1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-06 22:35:51 -05:00
denoland-deno/ext/kv/codec.rs

544 lines
14 KiB
Rust
Raw Normal View History

// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license.
// Ported from https://github.com/foundationdb-rs/foundationdb-rs/blob/main/foundationdb/src/tuple/pack.rs
use crate::Key;
use crate::KeyPart;
//const NIL: u8 = 0x00;
const BYTES: u8 = 0x01;
const STRING: u8 = 0x02;
//const NESTED: u8 = 0x05;
const NEGINTSTART: u8 = 0x0b;
const INTZERO: u8 = 0x14;
const POSINTEND: u8 = 0x1d;
//const FLOAT: u8 = 0x20;
const DOUBLE: u8 = 0x21;
const FALSE: u8 = 0x26;
const TRUE: u8 = 0x27;
const ESCAPE: u8 = 0xff;
const CANONICAL_NAN_POS: u64 = 0x7ff8000000000000u64;
const CANONICAL_NAN_NEG: u64 = 0xfff8000000000000u64;
pub fn canonicalize_f64(n: f64) -> f64 {
if n.is_nan() {
if n.is_sign_negative() {
f64::from_bits(CANONICAL_NAN_NEG)
} else {
f64::from_bits(CANONICAL_NAN_POS)
}
} else {
n
}
}
pub fn encode_key(key: &Key) -> std::io::Result<Vec<u8>> {
let mut output: Vec<u8> = vec![];
for part in &key.0 {
match part {
KeyPart::String(key) => {
output.push(STRING);
escape_raw_bytes_into(&mut output, key.as_bytes());
output.push(0);
}
KeyPart::Int(key) => {
bigint::encode_into(&mut output, key)?;
}
KeyPart::Float(key) => {
double::encode_into(&mut output, *key);
}
KeyPart::Bytes(key) => {
output.push(BYTES);
escape_raw_bytes_into(&mut output, key);
output.push(0);
}
KeyPart::False => {
output.push(FALSE);
}
KeyPart::True => {
output.push(TRUE);
}
}
}
Ok(output)
}
pub fn decode_key(mut bytes: &[u8]) -> std::io::Result<Key> {
let mut key = Key(vec![]);
while !bytes.is_empty() {
let tag = bytes[0];
bytes = &bytes[1..];
let next_bytes = match tag {
self::STRING => {
let (next_bytes, data) = parse_slice(bytes)?;
let data = String::from_utf8(data).map_err(|_| {
std::io::Error::new(std::io::ErrorKind::InvalidData, "invalid utf8")
})?;
key.0.push(KeyPart::String(data));
next_bytes
}
self::NEGINTSTART..=self::POSINTEND => {
let (next_bytes, data) = bigint::decode_from(bytes, tag)?;
key.0.push(KeyPart::Int(data));
next_bytes
}
self::DOUBLE => {
let (next_bytes, data) = double::decode_from(bytes)?;
key.0.push(KeyPart::Float(data));
next_bytes
}
self::BYTES => {
let (next_bytes, data) = parse_slice(bytes)?;
key.0.push(KeyPart::Bytes(data));
next_bytes
}
self::FALSE => {
key.0.push(KeyPart::False);
bytes
}
self::TRUE => {
key.0.push(KeyPart::True);
bytes
}
_ => {
return Err(std::io::Error::new(
std::io::ErrorKind::InvalidData,
"invalid tag",
))
}
};
bytes = next_bytes;
}
Ok(key)
}
fn escape_raw_bytes_into(out: &mut Vec<u8>, x: &[u8]) {
for &b in x {
out.push(b);
if b == 0 {
out.push(ESCAPE);
}
}
}
mod bigint {
use num_bigint::BigInt;
use num_bigint::Sign;
use super::parse_byte;
use super::parse_bytes;
const MAX_SZ: usize = 8;
// Ported from https://github.com/foundationdb-rs/foundationdb-rs/blob/7415e116d5d96c2630976058de28e439eed7e809/foundationdb/src/tuple/pack.rs#L575
pub fn encode_into(out: &mut Vec<u8>, key: &BigInt) -> std::io::Result<()> {
if key.sign() == Sign::NoSign {
out.push(super::INTZERO);
return Ok(());
}
let (sign, mut bytes) = key.to_bytes_be();
let n = bytes.len();
match sign {
Sign::Minus => {
if n <= MAX_SZ {
out.push(super::INTZERO - n as u8);
} else {
out.extend_from_slice(&[super::NEGINTSTART, bigint_n(n)? ^ 0xff]);
}
invert(&mut bytes);
out.extend_from_slice(&bytes);
}
Sign::NoSign => unreachable!(),
Sign::Plus => {
if n <= MAX_SZ {
out.push(super::INTZERO + n as u8);
} else {
out.extend_from_slice(&[super::POSINTEND, bigint_n(n)?]);
}
out.extend_from_slice(&bytes);
}
}
Ok(())
}
pub fn decode_from(
input: &[u8],
tag: u8,
) -> std::io::Result<(&[u8], BigInt)> {
if super::INTZERO <= tag && tag <= super::INTZERO + MAX_SZ as u8 {
let n = (tag - super::INTZERO) as usize;
let (input, bytes) = parse_bytes(input, n)?;
Ok((input, BigInt::from_bytes_be(Sign::Plus, bytes)))
} else if super::INTZERO - MAX_SZ as u8 <= tag && tag < super::INTZERO {
let n = (super::INTZERO - tag) as usize;
let (input, bytes) = parse_bytes(input, n)?;
Ok((input, BigInt::from_bytes_be(Sign::Minus, &inverted(bytes))))
} else if tag == super::NEGINTSTART {
let (input, raw_length) = parse_byte(input)?;
let n = usize::from(raw_length ^ 0xff);
let (input, bytes) = parse_bytes(input, n)?;
Ok((input, BigInt::from_bytes_be(Sign::Minus, &inverted(bytes))))
} else if tag == super::POSINTEND {
let (input, raw_length) = parse_byte(input)?;
let n: usize = usize::from(raw_length);
let (input, bytes) = parse_bytes(input, n)?;
Ok((input, BigInt::from_bytes_be(Sign::Plus, bytes)))
} else {
Err(std::io::Error::new(
std::io::ErrorKind::InvalidData,
format!("unknown bigint tag: {}", tag),
))
}
}
fn invert(bytes: &mut [u8]) {
// The ones' complement of a binary number is defined as the value
// obtained by inverting all the bits in the binary representation
// of the number (swapping 0s for 1s and vice versa).
for byte in bytes.iter_mut() {
*byte = !*byte;
}
}
fn inverted(bytes: &[u8]) -> Vec<u8> {
// The ones' complement of a binary number is defined as the value
// obtained by inverting all the bits in the binary representation
// of the number (swapping 0s for 1s and vice versa).
bytes.iter().map(|byte| !*byte).collect()
}
fn bigint_n(n: usize) -> std::io::Result<u8> {
u8::try_from(n).map_err(|_| {
std::io::Error::new(
std::io::ErrorKind::InvalidInput,
"BigUint requires more than 255 bytes to be represented",
)
})
}
}
mod double {
macro_rules! sign_bit {
($type:ident) => {
(1 << (std::mem::size_of::<$type>() * 8 - 1))
};
}
fn f64_to_ux_be_bytes(f: f64) -> [u8; 8] {
let u = if f.is_sign_negative() {
f.to_bits() ^ ::std::u64::MAX
} else {
f.to_bits() ^ sign_bit!(u64)
};
u.to_be_bytes()
}
pub fn encode_into(out: &mut Vec<u8>, x: f64) {
out.push(super::DOUBLE);
out.extend_from_slice(&f64_to_ux_be_bytes(super::canonicalize_f64(x)));
}
pub fn decode_from(input: &[u8]) -> std::io::Result<(&[u8], f64)> {
let (input, bytes) = super::parse_bytes(input, 8)?;
let mut arr = [0u8; 8];
arr.copy_from_slice(bytes);
let u = u64::from_be_bytes(arr);
Ok((
input,
f64::from_bits(if (u & sign_bit!(u64)) == 0 {
u ^ ::std::u64::MAX
} else {
u ^ sign_bit!(u64)
}),
))
}
}
#[inline]
fn parse_bytes(input: &[u8], num: usize) -> std::io::Result<(&[u8], &[u8])> {
if input.len() < num {
Err(std::io::ErrorKind::UnexpectedEof.into())
} else {
Ok((&input[num..], &input[..num]))
}
}
#[inline]
fn parse_byte(input: &[u8]) -> std::io::Result<(&[u8], u8)> {
if input.is_empty() {
Err(std::io::ErrorKind::UnexpectedEof.into())
} else {
Ok((&input[1..], input[0]))
}
}
fn parse_slice(input: &[u8]) -> std::io::Result<(&[u8], Vec<u8>)> {
let mut output: Vec<u8> = Vec::new();
let mut i = 0usize;
while i < input.len() {
let byte = input[i];
i += 1;
if byte == 0 {
if input.get(i).copied() == Some(ESCAPE) {
output.push(0);
i += 1;
continue;
} else {
return Ok((&input[i..], output));
}
}
output.push(byte);
}
Err(std::io::ErrorKind::UnexpectedEof.into())
}
#[cfg(test)]
mod tests {
use num_bigint::BigInt;
use std::cmp::Ordering;
use crate::Key;
use crate::KeyPart;
use super::decode_key;
use super::encode_key;
fn roundtrip(key: Key) {
let bytes = encode_key(&key).unwrap();
let decoded = decode_key(&bytes).unwrap();
assert_eq!(&key, &decoded);
assert_eq!(format!("{:?}", key), format!("{:?}", decoded));
}
fn check_order(a: Key, b: Key, expected: Ordering) {
let a_bytes = encode_key(&a).unwrap();
let b_bytes = encode_key(&b).unwrap();
assert_eq!(a.cmp(&b), expected);
assert_eq!(a_bytes.cmp(&b_bytes), expected);
}
fn check_bijection(key: Key, serialized: &[u8]) {
let bytes = encode_key(&key).unwrap();
assert_eq!(&bytes[..], serialized);
let decoded = decode_key(serialized).unwrap();
assert_eq!(&key, &decoded);
}
#[test]
fn simple_roundtrip() {
roundtrip(Key(vec![
KeyPart::Bytes(vec![0, 1, 2, 3, 0xff, 0x00, 0xff, 0x00]),
KeyPart::String("foo".to_string()),
KeyPart::Float(-f64::NAN),
KeyPart::Float(-f64::INFINITY),
KeyPart::Float(-42.1),
KeyPart::Float(-0.0),
KeyPart::Float(0.0),
KeyPart::Float(42.1),
KeyPart::Float(f64::INFINITY),
KeyPart::Float(f64::NAN),
KeyPart::Int(BigInt::from(-10000)),
KeyPart::Int(BigInt::from(-1)),
KeyPart::Int(BigInt::from(0)),
KeyPart::Int(BigInt::from(1)),
KeyPart::Int(BigInt::from(10000)),
KeyPart::False,
KeyPart::True,
]));
}
#[test]
#[rustfmt::skip]
fn order_bytes() {
check_order(
Key(vec![KeyPart::Bytes(vec![0, 1, 2, 3, 0xff, 0x00, 0xff, 0x00])]),
Key(vec![KeyPart::Bytes(vec![0, 1, 2, 3, 0xff, 0x00, 0xff, 0x00])]),
Ordering::Equal,
);
check_order(
Key(vec![KeyPart::Bytes(vec![0, 1, 2, 3, 0xff, 0x00, 0xff, 0x00])]),
Key(vec![KeyPart::Bytes(vec![0, 1, 2, 3, 0xff, 0x00, 0xff, 0x01])]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Bytes(vec![0, 1, 2, 3, 0xff, 0x00, 0xff, 0x01])]),
Key(vec![KeyPart::Bytes(vec![0, 1, 2, 3, 0xff, 0x00, 0xff, 0x00])]),
Ordering::Greater,
);
check_order(
Key(vec![KeyPart::Bytes(vec![0, 1, 2, 3, 0xff, 0x00, 0xff, 0x00])]),
Key(vec![KeyPart::Bytes(vec![0, 1, 2, 3, 0xff, 0x00, 0xff, 0x00, 0x00])]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Bytes(vec![0, 1, 2, 3, 0xff, 0x00, 0xff, 0x00, 0x00])]),
Key(vec![KeyPart::Bytes(vec![0, 1, 2, 3, 0xff, 0x00, 0xff, 0x00])]),
Ordering::Greater,
);
}
#[test]
#[rustfmt::skip]
fn order_tags() {
check_order(
Key(vec![KeyPart::Bytes(vec![])]),
Key(vec![KeyPart::String("".into())]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::String("".into())]),
Key(vec![KeyPart::Int(BigInt::from(0))]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Int(BigInt::from(0))]),
Key(vec![KeyPart::Float(0.0)]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Float(0.0)]),
Key(vec![KeyPart::False]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::False]),
Key(vec![KeyPart::True]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::True]),
Key(vec![KeyPart::Bytes(vec![])]),
Ordering::Greater,
);
}
#[test]
#[rustfmt::skip]
fn order_floats() {
check_order(
Key(vec![KeyPart::Float(-f64::NAN)]),
Key(vec![KeyPart::Float(-f64::INFINITY)]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Float(-f64::INFINITY)]),
Key(vec![KeyPart::Float(-10.0)]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Float(-10.0)]),
Key(vec![KeyPart::Float(-0.0)]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Float(-0.0)]),
Key(vec![KeyPart::Float(0.0)]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Float(0.0)]),
Key(vec![KeyPart::Float(10.0)]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Float(10.0)]),
Key(vec![KeyPart::Float(f64::INFINITY)]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Float(f64::INFINITY)]),
Key(vec![KeyPart::Float(f64::NAN)]),
Ordering::Less,
);
}
#[test]
#[rustfmt::skip]
fn order_ints() {
check_order(
Key(vec![KeyPart::Int(BigInt::from(-10000))]),
Key(vec![KeyPart::Int(BigInt::from(-100))]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Int(BigInt::from(-100))]),
Key(vec![KeyPart::Int(BigInt::from(-1))]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Int(BigInt::from(-1))]),
Key(vec![KeyPart::Int(BigInt::from(0))]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Int(BigInt::from(0))]),
Key(vec![KeyPart::Int(BigInt::from(1))]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Int(BigInt::from(1))]),
Key(vec![KeyPart::Int(BigInt::from(100))]),
Ordering::Less,
);
check_order(
Key(vec![KeyPart::Int(BigInt::from(100))]),
Key(vec![KeyPart::Int(BigInt::from(10000))]),
Ordering::Less,
);
}
#[test]
#[rustfmt::skip]
fn float_canonicalization() {
let key1 = Key(vec![KeyPart::Float(f64::from_bits(0x7ff8000000000001))]);
let key2 = Key(vec![KeyPart::Float(f64::from_bits(0x7ff8000000000002))]);
assert_eq!(key1, key2);
assert_eq!(encode_key(&key1).unwrap(), encode_key(&key2).unwrap());
}
#[test]
#[rustfmt::skip]
fn explicit_bijection() {
// string
check_bijection(
Key(vec![KeyPart::String("hello".into())]),
&[0x02, 0x68, 0x65, 0x6c, 0x6c, 0x6f, 0x00],
);
// zero byte escape
check_bijection(
Key(vec![KeyPart::Bytes(vec![0x01, 0x02, 0x00, 0x07, 0x08])]),
&[0x01, 0x01, 0x02, 0x00, 0xff, 0x07, 0x08, 0x00],
);
// array
check_bijection(
Key(vec![
KeyPart::String("hello".into()),
KeyPart::Bytes(vec![0x01, 0x02, 0x00, 0x07, 0x08]),
]),
&[
0x02, 0x68, 0x65, 0x6c, 0x6c, 0x6f, 0x00, /* string */
0x01, 0x01, 0x02, 0x00, 0xff, 0x07, 0x08, 0x00, /* bytes */
],
);
}
}