1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-09 23:58:23 -05:00
denoland-deno/ext/web/stream_resource.rs

679 lines
18 KiB
Rust
Raw Normal View History

// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license.
use bytes::BytesMut;
use deno_core::error::type_error;
use deno_core::error::AnyError;
use deno_core::external;
use deno_core::op2;
use deno_core::serde_v8::V8Slice;
use deno_core::unsync::TaskQueue;
use deno_core::AsyncResult;
use deno_core::BufView;
use deno_core::CancelFuture;
use deno_core::CancelHandle;
use deno_core::ExternalPointer;
use deno_core::JsBuffer;
use deno_core::OpState;
use deno_core::RcLike;
use deno_core::RcRef;
use deno_core::Resource;
use deno_core::ResourceId;
use futures::future::poll_fn;
use std::borrow::Cow;
use std::cell::RefCell;
use std::cell::RefMut;
use std::ffi::c_void;
use std::future::Future;
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::pin::Pin;
use std::rc::Rc;
use std::task::Context;
use std::task::Poll;
use std::task::Waker;
// How many buffers we'll allow in the channel before we stop allowing writes.
const BUFFER_CHANNEL_SIZE: u16 = 1024;
// How much data is in the channel before we stop allowing writes.
const BUFFER_BACKPRESSURE_LIMIT: usize = 64 * 1024;
// Optimization: prevent multiple small writes from adding overhead.
//
// If the total size of the channel is less than this value and there is more than one buffer available
// to read, we will allocate a buffer to store the entire contents of the channel and copy each value from
// the channel rather than yielding them one at a time.
const BUFFER_AGGREGATION_LIMIT: usize = 1024;
struct BoundedBufferChannelInner {
buffers: [MaybeUninit<V8Slice<u8>>; BUFFER_CHANNEL_SIZE as _],
ring_producer: u16,
ring_consumer: u16,
error: Option<AnyError>,
current_size: usize,
// TODO(mmastrac): we can math this field instead of accounting for it
len: usize,
closed: bool,
read_waker: Option<Waker>,
write_waker: Option<Waker>,
_unsend: PhantomData<std::sync::MutexGuard<'static, ()>>,
}
impl Default for BoundedBufferChannelInner {
fn default() -> Self {
Self::new()
}
}
impl std::fmt::Debug for BoundedBufferChannelInner {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!(
"[BoundedBufferChannel closed={} error={:?} ring={}->{} len={} size={}]",
self.closed,
self.error,
self.ring_producer,
self.ring_consumer,
self.len,
self.current_size
))
}
}
impl BoundedBufferChannelInner {
pub fn new() -> Self {
const UNINIT: MaybeUninit<V8Slice<u8>> = MaybeUninit::uninit();
Self {
buffers: [UNINIT; BUFFER_CHANNEL_SIZE as _],
ring_producer: 0,
ring_consumer: 0,
len: 0,
closed: false,
error: None,
current_size: 0,
read_waker: None,
write_waker: None,
_unsend: PhantomData,
}
}
/// # Safety
///
/// This doesn't check whether `ring_consumer` is valid, so you'd better make sure it is before
/// calling this.
#[inline(always)]
unsafe fn next_unsafe(&mut self) -> &mut V8Slice<u8> {
self
.buffers
.get_unchecked_mut(self.ring_consumer as usize)
.assume_init_mut()
}
/// # Safety
///
/// This doesn't check whether `ring_consumer` is valid, so you'd better make sure it is before
/// calling this.
#[inline(always)]
unsafe fn take_next_unsafe(&mut self) -> V8Slice<u8> {
let res = std::ptr::read(self.next_unsafe());
self.ring_consumer = (self.ring_consumer + 1) % BUFFER_CHANNEL_SIZE;
res
}
fn drain(&mut self, mut f: impl FnMut(V8Slice<u8>)) {
while self.ring_producer != self.ring_consumer {
// SAFETY: We know the ring indexes are valid
let res = unsafe { std::ptr::read(self.next_unsafe()) };
self.ring_consumer = (self.ring_consumer + 1) % BUFFER_CHANNEL_SIZE;
f(res);
}
self.current_size = 0;
self.ring_producer = 0;
self.ring_consumer = 0;
self.len = 0;
}
pub fn read(&mut self, limit: usize) -> Result<Option<BufView>, AnyError> {
// Empty buffers will return the error, if one exists, or None
if self.len == 0 {
if let Some(error) = self.error.take() {
return Err(error);
} else {
return Ok(None);
}
}
// If we have less than the aggregation limit AND we have more than one buffer in the channel,
// aggregate and return everything in a single buffer.
if limit >= BUFFER_AGGREGATION_LIMIT
&& self.current_size <= BUFFER_AGGREGATION_LIMIT
&& self.len > 1
{
let mut bytes = BytesMut::with_capacity(BUFFER_AGGREGATION_LIMIT);
self.drain(|slice| {
bytes.extend_from_slice(slice.as_ref());
});
// We can always write again
if let Some(waker) = self.write_waker.take() {
waker.wake();
}
return Ok(Some(BufView::from(bytes.freeze())));
}
// SAFETY: We know this exists
let buf = unsafe { self.next_unsafe() };
let buf = if buf.len() <= limit {
self.current_size -= buf.len();
self.len -= 1;
// SAFETY: We know this exists
unsafe { self.take_next_unsafe() }
} else {
let buf = buf.split_to(limit);
self.current_size -= limit;
buf
};
// If current_size is zero, len must be zero (and if not, len must not be)
debug_assert!(
!((self.current_size == 0) ^ (self.len == 0)),
"Length accounting mismatch: {self:?}"
);
if self.write_waker.is_some() {
// We may be able to write again if we have buffer and byte room in the channel
if self.can_write() {
if let Some(waker) = self.write_waker.take() {
waker.wake();
}
}
}
Ok(Some(BufView::from(JsBuffer::from_parts(buf))))
}
pub fn write(&mut self, buffer: V8Slice<u8>) -> Result<(), V8Slice<u8>> {
let next_producer_index = (self.ring_producer + 1) % BUFFER_CHANNEL_SIZE;
if next_producer_index == self.ring_consumer {
return Err(buffer);
}
self.current_size += buffer.len();
// SAFETY: we know the ringbuffer bounds are correct
unsafe {
*self.buffers.get_unchecked_mut(self.ring_producer as usize) =
MaybeUninit::new(buffer)
};
self.ring_producer = next_producer_index;
self.len += 1;
debug_assert!(self.ring_producer != self.ring_consumer);
if let Some(waker) = self.read_waker.take() {
waker.wake();
}
Ok(())
}
pub fn write_error(&mut self, error: AnyError) {
self.error = Some(error);
if let Some(waker) = self.read_waker.take() {
waker.wake();
}
}
#[inline(always)]
pub fn can_read(&self) -> bool {
// Read will return if:
// - the stream is closed
// - there is an error
// - the stream is not empty
self.closed
|| self.error.is_some()
|| self.ring_consumer != self.ring_producer
}
#[inline(always)]
pub fn can_write(&self) -> bool {
// Write will return if:
// - the stream is closed
// - there is an error
// - the stream is not full (either buffer or byte count)
let next_producer_index = (self.ring_producer + 1) % BUFFER_CHANNEL_SIZE;
self.closed
|| self.error.is_some()
|| (next_producer_index != self.ring_consumer
&& self.current_size < BUFFER_BACKPRESSURE_LIMIT)
}
pub fn poll_read_ready(&mut self, cx: &mut Context) -> Poll<()> {
if !self.can_read() {
self.read_waker = Some(cx.waker().clone());
Poll::Pending
} else {
self.read_waker.take();
Poll::Ready(())
}
}
pub fn poll_write_ready(&mut self, cx: &mut Context) -> Poll<()> {
if !self.can_write() {
self.write_waker = Some(cx.waker().clone());
Poll::Pending
} else {
self.write_waker.take();
Poll::Ready(())
}
}
pub fn close(&mut self) {
self.closed = true;
// Wake up reads and writes, since they'll both be able to proceed forever now
if let Some(waker) = self.write_waker.take() {
waker.wake();
}
if let Some(waker) = self.read_waker.take() {
waker.wake();
}
}
}
#[repr(transparent)]
#[derive(Clone, Default)]
struct BoundedBufferChannel {
inner: Rc<RefCell<BoundedBufferChannelInner>>,
}
impl BoundedBufferChannel {
// TODO(mmastrac): in release mode we should be able to make this an UnsafeCell
#[inline(always)]
fn inner(&self) -> RefMut<BoundedBufferChannelInner> {
self.inner.borrow_mut()
}
pub fn read(&self, limit: usize) -> Result<Option<BufView>, AnyError> {
self.inner().read(limit)
}
pub fn write(&self, buffer: V8Slice<u8>) -> Result<(), V8Slice<u8>> {
self.inner().write(buffer)
}
pub fn write_error(&self, error: AnyError) {
self.inner().write_error(error)
}
pub fn can_write(&self) -> bool {
self.inner().can_write()
}
pub fn poll_read_ready(&self, cx: &mut Context) -> Poll<()> {
self.inner().poll_read_ready(cx)
}
pub fn poll_write_ready(&self, cx: &mut Context) -> Poll<()> {
self.inner().poll_write_ready(cx)
}
pub fn closed(&self) -> bool {
self.inner().closed
}
#[cfg(test)]
pub fn byte_size(&self) -> usize {
self.inner().current_size
}
pub fn close(&self) {
self.inner().close()
}
}
#[allow(clippy::type_complexity)]
struct ReadableStreamResource {
read_queue: Rc<TaskQueue>,
channel: BoundedBufferChannel,
cancel_handle: CancelHandle,
data: ReadableStreamResourceData,
}
impl ReadableStreamResource {
pub fn cancel_handle(self: &Rc<Self>) -> impl RcLike<CancelHandle> {
RcRef::map(self, |s| &s.cancel_handle).clone()
}
async fn read(self: Rc<Self>, limit: usize) -> Result<BufView, AnyError> {
let cancel_handle = self.cancel_handle();
// Serialize all the reads using a task queue.
let _read_permit = self.read_queue.acquire().await;
poll_fn(|cx| self.channel.poll_read_ready(cx))
.or_cancel(cancel_handle)
.await?;
self
.channel
.read(limit)
.map(|buf| buf.unwrap_or_else(BufView::empty))
}
fn close_channel(&self) {
// Trigger the promise in JS to cancel the stream if necessarily
self.data.completion.complete(true);
// Cancel any outstanding read requests
self.cancel_handle.cancel();
// Close the channel to wake up anyone waiting
self.channel.close();
}
}
impl Resource for ReadableStreamResource {
fn name(&self) -> Cow<str> {
Cow::Borrowed("readableStream")
}
fn read(self: Rc<Self>, limit: usize) -> AsyncResult<BufView> {
Box::pin(ReadableStreamResource::read(self, limit))
}
fn close(self: Rc<Self>) {
self.close_channel();
}
}
impl Drop for ReadableStreamResource {
fn drop(&mut self) {
self.close_channel();
}
}
// TODO(mmastrac): Move this to deno_core
#[derive(Clone, Debug, Default)]
pub struct CompletionHandle {
inner: Rc<RefCell<CompletionHandleInner>>,
}
#[derive(Debug, Default)]
struct CompletionHandleInner {
complete: bool,
success: bool,
waker: Option<Waker>,
}
impl CompletionHandle {
pub fn complete(&self, success: bool) {
let mut mut_self = self.inner.borrow_mut();
mut_self.complete = true;
mut_self.success = success;
if let Some(waker) = mut_self.waker.take() {
drop(mut_self);
waker.wake();
}
}
}
impl Future for CompletionHandle {
type Output = bool;
fn poll(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Self::Output> {
let mut mut_self = self.inner.borrow_mut();
if mut_self.complete {
return std::task::Poll::Ready(mut_self.success);
}
mut_self.waker = Some(cx.waker().clone());
std::task::Poll::Pending
}
}
/// Allocate a resource that wraps a ReadableStream.
#[op2(fast)]
#[smi]
pub fn op_readable_stream_resource_allocate(state: &mut OpState) -> ResourceId {
let completion = CompletionHandle::default();
let resource = ReadableStreamResource {
read_queue: Default::default(),
cancel_handle: Default::default(),
channel: BoundedBufferChannel::default(),
data: ReadableStreamResourceData { completion },
};
state.resource_table.add(resource)
}
#[op2(fast)]
pub fn op_readable_stream_resource_get_sink(
state: &mut OpState,
#[smi] rid: ResourceId,
) -> *const c_void {
let Ok(resource) = state.resource_table.get::<ReadableStreamResource>(rid)
else {
return std::ptr::null();
};
ExternalPointer::new(resource.channel.clone()).into_raw()
}
external!(BoundedBufferChannel, "stream resource channel");
fn get_sender(sender: *const c_void) -> BoundedBufferChannel {
// SAFETY: We know this is a valid v8::External
unsafe {
ExternalPointer::<BoundedBufferChannel>::from_raw(sender)
.unsafely_deref()
.clone()
}
}
fn drop_sender(sender: *const c_void) {
// SAFETY: We know this is a valid v8::External
unsafe {
ExternalPointer::<BoundedBufferChannel>::from_raw(sender).unsafely_take();
}
}
#[op2(async)]
pub fn op_readable_stream_resource_write_buf(
sender: *const c_void,
#[buffer] buffer: JsBuffer,
) -> impl Future<Output = bool> {
let sender = get_sender(sender);
async move {
poll_fn(|cx| sender.poll_write_ready(cx)).await;
sender.write(buffer.into_parts()).unwrap();
!sender.closed()
}
}
/// Write to the channel synchronously, returning 0 if the channel was closed, 1 if we wrote
/// successfully, 2 if the channel was full and we need to block.
#[op2(fast)]
pub fn op_readable_stream_resource_write_sync(
sender: *const c_void,
#[buffer] buffer: JsBuffer,
) -> u32 {
let sender = get_sender(sender);
if sender.can_write() {
if sender.closed() {
0
} else {
sender.write(buffer.into_parts()).unwrap();
1
}
} else {
2
}
}
#[op2(fast)]
pub fn op_readable_stream_resource_write_error(
sender: *const c_void,
#[string] error: String,
) -> bool {
let sender = get_sender(sender);
// We can always write an error, no polling required
sender.write_error(type_error(Cow::Owned(error)));
!sender.closed()
}
#[op2(fast)]
#[smi]
pub fn op_readable_stream_resource_close(sender: *const c_void) {
get_sender(sender).close();
drop_sender(sender);
}
#[op2(async)]
pub fn op_readable_stream_resource_await_close(
state: &mut OpState,
#[smi] rid: ResourceId,
) -> impl Future<Output = ()> {
let completion = state
.resource_table
.get::<ReadableStreamResource>(rid)
.ok()
.map(|r| r.data.completion.clone());
async move {
if let Some(completion) = completion {
completion.await;
}
}
}
struct ReadableStreamResourceData {
completion: CompletionHandle,
}
impl Drop for ReadableStreamResourceData {
fn drop(&mut self) {
self.completion.complete(true);
}
}
#[cfg(test)]
mod tests {
use super::*;
use deno_core::v8;
use std::cell::OnceCell;
use std::sync::atomic::AtomicUsize;
use std::sync::OnceLock;
use std::time::Duration;
static V8_GLOBAL: OnceLock<()> = OnceLock::new();
thread_local! {
static ISOLATE: OnceCell<std::sync::Mutex<v8::OwnedIsolate>> = OnceCell::new();
}
fn with_isolate<T>(mut f: impl FnMut(&mut v8::Isolate) -> T) -> T {
V8_GLOBAL.get_or_init(|| {
let platform =
v8::new_unprotected_default_platform(0, false).make_shared();
v8::V8::initialize_platform(platform);
v8::V8::initialize();
});
ISOLATE.with(|cell| {
let mut isolate = cell
.get_or_init(|| {
std::sync::Mutex::new(v8::Isolate::new(Default::default()))
})
.try_lock()
.unwrap();
f(&mut isolate)
})
}
fn create_buffer(byte_length: usize) -> V8Slice<u8> {
with_isolate(|isolate| {
let ptr = v8::ArrayBuffer::new_backing_store(isolate, byte_length);
// SAFETY: we just made this
unsafe { V8Slice::from_parts(ptr.into(), 0..byte_length) }
})
}
#[test]
fn test_bounded_buffer_channel() {
let channel = BoundedBufferChannel::default();
for _ in 0..BUFFER_CHANNEL_SIZE - 1 {
channel.write(create_buffer(1024)).unwrap();
}
}
#[tokio::test(flavor = "current_thread")]
async fn test_multi_task() {
let channel = BoundedBufferChannel::default();
let channel_send = channel.clone();
// Fast writer
let a = deno_core::unsync::spawn(async move {
for _ in 0..BUFFER_CHANNEL_SIZE * 2 {
poll_fn(|cx| channel_send.poll_write_ready(cx)).await;
channel_send
.write(create_buffer(BUFFER_AGGREGATION_LIMIT))
.unwrap();
}
});
// Slightly slower reader
let b = deno_core::unsync::spawn(async move {
for _ in 0..BUFFER_CHANNEL_SIZE * 2 {
tokio::time::sleep(Duration::from_millis(1)).await;
poll_fn(|cx| channel.poll_read_ready(cx)).await;
channel.read(BUFFER_AGGREGATION_LIMIT).unwrap();
}
});
a.await.unwrap();
b.await.unwrap();
}
#[tokio::test(flavor = "current_thread")]
async fn test_multi_task_small_reads() {
let channel = BoundedBufferChannel::default();
let channel_send = channel.clone();
let total_send = Rc::new(AtomicUsize::new(0));
let total_send_task = total_send.clone();
let total_recv = Rc::new(AtomicUsize::new(0));
let total_recv_task = total_recv.clone();
// Fast writer
let a = deno_core::unsync::spawn(async move {
for _ in 0..BUFFER_CHANNEL_SIZE * 2 {
poll_fn(|cx| channel_send.poll_write_ready(cx)).await;
channel_send.write(create_buffer(16)).unwrap();
total_send_task.fetch_add(16, std::sync::atomic::Ordering::SeqCst);
}
// We need to close because we may get aggregated packets and we want a signal
channel_send.close();
});
// Slightly slower reader
let b = deno_core::unsync::spawn(async move {
for _ in 0..BUFFER_CHANNEL_SIZE * 2 {
poll_fn(|cx| channel.poll_read_ready(cx)).await;
// We want to make sure we're aggregating at least some packets
while channel.byte_size() <= 16 && !channel.closed() {
tokio::time::sleep(Duration::from_millis(1)).await;
}
let len = channel
.read(1024)
.unwrap()
.map(|b| b.len())
.unwrap_or_default();
total_recv_task.fetch_add(len, std::sync::atomic::Ordering::SeqCst);
}
});
a.await.unwrap();
b.await.unwrap();
assert_eq!(
total_send.load(std::sync::atomic::Ordering::SeqCst),
total_recv.load(std::sync::atomic::Ordering::SeqCst)
);
}
}