1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-14 10:01:51 -05:00
denoland-deno/ext/node/ops/crypto/keys.rs

2114 lines
65 KiB
Rust
Raw Normal View History

// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
use std::borrow::Cow;
use std::cell::RefCell;
use base64::Engine;
use deno_core::error::generic_error;
use deno_core::error::type_error;
use deno_core::error::AnyError;
use deno_core::op2;
use deno_core::serde_v8::BigInt as V8BigInt;
use deno_core::unsync::spawn_blocking;
use deno_core::GarbageCollected;
use deno_core::ToJsBuffer;
use ed25519_dalek::pkcs8::BitStringRef;
use elliptic_curve::JwkEcKey;
use num_bigint::BigInt;
use num_traits::FromPrimitive as _;
use pkcs8::DecodePrivateKey as _;
use pkcs8::Document;
use pkcs8::EncodePrivateKey as _;
use pkcs8::EncryptedPrivateKeyInfo;
use pkcs8::PrivateKeyInfo;
use pkcs8::SecretDocument;
use rand::thread_rng;
use rand::RngCore as _;
use rsa::pkcs1::DecodeRsaPrivateKey as _;
use rsa::pkcs1::DecodeRsaPublicKey;
use rsa::pkcs1::EncodeRsaPrivateKey as _;
use rsa::pkcs1::EncodeRsaPublicKey;
use rsa::traits::PublicKeyParts;
use rsa::RsaPrivateKey;
use rsa::RsaPublicKey;
use sec1::der::Tag;
use sec1::der::Writer as _;
use sec1::pem::PemLabel as _;
use sec1::DecodeEcPrivateKey as _;
use sec1::LineEnding;
use spki::der::asn1;
use spki::der::asn1::OctetStringRef;
use spki::der::AnyRef;
use spki::der::Decode as _;
use spki::der::Encode as _;
use spki::der::PemWriter;
use spki::der::Reader as _;
use spki::DecodePublicKey as _;
use spki::EncodePublicKey as _;
use spki::SubjectPublicKeyInfoRef;
use x509_parser::x509;
use super::dh;
use super::dh::DiffieHellmanGroup;
use super::digest::match_fixed_digest_with_oid;
use super::pkcs3;
use super::pkcs3::DhParameter;
use super::primes::Prime;
#[derive(Clone)]
pub enum KeyObjectHandle {
AsymmetricPrivate(AsymmetricPrivateKey),
AsymmetricPublic(AsymmetricPublicKey),
Secret(Box<[u8]>),
}
impl GarbageCollected for KeyObjectHandle {}
#[derive(Clone)]
pub enum AsymmetricPrivateKey {
Rsa(RsaPrivateKey),
RsaPss(RsaPssPrivateKey),
Dsa(dsa::SigningKey),
Ec(EcPrivateKey),
X25519(x25519_dalek::StaticSecret),
Ed25519(ed25519_dalek::SigningKey),
Dh(DhPrivateKey),
}
#[derive(Clone)]
pub struct RsaPssPrivateKey {
pub key: RsaPrivateKey,
pub details: Option<RsaPssDetails>,
}
#[derive(Clone, Copy)]
pub struct RsaPssDetails {
pub hash_algorithm: RsaPssHashAlgorithm,
pub mf1_hash_algorithm: RsaPssHashAlgorithm,
pub salt_length: u32,
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum RsaPssHashAlgorithm {
Sha1,
Sha224,
Sha256,
Sha384,
Sha512,
Sha512_224,
Sha512_256,
}
impl RsaPssHashAlgorithm {
pub fn as_str(&self) -> &'static str {
match self {
RsaPssHashAlgorithm::Sha1 => "sha1",
RsaPssHashAlgorithm::Sha224 => "sha224",
RsaPssHashAlgorithm::Sha256 => "sha256",
RsaPssHashAlgorithm::Sha384 => "sha384",
RsaPssHashAlgorithm::Sha512 => "sha512",
RsaPssHashAlgorithm::Sha512_224 => "sha512-224",
RsaPssHashAlgorithm::Sha512_256 => "sha512-256",
}
}
pub fn salt_length(&self) -> u32 {
match self {
RsaPssHashAlgorithm::Sha1 => 20,
RsaPssHashAlgorithm::Sha224 | RsaPssHashAlgorithm::Sha512_224 => 28,
RsaPssHashAlgorithm::Sha256 | RsaPssHashAlgorithm::Sha512_256 => 32,
RsaPssHashAlgorithm::Sha384 => 48,
RsaPssHashAlgorithm::Sha512 => 64,
}
}
}
#[derive(Clone)]
pub enum EcPrivateKey {
P224(p224::SecretKey),
P256(p256::SecretKey),
P384(p384::SecretKey),
}
#[derive(Clone)]
pub struct DhPrivateKey {
pub key: dh::PrivateKey,
pub params: DhParameter,
}
#[derive(Clone)]
pub enum AsymmetricPublicKey {
Rsa(rsa::RsaPublicKey),
RsaPss(RsaPssPublicKey),
Dsa(dsa::VerifyingKey),
Ec(EcPublicKey),
X25519(x25519_dalek::PublicKey),
Ed25519(ed25519_dalek::VerifyingKey),
Dh(DhPublicKey),
}
#[derive(Clone)]
pub struct RsaPssPublicKey {
pub key: rsa::RsaPublicKey,
pub details: Option<RsaPssDetails>,
}
#[derive(Clone)]
pub enum EcPublicKey {
P224(p224::PublicKey),
P256(p256::PublicKey),
P384(p384::PublicKey),
}
#[derive(Clone)]
pub struct DhPublicKey {
pub key: dh::PublicKey,
pub params: DhParameter,
}
impl KeyObjectHandle {
/// Returns the private key if the handle is an asymmetric private key.
pub fn as_private_key(&self) -> Option<&AsymmetricPrivateKey> {
match self {
KeyObjectHandle::AsymmetricPrivate(key) => Some(key),
_ => None,
}
}
/// Returns the public key if the handle is an asymmetric public key. If it is
/// a private key, it derives the public key from it and returns that.
pub fn as_public_key(&self) -> Option<Cow<'_, AsymmetricPublicKey>> {
match self {
KeyObjectHandle::AsymmetricPrivate(key) => {
Some(Cow::Owned(key.to_public_key()))
}
KeyObjectHandle::AsymmetricPublic(key) => Some(Cow::Borrowed(key)),
_ => None,
}
}
/// Returns the secret key if the handle is a secret key.
pub fn as_secret_key(&self) -> Option<&[u8]> {
match self {
KeyObjectHandle::Secret(key) => Some(key),
_ => None,
}
}
}
impl AsymmetricPrivateKey {
/// Derives the public key from the private key.
pub fn to_public_key(&self) -> AsymmetricPublicKey {
match self {
AsymmetricPrivateKey::Rsa(key) => {
AsymmetricPublicKey::Rsa(key.to_public_key())
}
AsymmetricPrivateKey::RsaPss(key) => {
AsymmetricPublicKey::RsaPss(key.to_public_key())
}
AsymmetricPrivateKey::Dsa(key) => {
AsymmetricPublicKey::Dsa(key.verifying_key().clone())
}
AsymmetricPrivateKey::Ec(key) => {
AsymmetricPublicKey::Ec(key.to_public_key())
}
AsymmetricPrivateKey::X25519(key) => {
AsymmetricPublicKey::X25519(x25519_dalek::PublicKey::from(key))
}
AsymmetricPrivateKey::Ed25519(key) => {
AsymmetricPublicKey::Ed25519(key.verifying_key())
}
AsymmetricPrivateKey::Dh(_) => {
panic!("cannot derive public key from DH private key")
}
}
}
}
impl RsaPssPrivateKey {
/// Derives the public key from the private key.
pub fn to_public_key(&self) -> RsaPssPublicKey {
RsaPssPublicKey {
key: self.key.to_public_key(),
details: self.details,
}
}
}
impl EcPublicKey {
pub fn to_jwk(&self) -> Result<elliptic_curve::JwkEcKey, AnyError> {
match self {
EcPublicKey::P224(_) => Err(type_error("Unsupported JWK EC curve: P224")),
EcPublicKey::P256(key) => Ok(key.to_jwk()),
EcPublicKey::P384(key) => Ok(key.to_jwk()),
}
}
}
impl EcPrivateKey {
/// Derives the public key from the private key.
pub fn to_public_key(&self) -> EcPublicKey {
match self {
EcPrivateKey::P224(key) => EcPublicKey::P224(key.public_key()),
EcPrivateKey::P256(key) => EcPublicKey::P256(key.public_key()),
EcPrivateKey::P384(key) => EcPublicKey::P384(key.public_key()),
}
}
}
// https://oidref.com/
const ID_SHA1_OID: rsa::pkcs8::ObjectIdentifier =
rsa::pkcs8::ObjectIdentifier::new_unwrap("1.3.14.3.2.26");
const ID_SHA224_OID: rsa::pkcs8::ObjectIdentifier =
rsa::pkcs8::ObjectIdentifier::new_unwrap("2.16.840.1.101.3.4.2.4");
const ID_SHA256_OID: rsa::pkcs8::ObjectIdentifier =
rsa::pkcs8::ObjectIdentifier::new_unwrap("2.16.840.1.101.3.4.2.1");
const ID_SHA384_OID: rsa::pkcs8::ObjectIdentifier =
rsa::pkcs8::ObjectIdentifier::new_unwrap("2.16.840.1.101.3.4.2.2");
const ID_SHA512_OID: rsa::pkcs8::ObjectIdentifier =
rsa::pkcs8::ObjectIdentifier::new_unwrap("2.16.840.1.101.3.4.2.3");
const ID_SHA512_224_OID: rsa::pkcs8::ObjectIdentifier =
rsa::pkcs8::ObjectIdentifier::new_unwrap("2.16.840.1.101.3.4.2.5");
const ID_SHA512_256_OID: rsa::pkcs8::ObjectIdentifier =
rsa::pkcs8::ObjectIdentifier::new_unwrap("2.16.840.1.101.3.4.2.6");
const ID_MFG1: rsa::pkcs8::ObjectIdentifier =
rsa::pkcs8::ObjectIdentifier::new_unwrap("1.2.840.113549.1.1.8");
pub const ID_SECP224R1_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.3.132.0.33");
pub const ID_SECP256R1_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.2.840.10045.3.1.7");
pub const ID_SECP384R1_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.3.132.0.34");
pub const RSA_ENCRYPTION_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.2.840.113549.1.1.1");
pub const RSASSA_PSS_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.2.840.113549.1.1.10");
pub const DSA_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.2.840.10040.4.1");
pub const EC_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.2.840.10045.2.1");
pub const X25519_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.3.101.110");
pub const ED25519_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.3.101.112");
pub const DH_KEY_AGREEMENT_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.2.840.113549.1.3.1");
// The parameters field associated with OID id-RSASSA-PSS
// Defined in RFC 3447, section A.2.3
//
// RSASSA-PSS-params ::= SEQUENCE {
// hashAlgorithm [0] HashAlgorithm DEFAULT sha1,
// maskGenAlgorithm [1] MaskGenAlgorithm DEFAULT mgf1SHA1,
// saltLength [2] INTEGER DEFAULT 20,
// trailerField [3] TrailerField DEFAULT trailerFieldBC
// }
pub struct RsaPssParameters<'a> {
pub hash_algorithm: Option<rsa::pkcs8::AlgorithmIdentifierRef<'a>>,
pub mask_gen_algorithm: Option<rsa::pkcs8::AlgorithmIdentifierRef<'a>>,
pub salt_length: Option<u32>,
}
// Context-specific tag number for hashAlgorithm.
const HASH_ALGORITHM_TAG: rsa::pkcs8::der::TagNumber =
rsa::pkcs8::der::TagNumber::new(0);
// Context-specific tag number for maskGenAlgorithm.
const MASK_GEN_ALGORITHM_TAG: rsa::pkcs8::der::TagNumber =
rsa::pkcs8::der::TagNumber::new(1);
// Context-specific tag number for saltLength.
const SALT_LENGTH_TAG: rsa::pkcs8::der::TagNumber =
rsa::pkcs8::der::TagNumber::new(2);
impl<'a> TryFrom<rsa::pkcs8::der::asn1::AnyRef<'a>> for RsaPssParameters<'a> {
type Error = rsa::pkcs8::der::Error;
fn try_from(
any: rsa::pkcs8::der::asn1::AnyRef<'a>,
) -> rsa::pkcs8::der::Result<RsaPssParameters> {
any.sequence(|decoder| {
let hash_algorithm = decoder
.context_specific::<rsa::pkcs8::AlgorithmIdentifierRef>(
HASH_ALGORITHM_TAG,
pkcs8::der::TagMode::Explicit,
)?
.map(TryInto::try_into)
.transpose()?;
let mask_gen_algorithm = decoder
.context_specific::<rsa::pkcs8::AlgorithmIdentifierRef>(
MASK_GEN_ALGORITHM_TAG,
pkcs8::der::TagMode::Explicit,
)?
.map(TryInto::try_into)
.transpose()?;
let salt_length = decoder
.context_specific::<u32>(
SALT_LENGTH_TAG,
pkcs8::der::TagMode::Explicit,
)?
.map(TryInto::try_into)
.transpose()?;
Ok(Self {
hash_algorithm,
mask_gen_algorithm,
salt_length,
})
})
}
}
impl KeyObjectHandle {
pub fn new_asymmetric_private_key_from_js(
key: &[u8],
format: &str,
typ: &str,
passphrase: Option<&[u8]>,
) -> Result<KeyObjectHandle, AnyError> {
let document = match format {
"pem" => {
let pem = std::str::from_utf8(key).map_err(|err| {
type_error(format!(
"invalid PEM private key: not valid utf8 starting at byte {}",
err.valid_up_to()
))
})?;
if let Some(passphrase) = passphrase {
SecretDocument::from_pkcs8_encrypted_pem(pem, passphrase)
.map_err(|_| type_error("invalid encrypted PEM private key"))?
} else {
let (label, doc) = SecretDocument::from_pem(pem)
.map_err(|_| type_error("invalid PEM private key"))?;
match label {
EncryptedPrivateKeyInfo::PEM_LABEL => {
return Err(type_error(
"encrypted private key requires a passphrase to decrypt",
))
}
PrivateKeyInfo::PEM_LABEL => doc,
rsa::pkcs1::RsaPrivateKey::PEM_LABEL => {
SecretDocument::from_pkcs1_der(doc.as_bytes())
.map_err(|_| type_error("invalid PKCS#1 private key"))?
}
sec1::EcPrivateKey::PEM_LABEL => {
SecretDocument::from_sec1_der(doc.as_bytes())
.map_err(|_| type_error("invalid SEC1 private key"))?
}
_ => {
return Err(type_error(format!(
"unsupported PEM label: {}",
label
)))
}
}
}
}
"der" => match typ {
"pkcs8" => {
if let Some(passphrase) = passphrase {
SecretDocument::from_pkcs8_encrypted_der(key, passphrase)
.map_err(|_| type_error("invalid encrypted PKCS#8 private key"))?
} else {
SecretDocument::from_pkcs8_der(key)
.map_err(|_| type_error("invalid PKCS#8 private key"))?
}
}
"pkcs1" => {
if passphrase.is_some() {
return Err(type_error(
"PKCS#1 private key does not support encryption with passphrase",
));
}
SecretDocument::from_pkcs1_der(key)
.map_err(|_| type_error("invalid PKCS#1 private key"))?
}
"sec1" => {
if passphrase.is_some() {
return Err(type_error(
"SEC1 private key does not support encryption with passphrase",
));
}
SecretDocument::from_sec1_der(key)
.map_err(|_| type_error("invalid SEC1 private key"))?
}
_ => return Err(type_error(format!("unsupported key type: {}", typ))),
},
_ => {
return Err(type_error(format!("unsupported key format: {}", format)))
}
};
let pk_info = PrivateKeyInfo::try_from(document.as_bytes())
.map_err(|_| type_error("invalid private key"))?;
let alg = pk_info.algorithm.oid;
let private_key = match alg {
RSA_ENCRYPTION_OID => {
let private_key =
rsa::RsaPrivateKey::from_pkcs1_der(pk_info.private_key)
.map_err(|_| type_error("invalid PKCS#1 private key"))?;
AsymmetricPrivateKey::Rsa(private_key)
}
RSASSA_PSS_OID => {
let details = parse_rsa_pss_params(pk_info.algorithm.parameters)?;
let private_key =
rsa::RsaPrivateKey::from_pkcs1_der(pk_info.private_key)
.map_err(|_| type_error("invalid PKCS#1 private key"))?;
AsymmetricPrivateKey::RsaPss(RsaPssPrivateKey {
key: private_key,
details,
})
}
DSA_OID => {
let private_key = dsa::SigningKey::try_from(pk_info)
.map_err(|_| type_error("invalid DSA private key"))?;
AsymmetricPrivateKey::Dsa(private_key)
}
EC_OID => {
let named_curve = pk_info.algorithm.parameters_oid().map_err(|_| {
type_error("malformed or missing named curve in ec parameters")
})?;
match named_curve {
ID_SECP224R1_OID => {
let secret_key =
p224::SecretKey::from_sec1_der(pk_info.private_key)
.map_err(|_| type_error("invalid SEC1 private key"))?;
AsymmetricPrivateKey::Ec(EcPrivateKey::P224(secret_key))
}
ID_SECP256R1_OID => {
let secret_key =
p256::SecretKey::from_sec1_der(pk_info.private_key)
.map_err(|_| type_error("invalid SEC1 private key"))?;
AsymmetricPrivateKey::Ec(EcPrivateKey::P256(secret_key))
}
ID_SECP384R1_OID => {
let secret_key =
p384::SecretKey::from_sec1_der(pk_info.private_key)
.map_err(|_| type_error("invalid SEC1 private key"))?;
AsymmetricPrivateKey::Ec(EcPrivateKey::P384(secret_key))
}
_ => return Err(type_error("unsupported ec named curve")),
}
}
X25519_OID => {
let string_ref = OctetStringRef::from_der(pk_info.private_key)
.map_err(|_| type_error("invalid x25519 private key"))?;
if string_ref.as_bytes().len() != 32 {
return Err(type_error("x25519 private key is the wrong length"));
}
let mut bytes = [0; 32];
bytes.copy_from_slice(string_ref.as_bytes());
AsymmetricPrivateKey::X25519(x25519_dalek::StaticSecret::from(bytes))
}
ED25519_OID => {
let signing_key = ed25519_dalek::SigningKey::try_from(pk_info)
.map_err(|_| type_error("invalid Ed25519 private key"))?;
AsymmetricPrivateKey::Ed25519(signing_key)
}
DH_KEY_AGREEMENT_OID => {
let params = pk_info
.algorithm
.parameters
.ok_or_else(|| type_error("missing dh parameters"))?;
let params = pkcs3::DhParameter::from_der(&params.to_der().unwrap())
.map_err(|_| type_error("malformed dh parameters"))?;
AsymmetricPrivateKey::Dh(DhPrivateKey {
key: dh::PrivateKey::from_bytes(pk_info.private_key),
params,
})
}
_ => return Err(type_error("unsupported private key oid")),
};
Ok(KeyObjectHandle::AsymmetricPrivate(private_key))
}
pub fn new_x509_public_key(
spki: &x509::SubjectPublicKeyInfo,
) -> Result<KeyObjectHandle, AnyError> {
use x509_parser::der_parser::asn1_rs::oid;
use x509_parser::public_key::PublicKey;
let key = match spki.parsed()? {
PublicKey::RSA(key) => {
let public_key = RsaPublicKey::new(
rsa::BigUint::from_bytes_be(key.modulus),
rsa::BigUint::from_bytes_be(key.exponent),
)?;
AsymmetricPublicKey::Rsa(public_key)
}
PublicKey::EC(point) => {
let data = point.data();
if let Some(params) = &spki.algorithm.parameters {
let curve_oid = params.as_oid()?;
const ID_SECP224R1: &[u8] = &oid!(raw 1.3.132.0.33);
const ID_SECP256R1: &[u8] = &oid!(raw 1.2.840.10045.3.1.7);
const ID_SECP384R1: &[u8] = &oid!(raw 1.3.132.0.34);
match curve_oid.as_bytes() {
ID_SECP224R1 => {
let public_key = p224::PublicKey::from_sec1_bytes(data)?;
AsymmetricPublicKey::Ec(EcPublicKey::P224(public_key))
}
ID_SECP256R1 => {
let public_key = p256::PublicKey::from_sec1_bytes(data)?;
AsymmetricPublicKey::Ec(EcPublicKey::P256(public_key))
}
ID_SECP384R1 => {
let public_key = p384::PublicKey::from_sec1_bytes(data)?;
AsymmetricPublicKey::Ec(EcPublicKey::P384(public_key))
}
_ => return Err(type_error("unsupported ec named curve")),
}
} else {
return Err(type_error("missing ec parameters"));
}
}
PublicKey::DSA(_) => {
let verifying_key = dsa::VerifyingKey::from_public_key_der(spki.raw)
.map_err(|_| type_error("malformed DSS public key"))?;
AsymmetricPublicKey::Dsa(verifying_key)
}
_ => return Err(type_error("unsupported x509 public key type")),
};
Ok(KeyObjectHandle::AsymmetricPublic(key))
}
pub fn new_rsa_jwk(
jwk: RsaJwkKey,
is_public: bool,
) -> Result<KeyObjectHandle, AnyError> {
use base64::prelude::BASE64_URL_SAFE_NO_PAD;
let n = BASE64_URL_SAFE_NO_PAD.decode(jwk.n.as_bytes())?;
let e = BASE64_URL_SAFE_NO_PAD.decode(jwk.e.as_bytes())?;
if is_public {
let public_key = RsaPublicKey::new(
rsa::BigUint::from_bytes_be(&n),
rsa::BigUint::from_bytes_be(&e),
)?;
Ok(KeyObjectHandle::AsymmetricPublic(AsymmetricPublicKey::Rsa(
public_key,
)))
} else {
let d = BASE64_URL_SAFE_NO_PAD.decode(
jwk
.d
.ok_or_else(|| type_error("missing RSA private component"))?
.as_bytes(),
)?;
let p = BASE64_URL_SAFE_NO_PAD.decode(
jwk
.p
.ok_or_else(|| type_error("missing RSA private component"))?
.as_bytes(),
)?;
let q = BASE64_URL_SAFE_NO_PAD.decode(
jwk
.q
.ok_or_else(|| type_error("missing RSA private component"))?
.as_bytes(),
)?;
let mut private_key = RsaPrivateKey::from_components(
rsa::BigUint::from_bytes_be(&n),
rsa::BigUint::from_bytes_be(&e),
rsa::BigUint::from_bytes_be(&d),
vec![
rsa::BigUint::from_bytes_be(&p),
rsa::BigUint::from_bytes_be(&q),
],
)?;
private_key.precompute()?; // precompute CRT params
Ok(KeyObjectHandle::AsymmetricPrivate(
AsymmetricPrivateKey::Rsa(private_key),
))
}
}
pub fn new_ec_jwk(
jwk: &JwkEcKey,
is_public: bool,
) -> Result<KeyObjectHandle, AnyError> {
// https://datatracker.ietf.org/doc/html/rfc7518#section-6.2.1.1
let handle = match jwk.crv() {
"P-256" if is_public => {
KeyObjectHandle::AsymmetricPublic(AsymmetricPublicKey::Ec(
EcPublicKey::P256(p256::PublicKey::from_jwk(jwk)?),
))
}
"P-256" => KeyObjectHandle::AsymmetricPrivate(AsymmetricPrivateKey::Ec(
EcPrivateKey::P256(p256::SecretKey::from_jwk(jwk)?),
)),
"P-384" if is_public => {
KeyObjectHandle::AsymmetricPublic(AsymmetricPublicKey::Ec(
EcPublicKey::P384(p384::PublicKey::from_jwk(jwk)?),
))
}
"P-384" => KeyObjectHandle::AsymmetricPrivate(AsymmetricPrivateKey::Ec(
EcPrivateKey::P384(p384::SecretKey::from_jwk(jwk)?),
)),
_ => {
return Err(type_error(format!("unsupported curve: {}", jwk.crv())));
}
};
Ok(handle)
}
pub fn new_ed_raw(
curve: &str,
data: &[u8],
is_public: bool,
) -> Result<KeyObjectHandle, AnyError> {
match curve {
"Ed25519" => {
let data = data
.try_into()
.map_err(|_| type_error("invalid Ed25519 key"))?;
if !is_public {
Ok(KeyObjectHandle::AsymmetricPrivate(
AsymmetricPrivateKey::Ed25519(
ed25519_dalek::SigningKey::from_bytes(data),
),
))
} else {
Ok(KeyObjectHandle::AsymmetricPublic(
AsymmetricPublicKey::Ed25519(
ed25519_dalek::VerifyingKey::from_bytes(data)?,
),
))
}
}
"X25519" => {
let data: [u8; 32] = data
.try_into()
.map_err(|_| type_error("invalid x25519 key"))?;
if !is_public {
Ok(KeyObjectHandle::AsymmetricPrivate(
AsymmetricPrivateKey::X25519(x25519_dalek::StaticSecret::from(
data,
)),
))
} else {
Ok(KeyObjectHandle::AsymmetricPublic(
AsymmetricPublicKey::X25519(x25519_dalek::PublicKey::from(data)),
))
}
}
_ => Err(type_error("unsupported curve")),
}
}
pub fn new_asymmetric_public_key_from_js(
key: &[u8],
format: &str,
typ: &str,
passphrase: Option<&[u8]>,
) -> Result<KeyObjectHandle, AnyError> {
let document = match format {
"pem" => {
let pem = std::str::from_utf8(key).map_err(|err| {
type_error(format!(
"invalid PEM public key: not valid utf8 starting at byte {}",
err.valid_up_to()
))
})?;
let (label, document) = Document::from_pem(pem)
.map_err(|_| type_error("invalid PEM public key"))?;
match label {
SubjectPublicKeyInfoRef::PEM_LABEL => document,
rsa::pkcs1::RsaPublicKey::PEM_LABEL => {
Document::from_pkcs1_der(document.as_bytes())
.map_err(|_| type_error("invalid PKCS#1 public key"))?
}
EncryptedPrivateKeyInfo::PEM_LABEL
| PrivateKeyInfo::PEM_LABEL
| sec1::EcPrivateKey::PEM_LABEL
| rsa::pkcs1::RsaPrivateKey::PEM_LABEL => {
let handle = KeyObjectHandle::new_asymmetric_private_key_from_js(
key, format, typ, passphrase,
)?;
match handle {
KeyObjectHandle::AsymmetricPrivate(private) => {
return Ok(KeyObjectHandle::AsymmetricPublic(
private.to_public_key(),
))
}
KeyObjectHandle::AsymmetricPublic(_)
| KeyObjectHandle::Secret(_) => unreachable!(),
}
}
"CERTIFICATE" => {
let (_, pem) = x509_parser::pem::parse_x509_pem(pem.as_bytes())
.map_err(|_| type_error("invalid x509 certificate"))?;
let cert = pem.parse_x509()?;
let public_key = cert.tbs_certificate.subject_pki;
return KeyObjectHandle::new_x509_public_key(&public_key);
}
_ => {
return Err(type_error(format!("unsupported PEM label: {}", label)))
}
}
}
"der" => match typ {
"pkcs1" => Document::from_pkcs1_der(key)
.map_err(|_| type_error("invalid PKCS#1 public key"))?,
"spki" => Document::from_public_key_der(key)
.map_err(|_| type_error("invalid SPKI public key"))?,
_ => return Err(type_error(format!("unsupported key type: {}", typ))),
},
_ => {
return Err(type_error(format!("unsupported key format: {}", format)))
}
};
let spki = SubjectPublicKeyInfoRef::try_from(document.as_bytes())?;
let public_key = match spki.algorithm.oid {
RSA_ENCRYPTION_OID => {
let public_key = RsaPublicKey::from_pkcs1_der(
spki.subject_public_key.as_bytes().unwrap(),
)?;
AsymmetricPublicKey::Rsa(public_key)
}
RSASSA_PSS_OID => {
let details = parse_rsa_pss_params(spki.algorithm.parameters)?;
let public_key = RsaPublicKey::from_pkcs1_der(
spki.subject_public_key.as_bytes().unwrap(),
)?;
AsymmetricPublicKey::RsaPss(RsaPssPublicKey {
key: public_key,
details,
})
}
DSA_OID => {
let verifying_key = dsa::VerifyingKey::try_from(spki)
.map_err(|_| type_error("malformed DSS public key"))?;
AsymmetricPublicKey::Dsa(verifying_key)
}
EC_OID => {
let named_curve = spki.algorithm.parameters_oid().map_err(|_| {
type_error("malformed or missing named curve in ec parameters")
})?;
let data = spki.subject_public_key.as_bytes().ok_or_else(|| {
type_error("malformed or missing public key in ec spki")
})?;
match named_curve {
ID_SECP224R1_OID => {
let public_key = p224::PublicKey::from_sec1_bytes(data)?;
AsymmetricPublicKey::Ec(EcPublicKey::P224(public_key))
}
ID_SECP256R1_OID => {
let public_key = p256::PublicKey::from_sec1_bytes(data)?;
AsymmetricPublicKey::Ec(EcPublicKey::P256(public_key))
}
ID_SECP384R1_OID => {
let public_key = p384::PublicKey::from_sec1_bytes(data)?;
AsymmetricPublicKey::Ec(EcPublicKey::P384(public_key))
}
_ => return Err(type_error("unsupported ec named curve")),
}
}
X25519_OID => {
let mut bytes = [0; 32];
let data = spki.subject_public_key.as_bytes().ok_or_else(|| {
type_error("malformed or missing public key in x25519 spki")
})?;
if data.len() < 32 {
return Err(type_error("x25519 public key is too short"));
}
bytes.copy_from_slice(&data[0..32]);
AsymmetricPublicKey::X25519(x25519_dalek::PublicKey::from(bytes))
}
ED25519_OID => {
let verifying_key = ed25519_dalek::VerifyingKey::try_from(spki)
.map_err(|_| type_error("invalid Ed25519 private key"))?;
AsymmetricPublicKey::Ed25519(verifying_key)
}
DH_KEY_AGREEMENT_OID => {
let params = spki
.algorithm
.parameters
.ok_or_else(|| type_error("missing dh parameters"))?;
let params = pkcs3::DhParameter::from_der(&params.to_der().unwrap())
.map_err(|_| type_error("malformed dh parameters"))?;
let Some(subject_public_key) = spki.subject_public_key.as_bytes()
else {
return Err(type_error("malformed or missing public key in dh spki"));
};
AsymmetricPublicKey::Dh(DhPublicKey {
key: dh::PublicKey::from_bytes(subject_public_key),
params,
})
}
_ => return Err(type_error("unsupported public key oid")),
};
Ok(KeyObjectHandle::AsymmetricPublic(public_key))
}
}
fn parse_rsa_pss_params(
parameters: Option<AnyRef<'_>>,
) -> Result<Option<RsaPssDetails>, deno_core::anyhow::Error> {
let details = if let Some(parameters) = parameters {
let params = RsaPssParameters::try_from(parameters)
.map_err(|_| type_error("malformed pss private key parameters"))?;
let hash_algorithm = match params.hash_algorithm.map(|k| k.oid) {
Some(ID_SHA1_OID) => RsaPssHashAlgorithm::Sha1,
Some(ID_SHA224_OID) => RsaPssHashAlgorithm::Sha224,
Some(ID_SHA256_OID) => RsaPssHashAlgorithm::Sha256,
Some(ID_SHA384_OID) => RsaPssHashAlgorithm::Sha384,
Some(ID_SHA512_OID) => RsaPssHashAlgorithm::Sha512,
Some(ID_SHA512_224_OID) => RsaPssHashAlgorithm::Sha512_224,
Some(ID_SHA512_256_OID) => RsaPssHashAlgorithm::Sha512_256,
None => RsaPssHashAlgorithm::Sha1,
_ => return Err(type_error("unsupported pss hash algorithm")),
};
let mf1_hash_algorithm = match params.mask_gen_algorithm {
Some(alg) => {
if alg.oid != ID_MFG1 {
return Err(type_error("unsupported pss mask gen algorithm"));
}
let params = alg.parameters_oid().map_err(|_| {
type_error("malformed or missing pss mask gen algorithm parameters")
})?;
match params {
ID_SHA1_OID => RsaPssHashAlgorithm::Sha1,
ID_SHA224_OID => RsaPssHashAlgorithm::Sha224,
ID_SHA256_OID => RsaPssHashAlgorithm::Sha256,
ID_SHA384_OID => RsaPssHashAlgorithm::Sha384,
ID_SHA512_OID => RsaPssHashAlgorithm::Sha512,
ID_SHA512_224_OID => RsaPssHashAlgorithm::Sha512_224,
ID_SHA512_256_OID => RsaPssHashAlgorithm::Sha512_256,
_ => return Err(type_error("unsupported pss mask gen algorithm")),
}
}
None => hash_algorithm,
};
let salt_length = params
.salt_length
.unwrap_or_else(|| hash_algorithm.salt_length());
Some(RsaPssDetails {
hash_algorithm,
mf1_hash_algorithm,
salt_length,
})
} else {
None
};
Ok(details)
}
use base64::prelude::BASE64_URL_SAFE_NO_PAD;
fn bytes_to_b64(bytes: &[u8]) -> String {
BASE64_URL_SAFE_NO_PAD.encode(bytes)
}
impl AsymmetricPublicKey {
fn export_jwk(&self) -> Result<deno_core::serde_json::Value, AnyError> {
match self {
AsymmetricPublicKey::Ec(key) => {
let jwk = key.to_jwk()?;
Ok(deno_core::serde_json::json!(jwk))
}
AsymmetricPublicKey::X25519(key) => {
let bytes = key.as_bytes();
let jwk = deno_core::serde_json::json!({
"kty": "OKP",
"crv": "X25519",
"x": bytes_to_b64(bytes),
});
Ok(jwk)
}
AsymmetricPublicKey::Ed25519(key) => {
let bytes = key.to_bytes();
let jwk = deno_core::serde_json::json!({
"kty": "OKP",
"crv": "Ed25519",
"x": bytes_to_b64(&bytes),
});
Ok(jwk)
}
AsymmetricPublicKey::Rsa(key) => {
let n = key.n();
let e = key.e();
let jwk = deno_core::serde_json::json!({
"kty": "RSA",
"n": bytes_to_b64(&n.to_bytes_be()),
"e": bytes_to_b64(&e.to_bytes_be()),
});
Ok(jwk)
}
AsymmetricPublicKey::RsaPss(key) => {
let n = key.key.n();
let e = key.key.e();
let jwk = deno_core::serde_json::json!({
"kty": "RSA",
"n": bytes_to_b64(&n.to_bytes_be()),
"e": bytes_to_b64(&e.to_bytes_be()),
});
Ok(jwk)
}
_ => Err(type_error("jwk export not implemented for this key type")),
}
}
fn export_der(&self, typ: &str) -> Result<Box<[u8]>, AnyError> {
match typ {
"pkcs1" => match self {
AsymmetricPublicKey::Rsa(key) => {
let der = key
.to_pkcs1_der()
.map_err(|_| type_error("invalid RSA public key"))?
.into_vec()
.into_boxed_slice();
Ok(der)
}
_ => Err(type_error(
"exporting non-RSA public key as PKCS#1 is not supported",
)),
},
"spki" => {
let der = match self {
AsymmetricPublicKey::Rsa(key) => key
.to_public_key_der()
.map_err(|_| type_error("invalid RSA public key"))?
.into_vec()
.into_boxed_slice(),
AsymmetricPublicKey::RsaPss(_key) => {
return Err(generic_error(
"exporting RSA-PSS public key as SPKI is not supported yet",
))
}
AsymmetricPublicKey::Dsa(key) => key
.to_public_key_der()
.map_err(|_| type_error("invalid DSA public key"))?
.into_vec()
.into_boxed_slice(),
AsymmetricPublicKey::Ec(key) => {
let (sec1, oid) = match key {
EcPublicKey::P224(key) => (key.to_sec1_bytes(), ID_SECP224R1_OID),
EcPublicKey::P256(key) => (key.to_sec1_bytes(), ID_SECP256R1_OID),
EcPublicKey::P384(key) => (key.to_sec1_bytes(), ID_SECP384R1_OID),
};
let spki = SubjectPublicKeyInfoRef {
algorithm: rsa::pkcs8::AlgorithmIdentifierRef {
oid: EC_OID,
parameters: Some(asn1::AnyRef::from(&oid)),
},
subject_public_key: BitStringRef::from_bytes(&sec1)
.map_err(|_| type_error("invalid EC public key"))?,
};
spki
.to_der()
.map_err(|_| type_error("invalid EC public key"))?
.into_boxed_slice()
}
AsymmetricPublicKey::X25519(key) => {
let spki = SubjectPublicKeyInfoRef {
algorithm: rsa::pkcs8::AlgorithmIdentifierRef {
oid: X25519_OID,
parameters: None,
},
subject_public_key: BitStringRef::from_bytes(key.as_bytes())
.map_err(|_| type_error("invalid X25519 public key"))?,
};
spki
.to_der()
.map_err(|_| type_error("invalid X25519 public key"))?
.into_boxed_slice()
}
AsymmetricPublicKey::Ed25519(key) => {
let spki = SubjectPublicKeyInfoRef {
algorithm: rsa::pkcs8::AlgorithmIdentifierRef {
oid: ED25519_OID,
parameters: None,
},
subject_public_key: BitStringRef::from_bytes(key.as_bytes())
.map_err(|_| type_error("invalid Ed25519 public key"))?,
};
spki
.to_der()
.map_err(|_| type_error("invalid Ed25519 public key"))?
.into_boxed_slice()
}
AsymmetricPublicKey::Dh(key) => {
let public_key_bytes = key.key.clone().into_vec();
let params = key.params.to_der().unwrap();
let spki = SubjectPublicKeyInfoRef {
algorithm: rsa::pkcs8::AlgorithmIdentifierRef {
oid: DH_KEY_AGREEMENT_OID,
parameters: Some(AnyRef::new(Tag::Sequence, &params).unwrap()),
},
subject_public_key: BitStringRef::from_bytes(&public_key_bytes)
.map_err(|_| {
type_error("invalid DH public key")
})?,
};
spki
.to_der()
.map_err(|_| type_error("invalid DH public key"))?
.into_boxed_slice()
}
};
Ok(der)
}
_ => Err(type_error(format!("unsupported key type: {}", typ))),
}
}
}
impl AsymmetricPrivateKey {
fn export_der(
&self,
typ: &str,
// cipher: Option<&str>,
// passphrase: Option<&str>,
) -> Result<Box<[u8]>, AnyError> {
match typ {
"pkcs1" => match self {
AsymmetricPrivateKey::Rsa(key) => {
let der = key
.to_pkcs1_der()
.map_err(|_| type_error("invalid RSA private key"))?
.to_bytes()
.to_vec()
.into_boxed_slice();
Ok(der)
}
_ => Err(type_error(
"exporting non-RSA private key as PKCS#1 is not supported",
)),
},
"sec1" => match self {
AsymmetricPrivateKey::Ec(key) => {
let sec1 = match key {
EcPrivateKey::P224(key) => key.to_sec1_der(),
EcPrivateKey::P256(key) => key.to_sec1_der(),
EcPrivateKey::P384(key) => key.to_sec1_der(),
}
.map_err(|_| type_error("invalid EC private key"))?;
Ok(sec1.to_vec().into_boxed_slice())
}
_ => Err(type_error(
"exporting non-EC private key as SEC1 is not supported",
)),
},
"pkcs8" => {
let der = match self {
AsymmetricPrivateKey::Rsa(key) => {
let document = key
.to_pkcs8_der()
.map_err(|_| type_error("invalid RSA private key"))?;
document.to_bytes().to_vec().into_boxed_slice()
}
AsymmetricPrivateKey::RsaPss(_key) => {
return Err(generic_error(
"exporting RSA-PSS private key as PKCS#8 is not supported yet",
))
}
AsymmetricPrivateKey::Dsa(key) => {
let document = key
.to_pkcs8_der()
.map_err(|_| type_error("invalid DSA private key"))?;
document.to_bytes().to_vec().into_boxed_slice()
}
AsymmetricPrivateKey::Ec(key) => {
let document = match key {
EcPrivateKey::P224(key) => key.to_pkcs8_der(),
EcPrivateKey::P256(key) => key.to_pkcs8_der(),
EcPrivateKey::P384(key) => key.to_pkcs8_der(),
}
.map_err(|_| type_error("invalid EC private key"))?;
document.to_bytes().to_vec().into_boxed_slice()
}
AsymmetricPrivateKey::X25519(key) => {
let private_key = OctetStringRef::new(key.as_bytes())
.map_err(|_| type_error("invalid X25519 private key"))?
.to_der()
.map_err(|_| type_error("invalid X25519 private key"))?;
let private_key = PrivateKeyInfo {
algorithm: rsa::pkcs8::AlgorithmIdentifierRef {
oid: X25519_OID,
parameters: None,
},
private_key: &private_key,
public_key: None,
};
let der = private_key
.to_der()
.map_err(|_| type_error("invalid X25519 private key"))?
.into_boxed_slice();
return Ok(der);
}
AsymmetricPrivateKey::Ed25519(key) => {
let private_key = OctetStringRef::new(key.as_bytes())
.map_err(|_| type_error("invalid Ed25519 private key"))?
.to_der()
.map_err(|_| type_error("invalid Ed25519 private key"))?;
let private_key = PrivateKeyInfo {
algorithm: rsa::pkcs8::AlgorithmIdentifierRef {
oid: ED25519_OID,
parameters: None,
},
private_key: &private_key,
public_key: None,
};
private_key
.to_der()
.map_err(|_| type_error("invalid ED25519 private key"))?
.into_boxed_slice()
}
AsymmetricPrivateKey::Dh(key) => {
let private_key = key.key.clone().into_vec();
let params = key.params.to_der().unwrap();
let private_key = PrivateKeyInfo {
algorithm: rsa::pkcs8::AlgorithmIdentifierRef {
oid: DH_KEY_AGREEMENT_OID,
parameters: Some(AnyRef::new(Tag::Sequence, &params).unwrap()),
},
private_key: &private_key,
public_key: None,
};
private_key
.to_der()
.map_err(|_| type_error("invalid DH private key"))?
.into_boxed_slice()
}
};
Ok(der)
}
_ => Err(type_error(format!("unsupported key type: {}", typ))),
}
}
}
#[op2]
#[cppgc]
pub fn op_node_create_private_key(
#[buffer] key: &[u8],
#[string] format: &str,
#[string] typ: &str,
#[buffer] passphrase: Option<&[u8]>,
) -> Result<KeyObjectHandle, AnyError> {
KeyObjectHandle::new_asymmetric_private_key_from_js(
key, format, typ, passphrase,
)
}
#[op2]
#[cppgc]
pub fn op_node_create_ed_raw(
#[string] curve: &str,
#[buffer] key: &[u8],
is_public: bool,
) -> Result<KeyObjectHandle, AnyError> {
KeyObjectHandle::new_ed_raw(curve, key, is_public)
}
#[derive(serde::Deserialize)]
pub struct RsaJwkKey {
n: String,
e: String,
d: Option<String>,
p: Option<String>,
q: Option<String>,
}
#[op2]
#[cppgc]
pub fn op_node_create_rsa_jwk(
#[serde] jwk: RsaJwkKey,
is_public: bool,
) -> Result<KeyObjectHandle, AnyError> {
KeyObjectHandle::new_rsa_jwk(jwk, is_public)
}
#[op2]
#[cppgc]
pub fn op_node_create_ec_jwk(
#[serde] jwk: elliptic_curve::JwkEcKey,
is_public: bool,
) -> Result<KeyObjectHandle, AnyError> {
KeyObjectHandle::new_ec_jwk(&jwk, is_public)
}
#[op2]
#[cppgc]
pub fn op_node_create_public_key(
#[buffer] key: &[u8],
#[string] format: &str,
#[string] typ: &str,
#[buffer] passphrase: Option<&[u8]>,
) -> Result<KeyObjectHandle, AnyError> {
KeyObjectHandle::new_asymmetric_public_key_from_js(
key, format, typ, passphrase,
)
}
#[op2]
#[cppgc]
pub fn op_node_create_secret_key(
#[buffer(copy)] key: Box<[u8]>,
) -> KeyObjectHandle {
KeyObjectHandle::Secret(key)
}
#[op2]
#[string]
pub fn op_node_get_asymmetric_key_type(
#[cppgc] handle: &KeyObjectHandle,
) -> Result<&'static str, AnyError> {
match handle {
KeyObjectHandle::AsymmetricPrivate(AsymmetricPrivateKey::Rsa(_))
| KeyObjectHandle::AsymmetricPublic(AsymmetricPublicKey::Rsa(_)) => {
Ok("rsa")
}
KeyObjectHandle::AsymmetricPrivate(AsymmetricPrivateKey::RsaPss(_))
| KeyObjectHandle::AsymmetricPublic(AsymmetricPublicKey::RsaPss(_)) => {
Ok("rsa-pss")
}
KeyObjectHandle::AsymmetricPrivate(AsymmetricPrivateKey::Dsa(_))
| KeyObjectHandle::AsymmetricPublic(AsymmetricPublicKey::Dsa(_)) => {
Ok("dsa")
}
KeyObjectHandle::AsymmetricPrivate(AsymmetricPrivateKey::Ec(_))
| KeyObjectHandle::AsymmetricPublic(AsymmetricPublicKey::Ec(_)) => Ok("ec"),
KeyObjectHandle::AsymmetricPrivate(AsymmetricPrivateKey::X25519(_))
| KeyObjectHandle::AsymmetricPublic(AsymmetricPublicKey::X25519(_)) => {
Ok("x25519")
}
KeyObjectHandle::AsymmetricPrivate(AsymmetricPrivateKey::Ed25519(_))
| KeyObjectHandle::AsymmetricPublic(AsymmetricPublicKey::Ed25519(_)) => {
Ok("ed25519")
}
KeyObjectHandle::AsymmetricPrivate(AsymmetricPrivateKey::Dh(_))
| KeyObjectHandle::AsymmetricPublic(AsymmetricPublicKey::Dh(_)) => Ok("dh"),
KeyObjectHandle::Secret(_) => {
Err(type_error("symmetric key is not an asymmetric key"))
}
}
}
#[derive(serde::Serialize)]
#[serde(untagged)]
pub enum AsymmetricKeyDetails {
#[serde(rename_all = "camelCase")]
Rsa {
modulus_length: usize,
public_exponent: V8BigInt,
},
#[serde(rename_all = "camelCase")]
RsaPss {
modulus_length: usize,
public_exponent: V8BigInt,
hash_algorithm: &'static str,
mgf1_hash_algorithm: &'static str,
salt_length: u32,
},
#[serde(rename = "rsaPss")]
RsaPssBasic {
modulus_length: usize,
public_exponent: V8BigInt,
},
#[serde(rename_all = "camelCase")]
Dsa {
modulus_length: usize,
divisor_length: usize,
},
#[serde(rename_all = "camelCase")]
Ec {
named_curve: &'static str,
},
X25519,
Ed25519,
Dh,
}
#[op2]
#[serde]
pub fn op_node_get_asymmetric_key_details(
#[cppgc] handle: &KeyObjectHandle,
) -> Result<AsymmetricKeyDetails, AnyError> {
match handle {
KeyObjectHandle::AsymmetricPrivate(private_key) => match private_key {
AsymmetricPrivateKey::Rsa(key) => {
let modulus_length = key.n().bits();
let public_exponent =
BigInt::from_bytes_be(num_bigint::Sign::Plus, &key.e().to_bytes_be());
Ok(AsymmetricKeyDetails::Rsa {
modulus_length,
public_exponent: V8BigInt::from(public_exponent),
})
}
AsymmetricPrivateKey::RsaPss(key) => {
let modulus_length = key.key.n().bits();
let public_exponent = BigInt::from_bytes_be(
num_bigint::Sign::Plus,
&key.key.e().to_bytes_be(),
);
let public_exponent = V8BigInt::from(public_exponent);
let details = match key.details {
Some(details) => AsymmetricKeyDetails::RsaPss {
modulus_length,
public_exponent,
hash_algorithm: details.hash_algorithm.as_str(),
mgf1_hash_algorithm: details.mf1_hash_algorithm.as_str(),
salt_length: details.salt_length,
},
None => AsymmetricKeyDetails::RsaPssBasic {
modulus_length,
public_exponent,
},
};
Ok(details)
}
AsymmetricPrivateKey::Dsa(key) => {
let components = key.verifying_key().components();
let modulus_length = components.p().bits();
let divisor_length = components.q().bits();
Ok(AsymmetricKeyDetails::Dsa {
modulus_length,
divisor_length,
})
}
AsymmetricPrivateKey::Ec(key) => {
let named_curve = match key {
EcPrivateKey::P224(_) => "p224",
EcPrivateKey::P256(_) => "p256",
EcPrivateKey::P384(_) => "p384",
};
Ok(AsymmetricKeyDetails::Ec { named_curve })
}
AsymmetricPrivateKey::X25519(_) => Ok(AsymmetricKeyDetails::X25519),
AsymmetricPrivateKey::Ed25519(_) => Ok(AsymmetricKeyDetails::Ed25519),
AsymmetricPrivateKey::Dh(_) => Ok(AsymmetricKeyDetails::Dh),
},
KeyObjectHandle::AsymmetricPublic(public_key) => match public_key {
AsymmetricPublicKey::Rsa(key) => {
let modulus_length = key.n().bits();
let public_exponent =
BigInt::from_bytes_be(num_bigint::Sign::Plus, &key.e().to_bytes_be());
Ok(AsymmetricKeyDetails::Rsa {
modulus_length,
public_exponent: V8BigInt::from(public_exponent),
})
}
AsymmetricPublicKey::RsaPss(key) => {
let modulus_length = key.key.n().bits();
let public_exponent = BigInt::from_bytes_be(
num_bigint::Sign::Plus,
&key.key.e().to_bytes_be(),
);
let public_exponent = V8BigInt::from(public_exponent);
let details = match key.details {
Some(details) => AsymmetricKeyDetails::RsaPss {
modulus_length,
public_exponent,
hash_algorithm: details.hash_algorithm.as_str(),
mgf1_hash_algorithm: details.mf1_hash_algorithm.as_str(),
salt_length: details.salt_length,
},
None => AsymmetricKeyDetails::RsaPssBasic {
modulus_length,
public_exponent,
},
};
Ok(details)
}
AsymmetricPublicKey::Dsa(key) => {
let components = key.components();
let modulus_length = components.p().bits();
let divisor_length = components.q().bits();
Ok(AsymmetricKeyDetails::Dsa {
modulus_length,
divisor_length,
})
}
AsymmetricPublicKey::Ec(key) => {
let named_curve = match key {
EcPublicKey::P224(_) => "p224",
EcPublicKey::P256(_) => "p256",
EcPublicKey::P384(_) => "p384",
};
Ok(AsymmetricKeyDetails::Ec { named_curve })
}
AsymmetricPublicKey::X25519(_) => Ok(AsymmetricKeyDetails::X25519),
AsymmetricPublicKey::Ed25519(_) => Ok(AsymmetricKeyDetails::Ed25519),
AsymmetricPublicKey::Dh(_) => Ok(AsymmetricKeyDetails::Dh),
},
KeyObjectHandle::Secret(_) => {
Err(type_error("symmetric key is not an asymmetric key"))
}
}
}
#[op2(fast)]
#[smi]
pub fn op_node_get_symmetric_key_size(
#[cppgc] handle: &KeyObjectHandle,
) -> Result<usize, AnyError> {
match handle {
KeyObjectHandle::AsymmetricPrivate(_) => {
Err(type_error("asymmetric key is not a symmetric key"))
}
KeyObjectHandle::AsymmetricPublic(_) => {
Err(type_error("asymmetric key is not a symmetric key"))
}
KeyObjectHandle::Secret(key) => Ok(key.len() * 8),
}
}
#[op2]
#[cppgc]
pub fn op_node_generate_secret_key(#[smi] len: usize) -> KeyObjectHandle {
let mut key = vec![0u8; len];
thread_rng().fill_bytes(&mut key);
KeyObjectHandle::Secret(key.into_boxed_slice())
}
#[op2(async)]
#[cppgc]
pub async fn op_node_generate_secret_key_async(
#[smi] len: usize,
) -> KeyObjectHandle {
spawn_blocking(move || {
let mut key = vec![0u8; len];
thread_rng().fill_bytes(&mut key);
KeyObjectHandle::Secret(key.into_boxed_slice())
})
.await
.unwrap()
}
struct KeyObjectHandlePair {
private_key: RefCell<Option<KeyObjectHandle>>,
public_key: RefCell<Option<KeyObjectHandle>>,
}
impl GarbageCollected for KeyObjectHandlePair {}
impl KeyObjectHandlePair {
pub fn new(
private_key: AsymmetricPrivateKey,
public_key: AsymmetricPublicKey,
) -> Self {
Self {
private_key: RefCell::new(Some(KeyObjectHandle::AsymmetricPrivate(
private_key,
))),
public_key: RefCell::new(Some(KeyObjectHandle::AsymmetricPublic(
public_key,
))),
}
}
}
#[op2]
#[cppgc]
pub fn op_node_get_public_key_from_pair(
#[cppgc] pair: &KeyObjectHandlePair,
) -> Option<KeyObjectHandle> {
pair.public_key.borrow_mut().take()
}
#[op2]
#[cppgc]
pub fn op_node_get_private_key_from_pair(
#[cppgc] pair: &KeyObjectHandlePair,
) -> Option<KeyObjectHandle> {
pair.private_key.borrow_mut().take()
}
fn generate_rsa(
modulus_length: usize,
public_exponent: usize,
) -> KeyObjectHandlePair {
let private_key = RsaPrivateKey::new_with_exp(
&mut thread_rng(),
modulus_length,
&rsa::BigUint::from_usize(public_exponent).unwrap(),
)
.unwrap();
let private_key = AsymmetricPrivateKey::Rsa(private_key);
let public_key = private_key.to_public_key();
KeyObjectHandlePair::new(private_key, public_key)
}
#[op2]
#[cppgc]
pub fn op_node_generate_rsa_key(
#[smi] modulus_length: usize,
#[smi] public_exponent: usize,
) -> KeyObjectHandlePair {
generate_rsa(modulus_length, public_exponent)
}
#[op2(async)]
#[cppgc]
pub async fn op_node_generate_rsa_key_async(
#[smi] modulus_length: usize,
#[smi] public_exponent: usize,
) -> KeyObjectHandlePair {
spawn_blocking(move || generate_rsa(modulus_length, public_exponent))
.await
.unwrap()
}
fn generate_rsa_pss(
modulus_length: usize,
public_exponent: usize,
hash_algorithm: Option<&str>,
mf1_hash_algorithm: Option<&str>,
salt_length: Option<u32>,
) -> Result<KeyObjectHandlePair, AnyError> {
let key = RsaPrivateKey::new_with_exp(
&mut thread_rng(),
modulus_length,
&rsa::BigUint::from_usize(public_exponent).unwrap(),
)
.unwrap();
let details = if hash_algorithm.is_none()
&& mf1_hash_algorithm.is_none()
&& salt_length.is_none()
{
None
} else {
let hash_algorithm = hash_algorithm.unwrap_or("sha1");
let mf1_hash_algorithm = mf1_hash_algorithm.unwrap_or(hash_algorithm);
let hash_algorithm = match_fixed_digest_with_oid!(
hash_algorithm,
fn (algorithm: Option<RsaPssHashAlgorithm>) {
algorithm.ok_or_else(|| type_error("digest not allowed for RSA-PSS keys: {}"))?
},
_ => {
return Err(type_error(format!(
"digest not allowed for RSA-PSS keys: {}",
hash_algorithm
)))
}
);
let mf1_hash_algorithm = match_fixed_digest_with_oid!(
mf1_hash_algorithm,
fn (algorithm: Option<RsaPssHashAlgorithm>) {
algorithm.ok_or_else(|| type_error("digest not allowed for RSA-PSS keys: {}"))?
},
_ => {
return Err(type_error(format!(
"digest not allowed for RSA-PSS keys: {}",
mf1_hash_algorithm
)))
}
);
let salt_length =
salt_length.unwrap_or_else(|| hash_algorithm.salt_length());
Some(RsaPssDetails {
hash_algorithm,
mf1_hash_algorithm,
salt_length,
})
};
let private_key =
AsymmetricPrivateKey::RsaPss(RsaPssPrivateKey { key, details });
let public_key = private_key.to_public_key();
Ok(KeyObjectHandlePair::new(private_key, public_key))
}
#[op2]
#[cppgc]
pub fn op_node_generate_rsa_pss_key(
#[smi] modulus_length: usize,
#[smi] public_exponent: usize,
#[string] hash_algorithm: Option<String>, // todo: Option<&str> not supproted in ops yet
#[string] mf1_hash_algorithm: Option<String>, // todo: Option<&str> not supproted in ops yet
#[smi] salt_length: Option<u32>,
) -> Result<KeyObjectHandlePair, AnyError> {
generate_rsa_pss(
modulus_length,
public_exponent,
hash_algorithm.as_deref(),
mf1_hash_algorithm.as_deref(),
salt_length,
)
}
#[op2(async)]
#[cppgc]
pub async fn op_node_generate_rsa_pss_key_async(
#[smi] modulus_length: usize,
#[smi] public_exponent: usize,
#[string] hash_algorithm: Option<String>, // todo: Option<&str> not supproted in ops yet
#[string] mf1_hash_algorithm: Option<String>, // todo: Option<&str> not supproted in ops yet
#[smi] salt_length: Option<u32>,
) -> Result<KeyObjectHandlePair, AnyError> {
spawn_blocking(move || {
generate_rsa_pss(
modulus_length,
public_exponent,
hash_algorithm.as_deref(),
mf1_hash_algorithm.as_deref(),
salt_length,
)
})
.await
.unwrap()
}
fn dsa_generate(
modulus_length: usize,
divisor_length: usize,
) -> Result<KeyObjectHandlePair, AnyError> {
let mut rng = rand::thread_rng();
use dsa::Components;
use dsa::KeySize;
use dsa::SigningKey;
let key_size = match (modulus_length, divisor_length) {
#[allow(deprecated)]
(1024, 160) => KeySize::DSA_1024_160,
(2048, 224) => KeySize::DSA_2048_224,
(2048, 256) => KeySize::DSA_2048_256,
(3072, 256) => KeySize::DSA_3072_256,
_ => {
return Err(type_error(
"Invalid modulusLength+divisorLength combination",
))
}
};
let components = Components::generate(&mut rng, key_size);
let signing_key = SigningKey::generate(&mut rng, components);
let private_key = AsymmetricPrivateKey::Dsa(signing_key);
let public_key = private_key.to_public_key();
Ok(KeyObjectHandlePair::new(private_key, public_key))
}
#[op2]
#[cppgc]
pub fn op_node_generate_dsa_key(
#[smi] modulus_length: usize,
#[smi] divisor_length: usize,
) -> Result<KeyObjectHandlePair, AnyError> {
dsa_generate(modulus_length, divisor_length)
}
#[op2(async)]
#[cppgc]
pub async fn op_node_generate_dsa_key_async(
#[smi] modulus_length: usize,
#[smi] divisor_length: usize,
) -> Result<KeyObjectHandlePair, AnyError> {
spawn_blocking(move || dsa_generate(modulus_length, divisor_length))
.await
.unwrap()
}
fn ec_generate(named_curve: &str) -> Result<KeyObjectHandlePair, AnyError> {
let mut rng = rand::thread_rng();
// TODO(@littledivy): Support public key point encoding.
// Default is uncompressed.
let private_key = match named_curve {
"P-224" | "prime224v1" | "secp224r1" => {
let key = p224::SecretKey::random(&mut rng);
AsymmetricPrivateKey::Ec(EcPrivateKey::P224(key))
}
"P-256" | "prime256v1" | "secp256r1" => {
let key = p256::SecretKey::random(&mut rng);
AsymmetricPrivateKey::Ec(EcPrivateKey::P256(key))
}
"P-384" | "prime384v1" | "secp384r1" => {
let key = p384::SecretKey::random(&mut rng);
AsymmetricPrivateKey::Ec(EcPrivateKey::P384(key))
}
_ => {
return Err(type_error(format!(
"unsupported named curve: {}",
named_curve
)))
}
};
let public_key = private_key.to_public_key();
Ok(KeyObjectHandlePair::new(private_key, public_key))
}
#[op2]
#[cppgc]
pub fn op_node_generate_ec_key(
#[string] named_curve: &str,
) -> Result<KeyObjectHandlePair, AnyError> {
ec_generate(named_curve)
}
#[op2(async)]
#[cppgc]
pub async fn op_node_generate_ec_key_async(
#[string] named_curve: String,
) -> Result<KeyObjectHandlePair, AnyError> {
spawn_blocking(move || ec_generate(&named_curve))
.await
.unwrap()
}
fn x25519_generate() -> KeyObjectHandlePair {
let keypair = x25519_dalek::StaticSecret::random_from_rng(thread_rng());
let private_key = AsymmetricPrivateKey::X25519(keypair);
let public_key = private_key.to_public_key();
KeyObjectHandlePair::new(private_key, public_key)
}
#[op2]
#[cppgc]
pub fn op_node_generate_x25519_key() -> KeyObjectHandlePair {
x25519_generate()
}
#[op2(async)]
#[cppgc]
pub async fn op_node_generate_x25519_key_async() -> KeyObjectHandlePair {
spawn_blocking(x25519_generate).await.unwrap()
}
fn ed25519_generate() -> KeyObjectHandlePair {
let keypair = ed25519_dalek::SigningKey::generate(&mut thread_rng());
let private_key = AsymmetricPrivateKey::Ed25519(keypair);
let public_key = private_key.to_public_key();
KeyObjectHandlePair::new(private_key, public_key)
}
#[op2]
#[cppgc]
pub fn op_node_generate_ed25519_key() -> KeyObjectHandlePair {
ed25519_generate()
}
#[op2(async)]
#[cppgc]
pub async fn op_node_generate_ed25519_key_async() -> KeyObjectHandlePair {
spawn_blocking(ed25519_generate).await.unwrap()
}
fn u32_slice_to_u8_slice(slice: &[u32]) -> &[u8] {
// SAFETY: just reinterpreting the slice as u8
unsafe {
std::slice::from_raw_parts(
slice.as_ptr() as *const u8,
std::mem::size_of_val(slice),
)
}
}
fn dh_group_generate(
group_name: &str,
) -> Result<KeyObjectHandlePair, AnyError> {
let (dh, prime, generator) = match group_name {
"modp5" => (
dh::DiffieHellman::group::<dh::Modp1536>(),
dh::Modp1536::MODULUS,
dh::Modp1536::GENERATOR,
),
"modp14" => (
dh::DiffieHellman::group::<dh::Modp2048>(),
dh::Modp2048::MODULUS,
dh::Modp2048::GENERATOR,
),
"modp15" => (
dh::DiffieHellman::group::<dh::Modp3072>(),
dh::Modp3072::MODULUS,
dh::Modp3072::GENERATOR,
),
"modp16" => (
dh::DiffieHellman::group::<dh::Modp4096>(),
dh::Modp4096::MODULUS,
dh::Modp4096::GENERATOR,
),
"modp17" => (
dh::DiffieHellman::group::<dh::Modp6144>(),
dh::Modp6144::MODULUS,
dh::Modp6144::GENERATOR,
),
"modp18" => (
dh::DiffieHellman::group::<dh::Modp8192>(),
dh::Modp8192::MODULUS,
dh::Modp8192::GENERATOR,
),
_ => return Err(type_error("Unsupported group name")),
};
let params = DhParameter {
prime: asn1::Int::new(u32_slice_to_u8_slice(prime)).unwrap(),
base: asn1::Int::new(generator.to_be_bytes().as_slice()).unwrap(),
private_value_length: None,
};
Ok(KeyObjectHandlePair::new(
AsymmetricPrivateKey::Dh(DhPrivateKey {
key: dh.private_key,
params: params.clone(),
}),
AsymmetricPublicKey::Dh(DhPublicKey {
key: dh.public_key,
params,
}),
))
}
#[op2]
#[cppgc]
pub fn op_node_generate_dh_group_key(
#[string] group_name: &str,
) -> Result<KeyObjectHandlePair, AnyError> {
dh_group_generate(group_name)
}
#[op2(async)]
#[cppgc]
pub async fn op_node_generate_dh_group_key_async(
#[string] group_name: String,
) -> Result<KeyObjectHandlePair, AnyError> {
spawn_blocking(move || dh_group_generate(&group_name))
.await
.unwrap()
}
fn dh_generate(
prime: Option<&[u8]>,
prime_len: usize,
generator: usize,
) -> Result<KeyObjectHandlePair, AnyError> {
let prime = prime
.map(|p| p.into())
.unwrap_or_else(|| Prime::generate(prime_len));
let dh = dh::DiffieHellman::new(prime.clone(), generator);
let params = DhParameter {
prime: asn1::Int::new(&prime.0.to_bytes_be()).unwrap(),
base: asn1::Int::new(generator.to_be_bytes().as_slice()).unwrap(),
private_value_length: None,
};
Ok(KeyObjectHandlePair::new(
AsymmetricPrivateKey::Dh(DhPrivateKey {
key: dh.private_key,
params: params.clone(),
}),
AsymmetricPublicKey::Dh(DhPublicKey {
key: dh.public_key,
params,
}),
))
}
#[op2]
#[cppgc]
pub fn op_node_generate_dh_key(
#[buffer] prime: Option<&[u8]>,
#[smi] prime_len: usize,
#[smi] generator: usize,
) -> Result<KeyObjectHandlePair, AnyError> {
dh_generate(prime, prime_len, generator)
}
#[op2(async)]
#[cppgc]
pub async fn op_node_generate_dh_key_async(
#[buffer(copy)] prime: Option<Box<[u8]>>,
#[smi] prime_len: usize,
#[smi] generator: usize,
) -> Result<KeyObjectHandlePair, AnyError> {
spawn_blocking(move || dh_generate(prime.as_deref(), prime_len, generator))
.await
.unwrap()
}
#[op2]
#[serde]
pub fn op_node_dh_keys_generate_and_export(
#[buffer] prime: Option<&[u8]>,
#[smi] prime_len: usize,
#[smi] generator: usize,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
let prime = prime
.map(|p| p.into())
.unwrap_or_else(|| Prime::generate(prime_len));
let dh = dh::DiffieHellman::new(prime, generator);
let private_key = dh.private_key.into_vec().into_boxed_slice();
let public_key = dh.public_key.into_vec().into_boxed_slice();
Ok((private_key.into(), public_key.into()))
}
#[op2]
#[buffer]
pub fn op_node_export_secret_key(
#[cppgc] handle: &KeyObjectHandle,
) -> Result<Box<[u8]>, AnyError> {
let key = handle
.as_secret_key()
.ok_or_else(|| type_error("key is not a secret key"))?;
Ok(key.to_vec().into_boxed_slice())
}
#[op2]
#[string]
pub fn op_node_export_secret_key_b64url(
#[cppgc] handle: &KeyObjectHandle,
) -> Result<String, AnyError> {
let key = handle
.as_secret_key()
.ok_or_else(|| type_error("key is not a secret key"))?;
Ok(base64::engine::general_purpose::URL_SAFE_NO_PAD.encode(key))
}
#[op2]
#[serde]
pub fn op_node_export_public_key_jwk(
#[cppgc] handle: &KeyObjectHandle,
) -> Result<deno_core::serde_json::Value, AnyError> {
let public_key = handle
.as_public_key()
.ok_or_else(|| type_error("key is not an asymmetric public key"))?;
public_key.export_jwk()
}
#[op2]
#[string]
pub fn op_node_export_public_key_pem(
#[cppgc] handle: &KeyObjectHandle,
#[string] typ: &str,
) -> Result<String, AnyError> {
let public_key = handle
.as_public_key()
.ok_or_else(|| type_error("key is not an asymmetric public key"))?;
let data = public_key.export_der(typ)?;
let label = match typ {
"pkcs1" => "RSA PUBLIC KEY",
"spki" => "PUBLIC KEY",
_ => unreachable!("export_der would have errored"),
};
let pem_len = der::pem::encapsulated_len(label, LineEnding::LF, data.len())
.map_err(|_| type_error("very large data"))?;
let mut out = vec![0; pem_len];
let mut writer = PemWriter::new(label, LineEnding::LF, &mut out)?;
writer.write(&data)?;
let len = writer.finish()?;
out.truncate(len);
Ok(String::from_utf8(out).expect("invalid pem is not possible"))
}
#[op2]
#[buffer]
pub fn op_node_export_public_key_der(
#[cppgc] handle: &KeyObjectHandle,
#[string] typ: &str,
) -> Result<Box<[u8]>, AnyError> {
let public_key = handle
.as_public_key()
.ok_or_else(|| type_error("key is not an asymmetric public key"))?;
public_key.export_der(typ)
}
#[op2]
#[string]
pub fn op_node_export_private_key_pem(
#[cppgc] handle: &KeyObjectHandle,
#[string] typ: &str,
) -> Result<String, AnyError> {
let private_key = handle
.as_private_key()
.ok_or_else(|| type_error("key is not an asymmetric private key"))?;
let data = private_key.export_der(typ)?;
let label = match typ {
"pkcs1" => "RSA PRIVATE KEY",
"pkcs8" => "PRIVATE KEY",
"sec1" => "EC PRIVATE KEY",
_ => unreachable!("export_der would have errored"),
};
let pem_len = der::pem::encapsulated_len(label, LineEnding::LF, data.len())
.map_err(|_| type_error("very large data"))?;
let mut out = vec![0; pem_len];
let mut writer = PemWriter::new(label, LineEnding::LF, &mut out)?;
writer.write(&data)?;
let len = writer.finish()?;
out.truncate(len);
Ok(String::from_utf8(out).expect("invalid pem is not possible"))
}
#[op2]
#[buffer]
pub fn op_node_export_private_key_der(
#[cppgc] handle: &KeyObjectHandle,
#[string] typ: &str,
) -> Result<Box<[u8]>, AnyError> {
let private_key = handle
.as_private_key()
.ok_or_else(|| type_error("key is not an asymmetric private key"))?;
private_key.export_der(typ)
}
#[op2]
#[string]
pub fn op_node_key_type(#[cppgc] handle: &KeyObjectHandle) -> &'static str {
match handle {
KeyObjectHandle::AsymmetricPrivate(_) => "private",
KeyObjectHandle::AsymmetricPublic(_) => "public",
KeyObjectHandle::Secret(_) => "secret",
}
}
#[op2]
#[cppgc]
pub fn op_node_derive_public_key_from_private_key(
#[cppgc] handle: &KeyObjectHandle,
) -> Result<KeyObjectHandle, AnyError> {
let Some(private_key) = handle.as_private_key() else {
return Err(type_error("expected private key"));
};
Ok(KeyObjectHandle::AsymmetricPublic(
private_key.to_public_key(),
))
}