, EmittedSource>,
) -> std::io::Result<()> {
for (emitted_name, source) in emit_map.iter() {
let specifier = ModuleSpecifier::resolve_url(&source.filename)
.expect("Should be a valid module specifier");
let source_file = self
.file_fetcher
.fetch_cached_source_file(&specifier, Permissions::allow_all())
.expect("Source file not found");
// NOTE: JavaScript files are only cached to disk if `checkJs`
// option in on
2020-09-15 10:33:14 -04:00
if source_file.media_type == MediaType::JavaScript && !self.compile_js {
continue;
}
if emitted_name.ends_with(".map") {
self.cache_source_map(&specifier, &source.contents)?;
} else if emitted_name.ends_with(".js") {
self.cache_compiled_file(&specifier, source_file, &source.contents)?;
} else {
panic!("Trying to cache unknown file type {}", emitted_name);
}
}
Ok(())
}
/// Save compiled JS file for given TS module to on-disk cache.
///
/// Along compiled file a special metadata file is saved as well containing
/// hash that can be validated to avoid unnecessary recompilation.
fn cache_compiled_file(
&self,
module_specifier: &ModuleSpecifier,
source_file: SourceFile,
contents: &str,
) -> std::io::Result<()> {
let js_key = self
.disk_cache
.get_cache_filename_with_extension(module_specifier.as_url(), "js");
self.disk_cache.set(&js_key, contents.as_bytes())?;
self.mark_compiled(module_specifier.as_url());
let version_hash = source_code_version_hash(
&source_file.source_code.as_bytes(),
version::DENO,
&self.config.hash.as_bytes(),
);
let compiled_file_metadata = CompiledFileMetadata { version_hash };
let meta_key = self
.disk_cache
.get_cache_filename_with_extension(module_specifier.as_url(), "meta");
self.disk_cache.set(
&meta_key,
compiled_file_metadata.to_json_string()?.as_bytes(),
)
}
/// Save source map file for given TS module to on-disk cache.
fn cache_source_map(
&self,
module_specifier: &ModuleSpecifier,
contents: &str,
) -> std::io::Result<()> {
let js_key = self
.disk_cache
.get_cache_filename_with_extension(module_specifier.as_url(), "js");
let js_path = self.disk_cache.location.join(js_key);
let js_file_url =
Url::from_file_path(js_path).expect("Bad file URL for file");
let source_map_key = self
.disk_cache
.get_cache_filename_with_extension(module_specifier.as_url(), "js.map");
let mut sm = SourceMap::from_slice(contents.as_bytes())
.expect("Invalid source map content");
sm.set_file(Some(&js_file_url.to_string()));
sm.set_source(0, &module_specifier.to_string());
let mut output: Vec<u8> = vec![];
sm.to_writer(&mut output)
.expect("Failed to write source map");
self.disk_cache.set(&source_map_key, &output)
}
2019-04-05 00:04:06 -04:00
}
#[derive(Debug, Deserialize)]
struct CreateHashArgs {
data: String,
}
fn execute_in_tsc(
program_state: Arc<ProgramState>,
req: String,
) -> Result<String, AnyError> {
let mut js_runtime = JsRuntime::new(RuntimeOptions {
startup_snapshot: Some(js::compiler_isolate_init()),
..Default::default()
});
let debug_flag = program_state
.flags
.log_level
.map_or(false, |l| l == log::Level::Debug);
let response = Arc::new(Mutex::new(None));
{
js_runtime.register_op(
"op_fetch_asset",
crate::op_fetch_asset::op_fetch_asset(HashMap::default()),
);
let res = response.clone();
js_runtime.register_op(
"op_compiler_respond",
json_op_sync(move |_state, args, _bufs| {
let mut response_slot = res.lock().unwrap();
let replaced_value = response_slot.replace(args.to_string());
assert!(
replaced_value.is_none(),
"op_compiler_respond found unexpected existing compiler output",
);
Ok(json!({}))
}),
);
js_runtime.register_op(
"op_create_hash",
json_op_sync(move |_s, args, _bufs| {
let v: CreateHashArgs = serde_json::from_value(args)?;
let hash = crate::checksum::gen(&[v.data.as_bytes()]);
Ok(json!({ "hash": hash }))
}),
);
}
let bootstrap_script = format!(
"globalThis.startup({{ debugFlag: {}, legacy: true }})",
debug_flag
);
js_runtime.execute("<compiler>", &bootstrap_script)?;
let script = format!("globalThis.tsCompilerOnMessage({{ data: {} }});", req);
js_runtime.execute("<compiler>", &script)?;
let maybe_response = response.lock().unwrap().take();
assert!(
maybe_response.is_some(),
"Unexpected missing response from TS compiler"
);
Ok(maybe_response.unwrap())
}
async fn create_runtime_module_graph(
program_state: &Arc<ProgramState>,
permissions: Permissions,
root_name: &str,
sources: &Option<HashMap<String, String>>,
type_files: Vec<String>,
) -> Result<(Vec<String>, ModuleGraph), AnyError> {
let mut root_names = vec![];
let mut module_graph_loader = ModuleGraphLoader::new(
program_state.file_fetcher.clone(),
None,
permissions,
false,
false,
);
if let Some(s_map) = sources {
root_names.push(root_name.to_string());
module_graph_loader.build_local_graph(root_name, s_map)?;
} else {
let module_specifier =
ModuleSpecifier::resolve_import(root_name, "<unknown>")?;
root_names.push(module_specifier.to_string());
module_graph_loader
.add_to_graph(&module_specifier, None)
.await?;
}
// download all additional files from TSconfig and add them to root_names
for type_file in type_files {
let type_specifier = ModuleSpecifier::resolve_url_or_path(&type_file)?;
module_graph_loader
.add_to_graph(&type_specifier, None)
.await?;
root_names.push(type_specifier.to_string())
}
Ok((root_names, module_graph_loader.get_graph()))
}
fn extract_js_error(error: AnyError) -> AnyError {
match error.downcast::<JsError>() {
Ok(js_error) => {
let msg = format!("Error in TS compiler:\n{}", js_error);
generic_error(msg)
}
Err(error) => error,
}
}
/// This function is used by `Deno.compile()` API.
pub async fn runtime_compile(
program_state: &Arc<ProgramState>,
permissions: Permissions,
root_name: &str,
sources: &Option<HashMap<String, String>>,
maybe_options: &Option<String>,
) -> Result<Value, AnyError> {
let mut user_options = if let Some(options) = maybe_options {
tsc_config::parse_raw_config(options)?
} else {
json!({})
};
// Intentionally calling "take()" to replace value with `null` - otherwise TSC will try to load that file
// using `fileExists` API
let type_files = if let Some(types) = user_options["types"].take().as_array()
{
types
.iter()
.map(|type_value| type_value.as_str().unwrap_or("").to_string())
.filter(|type_str| !type_str.is_empty())
.collect()
} else {
vec![]
};
let unstable = program_state.flags.unstable;
let mut lib = vec![];
if let Some(user_libs) = user_options["lib"].take().as_array() {
let libs = user_libs
.iter()
.map(|type_value| type_value.as_str().unwrap_or("").to_string())
.filter(|type_str| !type_str.is_empty())
.collect::<Vec<String>>();
lib.extend(libs);
} else {
lib.push("deno.window".to_string());
}
if unstable {
lib.push("deno.unstable".to_string());
}
let mut compiler_options = json!({
"allowJs": false,
"allowNonTsExtensions": true,
"checkJs": false,
"esModuleInterop": true,
"isolatedModules": true,
"jsx": "react",
"module": "esnext",
"sourceMap": true,
"strict": true,
"removeComments": true,
"target": "esnext",
});
tsc_config::json_merge(&mut compiler_options, &user_options);
tsc_config::json_merge(&mut compiler_options, &json!({ "lib": lib }));
let (root_names, module_graph) = create_runtime_module_graph(
&program_state,
permissions.clone(),
root_name,
sources,
type_files,
)
.await?;
let module_graph_json =
serde_json::to_value(module_graph).expect("Failed to serialize data");
let req_msg = json!({
2020-09-15 10:33:14 -04:00
"type": CompilerRequestType::RuntimeCompile,
"target": "runtime",
"rootNames": root_names,
"sourceFileMap": module_graph_json,
"compilerOptions": compiler_options,
})
.to_string();
let compiler = program_state.ts_compiler.clone();
let json_str =
execute_in_tsc(program_state.clone(), req_msg).map_err(extract_js_error)?;
let response: RuntimeCompileResponse = serde_json::from_str(&json_str)?;
if response.diagnostics.is_empty() && sources.is_none() {
compiler.cache_emitted_files(response.emit_map)?;
}
// We're returning `Ok()` instead of `Err()` because it's not runtime
// error if there were diagnostics produced; we want to let user handle
// diagnostics in the runtime.
Ok(serde_json::from_str::<Value>(&json_str).unwrap())
}
/// This function is used by `Deno.bundle()` API.
pub async fn runtime_bundle(
program_state: &Arc<ProgramState>,
permissions: Permissions,
root_name: &str,
sources: &Option<HashMap<String, String>>,
maybe_options: &Option<String>,
) -> Result<Value, AnyError> {
let mut user_options = if let Some(options) = maybe_options {
tsc_config::parse_raw_config(options)?
} else {
json!({})
};
// Intentionally calling "take()" to replace value with `null` - otherwise TSC will try to load that file
// using `fileExists` API
let type_files = if let Some(types) = user_options["types"].take().as_array()
{
types
.iter()
.map(|type_value| type_value.as_str().unwrap_or("").to_string())
.filter(|type_str| !type_str.is_empty())
.collect()
} else {
vec![]
};
let (root_names, module_graph) = create_runtime_module_graph(
&program_state,
permissions.clone(),
root_name,
sources,
type_files,
)
.await?;
let module_graph_json =
serde_json::to_value(module_graph).expect("Failed to serialize data");
let unstable = program_state.flags.unstable;
let mut lib = vec![];
if let Some(user_libs) = user_options["lib"].take().as_array() {
let libs = user_libs
.iter()
.map(|type_value| type_value.as_str().unwrap_or("").to_string())
.filter(|type_str| !type_str.is_empty())
.collect::<Vec<String>>();
lib.extend(libs);
} else {
lib.push("deno.window".to_string());
}
if unstable {
lib.push("deno.unstable".to_string());
}
let mut compiler_options = json!({
"allowJs": false,
"allowNonTsExtensions": true,
"checkJs": false,
"esModuleInterop": true,
"jsx": "react",
"module": "esnext",
"outDir": null,
"sourceMap": true,
"strict": true,
"removeComments": true,
"target": "esnext",
});
let bundler_options = json!({
"allowJs": true,
"inlineSourceMap": false,
"module": "system",
"outDir": null,
"outFile": "deno:///bundle.js",
// disabled until we have effective way to modify source maps
"sourceMap": false,
});
tsc_config::json_merge(&mut compiler_options, &user_options);
tsc_config::json_merge(&mut compiler_options, &json!({ "lib": lib }));
tsc_config::json_merge(&mut compiler_options, &bundler_options);
let req_msg = json!({
2020-09-15 10:33:14 -04:00
"type": CompilerRequestType::RuntimeBundle,
"target": "runtime",
"rootNames": root_names,
"sourceFileMap": module_graph_json,
"compilerOptions": compiler_options,
})
.to_string();
let json_str =
execute_in_tsc(program_state.clone(), req_msg).map_err(extract_js_error)?;
let _response: RuntimeBundleResponse = serde_json::from_str(&json_str)?;
// We're returning `Ok()` instead of `Err()` because it's not runtime
// error if there were diagnostics produced; we want to let user handle
// diagnostics in the runtime.
Ok(serde_json::from_str::<Value>(&json_str).unwrap())
}
#[derive(Clone, Debug, PartialEq)]
pub struct ImportDesc {
pub specifier: String,
pub deno_types: Option<String>,
pub location: Location,
}
#[derive(Clone, Debug, PartialEq)]
pub enum TsReferenceKind {
Lib,
Types,
Path,
}
#[derive(Clone, Debug, PartialEq)]
pub struct TsReferenceDesc {
pub kind: TsReferenceKind,
pub specifier: String,
pub location: Location,
}
// TODO(bartlomieju): handle imports in ambient contexts/TS modules
/// This function is a port of `ts.preProcessFile()`
///
/// Additionally it captures `@deno-types` references directly
/// preceeding `import .. from` and `export .. from` statements.
pub fn pre_process_file(
file_name: &str,
media_type: MediaType,
source_code: &str,
analyze_dynamic_imports: bool,
) -> Result<(Vec<ImportDesc>, Vec<TsReferenceDesc>), AnyError> {
let specifier = ModuleSpecifier::resolve_url_or_path(file_name)?;
let module = parse(specifier.as_str(), source_code, &media_type)?;
let dependency_descriptors = module.analyze_dependencies();
// for each import check if there's relevant @deno-types directive
let imports = dependency_descriptors
.iter()
.filter(|desc| desc.kind != dep_graph::DependencyKind::Require)
.filter(|desc| {
if analyze_dynamic_imports {
return true;
}
!desc.is_dynamic
})
.map(|desc| {
let deno_types = get_deno_types(&desc.leading_comments);
ImportDesc {
specifier: desc.specifier.to_string(),
deno_types,
location: Location {
filename: file_name.to_string(),
col: desc.col,
line: desc.line,
},
}
})
.collect();
// analyze comment from beginning of the file and find TS directives
let comments = module.get_leading_comments();
let mut references = vec![];
for comment in comments {
if comment.kind != CommentKind::Line {
continue;
}
let text = comment.text.to_string();
if let Some((kind, specifier)) = parse_ts_reference(text.trim()) {
let location = module.get_location(&comment.span);
references.push(TsReferenceDesc {
kind,
specifier,
location,
});
}
}
Ok((imports, references))
}
fn get_deno_types(comments: &[Comment]) -> Option<String> {
if comments.is_empty() {
return None;
}
// @deno-types must directly prepend import statement - hence
// checking last comment for span
let last = comments.last().unwrap();
let comment = last.text.trim_start();
parse_deno_types(&comment)
}
fn parse_ts_reference(comment: &str) -> Option<(TsReferenceKind, String)> {
if !TRIPLE_SLASH_REFERENCE_RE.is_match(comment) {
return None;
}
let (kind, specifier) =
if let Some(capture_groups) = PATH_REFERENCE_RE.captures(comment) {
(TsReferenceKind::Path, capture_groups.get(1).unwrap())
} else if let Some(capture_groups) = TYPES_REFERENCE_RE.captures(comment) {
(TsReferenceKind::Types, capture_groups.get(1).unwrap())
} else if let Some(capture_groups) = LIB_REFERENCE_RE.captures(comment) {
(TsReferenceKind::Lib, capture_groups.get(1).unwrap())
} else {
return None;
};
Some((kind, specifier.as_str().to_string()))
}
fn parse_deno_types(comment: &str) -> Option<String> {
if let Some(capture_groups) = DENO_TYPES_RE.captures(comment) {
if let Some(specifier) = capture_groups.get(1) {
return Some(specifier.as_str().to_string());
}
if let Some(specifier) = capture_groups.get(2) {
return Some(specifier.as_str().to_string());
}
}
None
}
2020-09-15 10:33:14 -04:00
// Warning! The values in this enum are duplicated in js/compiler.ts
// Update carefully!
#[repr(i32)]
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum CompilerRequestType {
RuntimeCompile = 2,
RuntimeBundle = 3,
}
impl Serialize for CompilerRequestType {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let value: i32 = match self {
CompilerRequestType::RuntimeCompile => 2 as i32,
CompilerRequestType::RuntimeBundle => 3 as i32,
};
Serialize::serialize(&value, serializer)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::fs as deno_fs;
use tempfile::TempDir;
#[test]
fn test_parse_deno_types() {
assert_eq!(
parse_deno_types("@deno-types=./a/b/c.d.ts"),
Some("./a/b/c.d.ts".to_string())
);
assert_eq!(
parse_deno_types("@deno-types=\"./a/b/c.d.ts\""),
Some("./a/b/c.d.ts".to_string())
);
assert_eq!(
parse_deno_types("@deno-types = https://dneo.land/x/some/package/a.d.ts"),
Some("https://dneo.land/x/some/package/a.d.ts".to_string())
);
assert_eq!(
parse_deno_types("@deno-types = ./a/b/c.d.ts"),
Some("./a/b/c.d.ts".to_string())
);
assert!(parse_deno_types("asdf").is_none());
assert!(parse_deno_types("// deno-types = fooo").is_none());
assert_eq!(
parse_deno_types("@deno-types=./a/b/c.d.ts some comment"),
Some("./a/b/c.d.ts".to_string())
);
assert_eq!(
parse_deno_types(
"@deno-types=./a/b/c.d.ts // some comment after slashes"
),
Some("./a/b/c.d.ts".to_string())
);
assert_eq!(
parse_deno_types(r#"@deno-types="https://deno.land/x/foo/index.d.ts";"#),
Some("https://deno.land/x/foo/index.d.ts".to_string())
);
}
#[test]
fn test_parse_ts_reference() {
assert_eq!(
parse_ts_reference(r#"/ <reference lib="deno.shared_globals" />"#),
Some((TsReferenceKind::Lib, "deno.shared_globals".to_string()))
);
assert_eq!(
parse_ts_reference(r#"/ <reference path="./type/reference/dep.ts" />"#),
Some((TsReferenceKind::Path, "./type/reference/dep.ts".to_string()))
);
assert_eq!(
parse_ts_reference(r#"/ <reference types="./type/reference.d.ts" />"#),
Some((TsReferenceKind::Types, "./type/reference.d.ts".to_string()))
);
assert!(parse_ts_reference("asdf").is_none());
assert!(
parse_ts_reference(r#"/ <reference unknown="unknown" />"#).is_none()
);
assert!(parse_ts_reference(r#"/ <asset path="./styles.css" />"#).is_none());
}
#[test]
fn test_source_code_version_hash() {
assert_eq!(
"0185b42de0686b4c93c314daaa8dee159f768a9e9a336c2a5e3d5b8ca6c4208c",
source_code_version_hash(b"1+2", "0.4.0", b"{}")
);
// Different source_code should result in different hash.
assert_eq!(
"e58631f1b6b6ce2b300b133ec2ad16a8a5ba6b7ecf812a8c06e59056638571ac",
source_code_version_hash(b"1", "0.4.0", b"{}")
);
// Different version should result in different hash.
assert_eq!(
"307e6200347a88dbbada453102deb91c12939c65494e987d2d8978f6609b5633",
source_code_version_hash(b"1", "0.1.0", b"{}")
);
// Different config should result in different hash.
assert_eq!(
"195eaf104a591d1d7f69fc169c60a41959c2b7a21373cd23a8f675f877ec385f",
source_code_version_hash(b"1", "0.4.0", b"{\"compilerOptions\": {}}")
);
}
#[test]
fn test_compile_js() {
let temp_dir = TempDir::new().expect("tempdir fail");
let temp_dir_path = temp_dir.path();
let test_cases = vec![
// valid JSON
2019-12-23 09:59:44 -05:00
(r#"{ "compilerOptions": { "checkJs": true } } "#, true),
// JSON with comment
(
r#"{
"compilerOptions": {
// force .js file compilation by Deno
"checkJs": true
}
}"#,
true,
),
// without content
2019-12-23 09:59:44 -05:00
("", false),
];
let path = temp_dir_path.join("tsconfig.json");
let path_str = path.to_str().unwrap().to_string();
for (json_str, expected) in test_cases {
deno_fs::write_file(&path, json_str.as_bytes(), 0o666).unwrap();
let config = CompilerConfig::load(Some(path_str.clone())).unwrap();
assert_eq!(config.compile_js, expected);
}
}
2019-09-20 10:19:51 -04:00
#[test]
fn test_compiler_config_load() {
let temp_dir = TempDir::new().expect("tempdir fail");
let temp_dir_path = temp_dir.path();
let path = temp_dir_path.join("doesnotexist.json");
let path_str = path.to_str().unwrap().to_string();
2019-12-23 09:59:44 -05:00
let res = CompilerConfig::load(Some(path_str));
2019-09-20 10:19:51 -04:00
assert!(res.is_err());
}
}