1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-11-26 16:09:27 -05:00
denoland-deno/ext/node/ops/crypto/mod.rs

928 lines
24 KiB
Rust
Raw Normal View History

// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
use deno_core::error::generic_error;
use deno_core::error::type_error;
use deno_core::error::AnyError;
use deno_core::op2;
use deno_core::unsync::spawn_blocking;
use deno_core::JsBuffer;
use deno_core::OpState;
use deno_core::StringOrBuffer;
use deno_core::ToJsBuffer;
use elliptic_curve::sec1::ToEncodedPoint;
use hkdf::Hkdf;
use keys::AsymmetricPrivateKey;
use keys::AsymmetricPublicKey;
use keys::EcPrivateKey;
use keys::EcPublicKey;
use keys::KeyObjectHandle;
use num_bigint::BigInt;
use num_bigint_dig::BigUint;
use rand::distributions::Distribution;
use rand::distributions::Uniform;
use rand::Rng;
use std::future::Future;
use std::rc::Rc;
use p224::NistP224;
use p256::NistP256;
use p384::NistP384;
use rsa::pkcs8::DecodePrivateKey;
use rsa::pkcs8::DecodePublicKey;
2023-10-30 11:25:12 -04:00
use rsa::Oaep;
use rsa::Pkcs1v15Encrypt;
use rsa::RsaPrivateKey;
use rsa::RsaPublicKey;
mod cipher;
mod dh;
mod digest;
pub mod keys;
mod md5_sha1;
mod pkcs3;
mod primes;
mod sign;
pub mod x509;
use self::digest::match_fixed_digest_with_eager_block_buffer;
#[op2(fast)]
pub fn op_node_check_prime(
#[bigint] num: i64,
#[number] checks: usize,
) -> bool {
primes::is_probably_prime(&BigInt::from(num), checks)
}
#[op2]
pub fn op_node_check_prime_bytes(
#[anybuffer] bytes: &[u8],
#[number] checks: usize,
) -> Result<bool, AnyError> {
let candidate = BigInt::from_bytes_be(num_bigint::Sign::Plus, bytes);
Ok(primes::is_probably_prime(&candidate, checks))
}
#[op2(async)]
pub async fn op_node_check_prime_async(
#[bigint] num: i64,
#[number] checks: usize,
) -> Result<bool, AnyError> {
// TODO(@littledivy): use rayon for CPU-bound tasks
Ok(
spawn_blocking(move || {
primes::is_probably_prime(&BigInt::from(num), checks)
})
.await?,
)
}
#[op2(async)]
pub fn op_node_check_prime_bytes_async(
#[anybuffer] bytes: &[u8],
#[number] checks: usize,
) -> Result<impl Future<Output = Result<bool, AnyError>>, AnyError> {
let candidate = BigInt::from_bytes_be(num_bigint::Sign::Plus, bytes);
// TODO(@littledivy): use rayon for CPU-bound tasks
Ok(async move {
Ok(
spawn_blocking(move || primes::is_probably_prime(&candidate, checks))
.await?,
)
})
}
#[op2]
#[cppgc]
pub fn op_node_create_hash(
#[string] algorithm: &str,
output_length: Option<u32>,
) -> Result<digest::Hasher, AnyError> {
digest::Hasher::new(algorithm, output_length.map(|l| l as usize))
}
#[op2]
#[serde]
pub fn op_node_get_hashes() -> Vec<&'static str> {
digest::Hash::get_hashes()
}
#[op2(fast)]
pub fn op_node_hash_update(
#[cppgc] hasher: &digest::Hasher,
#[buffer] data: &[u8],
) -> bool {
hasher.update(data)
}
#[op2(fast)]
pub fn op_node_hash_update_str(
#[cppgc] hasher: &digest::Hasher,
#[string] data: &str,
) -> bool {
hasher.update(data.as_bytes())
}
#[op2]
#[buffer]
pub fn op_node_hash_digest(
#[cppgc] hasher: &digest::Hasher,
) -> Option<Box<[u8]>> {
hasher.digest()
}
#[op2]
#[string]
pub fn op_node_hash_digest_hex(
#[cppgc] hasher: &digest::Hasher,
) -> Option<String> {
let digest = hasher.digest()?;
Some(faster_hex::hex_string(&digest))
}
#[op2]
#[cppgc]
pub fn op_node_hash_clone(
#[cppgc] hasher: &digest::Hasher,
output_length: Option<u32>,
) -> Result<Option<digest::Hasher>, AnyError> {
hasher.clone_inner(output_length.map(|l| l as usize))
}
#[op2]
#[serde]
pub fn op_node_private_encrypt(
#[serde] key: StringOrBuffer,
#[serde] msg: StringOrBuffer,
#[smi] padding: u32,
) -> Result<ToJsBuffer, AnyError> {
let key = RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)?;
let mut rng = rand::thread_rng();
match padding {
1 => Ok(
key
2023-10-30 11:25:12 -04:00
.as_ref()
.encrypt(&mut rng, Pkcs1v15Encrypt, &msg)?
.into(),
),
4 => Ok(
key
2023-10-30 11:25:12 -04:00
.as_ref()
.encrypt(&mut rng, Oaep::new::<sha1::Sha1>(), &msg)?
.into(),
),
_ => Err(type_error("Unknown padding")),
}
}
#[op2]
#[serde]
pub fn op_node_private_decrypt(
#[serde] key: StringOrBuffer,
#[serde] msg: StringOrBuffer,
#[smi] padding: u32,
) -> Result<ToJsBuffer, AnyError> {
let key = RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)?;
match padding {
2023-10-30 11:25:12 -04:00
1 => Ok(key.decrypt(Pkcs1v15Encrypt, &msg)?.into()),
4 => Ok(key.decrypt(Oaep::new::<sha1::Sha1>(), &msg)?.into()),
_ => Err(type_error("Unknown padding")),
}
}
#[op2]
#[serde]
pub fn op_node_public_encrypt(
#[serde] key: StringOrBuffer,
#[serde] msg: StringOrBuffer,
#[smi] padding: u32,
) -> Result<ToJsBuffer, AnyError> {
let key = RsaPublicKey::from_public_key_pem((&key).try_into()?)?;
let mut rng = rand::thread_rng();
match padding {
2023-10-30 11:25:12 -04:00
1 => Ok(key.encrypt(&mut rng, Pkcs1v15Encrypt, &msg)?.into()),
4 => Ok(
key
2023-10-30 11:25:12 -04:00
.encrypt(&mut rng, Oaep::new::<sha1::Sha1>(), &msg)?
.into(),
),
_ => Err(type_error("Unknown padding")),
}
}
#[op2(fast)]
#[smi]
pub fn op_node_create_cipheriv(
state: &mut OpState,
#[string] algorithm: &str,
#[buffer] key: &[u8],
#[buffer] iv: &[u8],
) -> u32 {
state.resource_table.add(
match cipher::CipherContext::new(algorithm, key, iv) {
Ok(context) => context,
Err(_) => return 0,
},
)
}
#[op2(fast)]
pub fn op_node_cipheriv_set_aad(
state: &mut OpState,
#[smi] rid: u32,
#[buffer] aad: &[u8],
) -> bool {
let context = match state.resource_table.get::<cipher::CipherContext>(rid) {
Ok(context) => context,
Err(_) => return false,
};
context.set_aad(aad);
true
}
#[op2(fast)]
pub fn op_node_cipheriv_encrypt(
state: &mut OpState,
#[smi] rid: u32,
#[buffer] input: &[u8],
#[buffer] output: &mut [u8],
) -> bool {
let context = match state.resource_table.get::<cipher::CipherContext>(rid) {
Ok(context) => context,
Err(_) => return false,
};
context.encrypt(input, output);
true
}
#[op2]
#[serde]
pub fn op_node_cipheriv_final(
state: &mut OpState,
#[smi] rid: u32,
#[buffer] input: &[u8],
#[buffer] output: &mut [u8],
) -> Result<Option<Vec<u8>>, AnyError> {
let context = state.resource_table.take::<cipher::CipherContext>(rid)?;
let context = Rc::try_unwrap(context)
.map_err(|_| type_error("Cipher context is already in use"))?;
context.r#final(input, output)
}
#[op2(fast)]
#[smi]
pub fn op_node_create_decipheriv(
state: &mut OpState,
#[string] algorithm: &str,
#[buffer] key: &[u8],
#[buffer] iv: &[u8],
) -> u32 {
state.resource_table.add(
match cipher::DecipherContext::new(algorithm, key, iv) {
Ok(context) => context,
Err(_) => return 0,
},
)
}
#[op2(fast)]
pub fn op_node_decipheriv_set_aad(
state: &mut OpState,
#[smi] rid: u32,
#[buffer] aad: &[u8],
) -> bool {
let context = match state.resource_table.get::<cipher::DecipherContext>(rid) {
Ok(context) => context,
Err(_) => return false,
};
context.set_aad(aad);
true
}
#[op2(fast)]
pub fn op_node_decipheriv_decrypt(
state: &mut OpState,
#[smi] rid: u32,
#[buffer] input: &[u8],
#[buffer] output: &mut [u8],
) -> bool {
let context = match state.resource_table.get::<cipher::DecipherContext>(rid) {
Ok(context) => context,
Err(_) => return false,
};
context.decrypt(input, output);
true
}
#[op2(fast)]
pub fn op_node_decipheriv_final(
state: &mut OpState,
#[smi] rid: u32,
#[buffer] input: &[u8],
#[buffer] output: &mut [u8],
#[buffer] auth_tag: &[u8],
) -> Result<(), AnyError> {
let context = state.resource_table.take::<cipher::DecipherContext>(rid)?;
let context = Rc::try_unwrap(context)
.map_err(|_| type_error("Cipher context is already in use"))?;
context.r#final(input, output, auth_tag)
}
#[op2]
#[buffer]
pub fn op_node_sign(
#[cppgc] handle: &KeyObjectHandle,
#[buffer] digest: &[u8],
#[string] digest_type: &str,
) -> Result<Box<[u8]>, AnyError> {
handle.sign_prehashed(digest_type, digest)
}
#[op2(fast)]
pub fn op_node_verify(
#[cppgc] handle: &KeyObjectHandle,
#[buffer] digest: &[u8],
#[string] digest_type: &str,
#[buffer] signature: &[u8],
) -> Result<bool, AnyError> {
handle.verify_prehashed(digest_type, digest, signature)
}
fn pbkdf2_sync(
password: &[u8],
salt: &[u8],
iterations: u32,
algorithm_name: &str,
derived_key: &mut [u8],
) -> Result<(), AnyError> {
match_fixed_digest_with_eager_block_buffer!(
algorithm_name,
fn <D>() {
pbkdf2::pbkdf2_hmac::<D>(password, salt, iterations, derived_key);
Ok(())
},
_ => {
Err(type_error(format!(
"unsupported digest: {}",
algorithm_name
)))
}
)
}
#[op2]
pub fn op_node_pbkdf2(
#[serde] password: StringOrBuffer,
#[serde] salt: StringOrBuffer,
#[smi] iterations: u32,
#[string] digest: &str,
#[buffer] derived_key: &mut [u8],
) -> bool {
pbkdf2_sync(&password, &salt, iterations, digest, derived_key).is_ok()
}
#[op2(async)]
#[serde]
pub async fn op_node_pbkdf2_async(
#[serde] password: StringOrBuffer,
#[serde] salt: StringOrBuffer,
#[smi] iterations: u32,
#[string] digest: String,
#[number] keylen: usize,
) -> Result<ToJsBuffer, AnyError> {
spawn_blocking(move || {
let mut derived_key = vec![0; keylen];
pbkdf2_sync(&password, &salt, iterations, &digest, &mut derived_key)
.map(|_| derived_key.into())
})
.await?
}
#[op2(fast)]
pub fn op_node_fill_random(#[buffer] buf: &mut [u8]) {
rand::thread_rng().fill(buf);
}
#[op2(async)]
#[serde]
pub async fn op_node_fill_random_async(#[smi] len: i32) -> ToJsBuffer {
spawn_blocking(move || {
let mut buf = vec![0u8; len as usize];
rand::thread_rng().fill(&mut buf[..]);
buf.into()
})
.await
.unwrap()
}
fn hkdf_sync(
digest_algorithm: &str,
handle: &KeyObjectHandle,
salt: &[u8],
info: &[u8],
okm: &mut [u8],
) -> Result<(), AnyError> {
let Some(ikm) = handle.as_secret_key() else {
return Err(type_error("expected secret key"));
};
match_fixed_digest_with_eager_block_buffer!(
digest_algorithm,
fn <D>() {
let hk = Hkdf::<D>::new(Some(salt), ikm);
hk.expand(info, okm)
.map_err(|_| type_error("HKDF-Expand failed"))
},
_ => {
Err(type_error(format!("Unsupported digest: {}", digest_algorithm)))
}
)
}
#[op2(fast)]
pub fn op_node_hkdf(
#[string] digest_algorithm: &str,
#[cppgc] handle: &KeyObjectHandle,
#[buffer] salt: &[u8],
#[buffer] info: &[u8],
#[buffer] okm: &mut [u8],
) -> Result<(), AnyError> {
hkdf_sync(digest_algorithm, handle, salt, info, okm)
}
#[op2(async)]
#[serde]
pub async fn op_node_hkdf_async(
#[string] digest_algorithm: String,
#[cppgc] handle: &KeyObjectHandle,
#[buffer] salt: JsBuffer,
#[buffer] info: JsBuffer,
#[number] okm_len: usize,
) -> Result<ToJsBuffer, AnyError> {
let handle = handle.clone();
spawn_blocking(move || {
let mut okm = vec![0u8; okm_len];
hkdf_sync(&digest_algorithm, &handle, &salt, &info, &mut okm)?;
Ok(okm.into())
})
.await?
}
#[op2]
#[serde]
pub fn op_node_dh_compute_secret(
#[buffer] prime: JsBuffer,
#[buffer] private_key: JsBuffer,
#[buffer] their_public_key: JsBuffer,
) -> Result<ToJsBuffer, AnyError> {
let pubkey: BigUint = BigUint::from_bytes_be(their_public_key.as_ref());
let privkey: BigUint = BigUint::from_bytes_be(private_key.as_ref());
let primei: BigUint = BigUint::from_bytes_be(prime.as_ref());
let shared_secret: BigUint = pubkey.modpow(&privkey, &primei);
Ok(shared_secret.to_bytes_be().into())
}
#[op2(fast)]
#[smi]
pub fn op_node_random_int(
#[smi] min: i32,
#[smi] max: i32,
) -> Result<i32, AnyError> {
let mut rng = rand::thread_rng();
// Uniform distribution is required to avoid Modulo Bias
// https://en.wikipedia.org/wiki/FisherYates_shuffle#Modulo_bias
let dist = Uniform::from(min..max);
Ok(dist.sample(&mut rng))
}
#[allow(clippy::too_many_arguments)]
fn scrypt(
password: StringOrBuffer,
salt: StringOrBuffer,
keylen: u32,
cost: u32,
block_size: u32,
parallelization: u32,
_maxmem: u32,
output_buffer: &mut [u8],
) -> Result<(), AnyError> {
// Construct Params
let params = scrypt::Params::new(
cost as u8,
block_size,
parallelization,
keylen as usize,
)
.unwrap();
// Call into scrypt
let res = scrypt::scrypt(&password, &salt, &params, output_buffer);
if res.is_ok() {
Ok(())
} else {
// TODO(lev): key derivation failed, so what?
Err(generic_error("scrypt key derivation failed"))
}
}
#[allow(clippy::too_many_arguments)]
#[op2]
pub fn op_node_scrypt_sync(
#[serde] password: StringOrBuffer,
#[serde] salt: StringOrBuffer,
#[smi] keylen: u32,
#[smi] cost: u32,
#[smi] block_size: u32,
#[smi] parallelization: u32,
#[smi] maxmem: u32,
#[anybuffer] output_buffer: &mut [u8],
) -> Result<(), AnyError> {
scrypt(
password,
salt,
keylen,
cost,
block_size,
parallelization,
maxmem,
output_buffer,
)
}
#[op2(async)]
#[serde]
pub async fn op_node_scrypt_async(
#[serde] password: StringOrBuffer,
#[serde] salt: StringOrBuffer,
#[smi] keylen: u32,
#[smi] cost: u32,
#[smi] block_size: u32,
#[smi] parallelization: u32,
#[smi] maxmem: u32,
) -> Result<ToJsBuffer, AnyError> {
spawn_blocking(move || {
let mut output_buffer = vec![0u8; keylen as usize];
let res = scrypt(
password,
salt,
keylen,
cost,
block_size,
parallelization,
maxmem,
&mut output_buffer,
);
if res.is_ok() {
Ok(output_buffer.into())
} else {
// TODO(lev): rethrow the error?
Err(generic_error("scrypt failure"))
}
})
.await?
}
#[op2]
#[buffer]
pub fn op_node_ecdh_encode_pubkey(
#[string] curve: &str,
#[buffer] pubkey: &[u8],
compress: bool,
) -> Result<Vec<u8>, AnyError> {
use elliptic_curve::sec1::FromEncodedPoint;
match curve {
"secp256k1" => {
let pubkey =
elliptic_curve::PublicKey::<k256::Secp256k1>::from_encoded_point(
&elliptic_curve::sec1::EncodedPoint::<k256::Secp256k1>::from_bytes(
pubkey,
)?,
);
// CtOption does not expose its variants.
if pubkey.is_none().into() {
return Err(type_error("Invalid public key"));
}
let pubkey = pubkey.unwrap();
Ok(pubkey.to_encoded_point(compress).as_ref().to_vec())
}
"prime256v1" | "secp256r1" => {
let pubkey = elliptic_curve::PublicKey::<NistP256>::from_encoded_point(
&elliptic_curve::sec1::EncodedPoint::<NistP256>::from_bytes(pubkey)?,
);
// CtOption does not expose its variants.
if pubkey.is_none().into() {
return Err(type_error("Invalid public key"));
}
let pubkey = pubkey.unwrap();
Ok(pubkey.to_encoded_point(compress).as_ref().to_vec())
}
"secp384r1" => {
let pubkey = elliptic_curve::PublicKey::<NistP384>::from_encoded_point(
&elliptic_curve::sec1::EncodedPoint::<NistP384>::from_bytes(pubkey)?,
);
// CtOption does not expose its variants.
if pubkey.is_none().into() {
return Err(type_error("Invalid public key"));
}
let pubkey = pubkey.unwrap();
Ok(pubkey.to_encoded_point(compress).as_ref().to_vec())
}
"secp224r1" => {
let pubkey = elliptic_curve::PublicKey::<NistP224>::from_encoded_point(
&elliptic_curve::sec1::EncodedPoint::<NistP224>::from_bytes(pubkey)?,
);
// CtOption does not expose its variants.
if pubkey.is_none().into() {
return Err(type_error("Invalid public key"));
}
let pubkey = pubkey.unwrap();
Ok(pubkey.to_encoded_point(compress).as_ref().to_vec())
}
&_ => Err(type_error("Unsupported curve")),
}
}
#[op2(fast)]
pub fn op_node_ecdh_generate_keys(
#[string] curve: &str,
#[buffer] pubbuf: &mut [u8],
#[buffer] privbuf: &mut [u8],
#[string] format: &str,
) -> Result<(), AnyError> {
let mut rng = rand::thread_rng();
let compress = format == "compressed";
match curve {
"secp256k1" => {
let privkey =
elliptic_curve::SecretKey::<k256::Secp256k1>::random(&mut rng);
let pubkey = privkey.public_key();
pubbuf.copy_from_slice(pubkey.to_encoded_point(compress).as_ref());
privbuf.copy_from_slice(privkey.to_nonzero_scalar().to_bytes().as_ref());
Ok(())
}
"prime256v1" | "secp256r1" => {
let privkey = elliptic_curve::SecretKey::<NistP256>::random(&mut rng);
let pubkey = privkey.public_key();
pubbuf.copy_from_slice(pubkey.to_encoded_point(compress).as_ref());
privbuf.copy_from_slice(privkey.to_nonzero_scalar().to_bytes().as_ref());
Ok(())
}
"secp384r1" => {
let privkey = elliptic_curve::SecretKey::<NistP384>::random(&mut rng);
let pubkey = privkey.public_key();
pubbuf.copy_from_slice(pubkey.to_encoded_point(compress).as_ref());
privbuf.copy_from_slice(privkey.to_nonzero_scalar().to_bytes().as_ref());
Ok(())
}
"secp224r1" => {
let privkey = elliptic_curve::SecretKey::<NistP224>::random(&mut rng);
let pubkey = privkey.public_key();
pubbuf.copy_from_slice(pubkey.to_encoded_point(compress).as_ref());
privbuf.copy_from_slice(privkey.to_nonzero_scalar().to_bytes().as_ref());
Ok(())
}
&_ => Err(type_error(format!("Unsupported curve: {}", curve))),
}
}
#[op2]
pub fn op_node_ecdh_compute_secret(
#[string] curve: &str,
#[buffer] this_priv: Option<JsBuffer>,
#[buffer] their_pub: &mut [u8],
#[buffer] secret: &mut [u8],
) -> Result<(), AnyError> {
match curve {
"secp256k1" => {
let their_public_key =
elliptic_curve::PublicKey::<k256::Secp256k1>::from_sec1_bytes(
their_pub,
)
.expect("bad public key");
let this_private_key =
elliptic_curve::SecretKey::<k256::Secp256k1>::from_slice(
&this_priv.expect("must supply private key"),
)
.expect("bad private key");
let shared_secret = elliptic_curve::ecdh::diffie_hellman(
this_private_key.to_nonzero_scalar(),
their_public_key.as_affine(),
);
secret.copy_from_slice(shared_secret.raw_secret_bytes());
Ok(())
}
"prime256v1" | "secp256r1" => {
let their_public_key =
elliptic_curve::PublicKey::<NistP256>::from_sec1_bytes(their_pub)
.expect("bad public key");
let this_private_key = elliptic_curve::SecretKey::<NistP256>::from_slice(
&this_priv.expect("must supply private key"),
)
.expect("bad private key");
let shared_secret = elliptic_curve::ecdh::diffie_hellman(
this_private_key.to_nonzero_scalar(),
their_public_key.as_affine(),
);
secret.copy_from_slice(shared_secret.raw_secret_bytes());
Ok(())
}
"secp384r1" => {
let their_public_key =
elliptic_curve::PublicKey::<NistP384>::from_sec1_bytes(their_pub)
.expect("bad public key");
let this_private_key = elliptic_curve::SecretKey::<NistP384>::from_slice(
&this_priv.expect("must supply private key"),
)
.expect("bad private key");
let shared_secret = elliptic_curve::ecdh::diffie_hellman(
this_private_key.to_nonzero_scalar(),
their_public_key.as_affine(),
);
secret.copy_from_slice(shared_secret.raw_secret_bytes());
Ok(())
}
"secp224r1" => {
let their_public_key =
elliptic_curve::PublicKey::<NistP224>::from_sec1_bytes(their_pub)
.expect("bad public key");
let this_private_key = elliptic_curve::SecretKey::<NistP224>::from_slice(
&this_priv.expect("must supply private key"),
)
.expect("bad private key");
let shared_secret = elliptic_curve::ecdh::diffie_hellman(
this_private_key.to_nonzero_scalar(),
their_public_key.as_affine(),
);
secret.copy_from_slice(shared_secret.raw_secret_bytes());
Ok(())
}
&_ => todo!(),
}
}
#[op2(fast)]
pub fn op_node_ecdh_compute_public_key(
#[string] curve: &str,
#[buffer] privkey: &[u8],
#[buffer] pubkey: &mut [u8],
) -> Result<(), AnyError> {
match curve {
"secp256k1" => {
let this_private_key =
elliptic_curve::SecretKey::<k256::Secp256k1>::from_slice(privkey)
.expect("bad private key");
let public_key = this_private_key.public_key();
pubkey.copy_from_slice(public_key.to_sec1_bytes().as_ref());
Ok(())
}
"prime256v1" | "secp256r1" => {
let this_private_key =
elliptic_curve::SecretKey::<NistP256>::from_slice(privkey)
.expect("bad private key");
let public_key = this_private_key.public_key();
pubkey.copy_from_slice(public_key.to_sec1_bytes().as_ref());
Ok(())
}
"secp384r1" => {
let this_private_key =
elliptic_curve::SecretKey::<NistP384>::from_slice(privkey)
.expect("bad private key");
let public_key = this_private_key.public_key();
pubkey.copy_from_slice(public_key.to_sec1_bytes().as_ref());
Ok(())
}
"secp224r1" => {
let this_private_key =
elliptic_curve::SecretKey::<NistP224>::from_slice(privkey)
.expect("bad private key");
let public_key = this_private_key.public_key();
pubkey.copy_from_slice(public_key.to_sec1_bytes().as_ref());
Ok(())
}
&_ => todo!(),
}
}
#[inline]
fn gen_prime(size: usize) -> ToJsBuffer {
primes::Prime::generate(size).0.to_bytes_be().into()
}
#[op2]
#[serde]
pub fn op_node_gen_prime(#[number] size: usize) -> ToJsBuffer {
gen_prime(size)
}
#[op2(async)]
#[serde]
pub async fn op_node_gen_prime_async(
#[number] size: usize,
) -> Result<ToJsBuffer, AnyError> {
Ok(spawn_blocking(move || gen_prime(size)).await?)
}
#[op2]
#[buffer]
pub fn op_node_diffie_hellman(
#[cppgc] private: &KeyObjectHandle,
#[cppgc] public: &KeyObjectHandle,
) -> Result<Box<[u8]>, AnyError> {
let private = private
.as_private_key()
.ok_or_else(|| type_error("Expected private key"))?;
let public = public
.as_public_key()
.ok_or_else(|| type_error("Expected public key"))?;
let res = match (private, &*public) {
(
AsymmetricPrivateKey::Ec(EcPrivateKey::P224(private)),
AsymmetricPublicKey::Ec(EcPublicKey::P224(public)),
) => p224::ecdh::diffie_hellman(
private.to_nonzero_scalar(),
public.as_affine(),
)
.raw_secret_bytes()
.to_vec()
.into_boxed_slice(),
(
AsymmetricPrivateKey::Ec(EcPrivateKey::P256(private)),
AsymmetricPublicKey::Ec(EcPublicKey::P256(public)),
) => p256::ecdh::diffie_hellman(
private.to_nonzero_scalar(),
public.as_affine(),
)
.raw_secret_bytes()
.to_vec()
.into_boxed_slice(),
(
AsymmetricPrivateKey::Ec(EcPrivateKey::P384(private)),
AsymmetricPublicKey::Ec(EcPublicKey::P384(public)),
) => p384::ecdh::diffie_hellman(
private.to_nonzero_scalar(),
public.as_affine(),
)
.raw_secret_bytes()
.to_vec()
.into_boxed_slice(),
(
AsymmetricPrivateKey::X25519(private),
AsymmetricPublicKey::X25519(public),
) => private
.diffie_hellman(public)
.to_bytes()
.into_iter()
.collect(),
(AsymmetricPrivateKey::Dh(private), AsymmetricPublicKey::Dh(public)) => {
if private.params.prime != public.params.prime
|| private.params.base != public.params.base
{
return Err(type_error("DH parameters mismatch"));
}
// OSIP - Octet-String-to-Integer primitive
let public_key = public.key.clone().into_vec();
let pubkey = BigUint::from_bytes_be(&public_key);
// Exponentiation (z = y^x mod p)
let prime = BigUint::from_bytes_be(private.params.prime.as_bytes());
let private_key = private.key.clone().into_vec();
let private_key = BigUint::from_bytes_be(&private_key);
let shared_secret = pubkey.modpow(&private_key, &prime);
shared_secret.to_bytes_be().into()
}
_ => {
return Err(type_error(
"Unsupported key type for diffie hellman, or key type mismatch",
))
}
};
Ok(res)
}