1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-06 22:35:51 -05:00
denoland-deno/ext/node/ops/crypto/mod.rs

1458 lines
39 KiB
Rust
Raw Normal View History

// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
use deno_core::error::generic_error;
use deno_core::error::type_error;
use deno_core::error::AnyError;
use deno_core::op2;
use deno_core::serde_v8::BigInt as V8BigInt;
use deno_core::unsync::spawn_blocking;
use deno_core::JsBuffer;
use deno_core::OpState;
use deno_core::ResourceId;
use deno_core::StringOrBuffer;
use deno_core::ToJsBuffer;
use hkdf::Hkdf;
use num_bigint::BigInt;
use num_bigint_dig::BigUint;
use num_traits::FromPrimitive;
use once_cell::sync::Lazy;
use rand::distributions::Distribution;
use rand::distributions::Uniform;
use rand::thread_rng;
use rand::Rng;
use rsa::pkcs1::DecodeRsaPrivateKey;
use rsa::pkcs8;
use rsa::pkcs8::der::asn1;
use rsa::pkcs8::der::Decode;
use rsa::pkcs8::der::Encode;
use rsa::pkcs8::der::Reader;
use std::future::Future;
use std::rc::Rc;
use p224::NistP224;
use p256::NistP256;
use p384::NistP384;
use rsa::pkcs8::DecodePrivateKey;
use rsa::pkcs8::DecodePublicKey;
2023-10-30 11:25:12 -04:00
use rsa::signature::hazmat::PrehashSigner;
use rsa::signature::hazmat::PrehashVerifier;
use rsa::signature::SignatureEncoding;
use rsa::Oaep;
use rsa::Pkcs1v15Encrypt;
use rsa::RsaPrivateKey;
use rsa::RsaPublicKey;
mod cipher;
mod dh;
mod digest;
mod primes;
pub mod x509;
#[op2(fast)]
pub fn op_node_check_prime(
#[bigint] num: i64,
#[number] checks: usize,
) -> bool {
primes::is_probably_prime(&BigInt::from(num), checks)
}
#[op2]
pub fn op_node_check_prime_bytes(
#[anybuffer] bytes: &[u8],
#[number] checks: usize,
) -> Result<bool, AnyError> {
let candidate = BigInt::from_bytes_be(num_bigint::Sign::Plus, bytes);
Ok(primes::is_probably_prime(&candidate, checks))
}
#[op2(async)]
pub async fn op_node_check_prime_async(
#[bigint] num: i64,
#[number] checks: usize,
) -> Result<bool, AnyError> {
// TODO(@littledivy): use rayon for CPU-bound tasks
Ok(
spawn_blocking(move || {
primes::is_probably_prime(&BigInt::from(num), checks)
})
.await?,
)
}
#[op2(async)]
pub fn op_node_check_prime_bytes_async(
#[anybuffer] bytes: &[u8],
#[number] checks: usize,
) -> Result<impl Future<Output = Result<bool, AnyError>>, AnyError> {
let candidate = BigInt::from_bytes_be(num_bigint::Sign::Plus, bytes);
// TODO(@littledivy): use rayon for CPU-bound tasks
Ok(async move {
Ok(
spawn_blocking(move || primes::is_probably_prime(&candidate, checks))
.await?,
)
})
}
#[op2(fast)]
#[smi]
pub fn op_node_create_hash(
state: &mut OpState,
#[string] algorithm: &str,
) -> u32 {
state
.resource_table
.add(match digest::Context::new(algorithm) {
Ok(context) => context,
Err(_) => return 0,
})
}
#[op2]
#[serde]
pub fn op_node_get_hashes() -> Vec<&'static str> {
digest::Hash::get_hashes()
}
#[op2(fast)]
pub fn op_node_hash_update(
state: &mut OpState,
#[smi] rid: u32,
#[buffer] data: &[u8],
) -> bool {
let context = match state.resource_table.get::<digest::Context>(rid) {
Ok(context) => context,
_ => return false,
};
context.update(data);
true
}
#[op2(fast)]
pub fn op_node_hash_update_str(
state: &mut OpState,
#[smi] rid: u32,
#[string] data: &str,
) -> bool {
let context = match state.resource_table.get::<digest::Context>(rid) {
Ok(context) => context,
_ => return false,
};
context.update(data.as_bytes());
true
}
#[op2]
#[serde]
pub fn op_node_hash_digest(
state: &mut OpState,
#[smi] rid: ResourceId,
) -> Result<ToJsBuffer, AnyError> {
let context = state.resource_table.take::<digest::Context>(rid)?;
let context = Rc::try_unwrap(context)
.map_err(|_| type_error("Hash context is already in use"))?;
Ok(context.digest()?.into())
}
#[op2]
#[string]
pub fn op_node_hash_digest_hex(
state: &mut OpState,
#[smi] rid: ResourceId,
) -> Result<String, AnyError> {
let context = state.resource_table.take::<digest::Context>(rid)?;
let context = Rc::try_unwrap(context)
.map_err(|_| type_error("Hash context is already in use"))?;
let digest = context.digest()?;
Ok(hex::encode(digest))
}
#[op2(fast)]
#[smi]
pub fn op_node_hash_clone(
state: &mut OpState,
#[smi] rid: ResourceId,
) -> Result<ResourceId, AnyError> {
let context = state.resource_table.get::<digest::Context>(rid)?;
Ok(state.resource_table.add(context.as_ref().clone()))
}
#[op2]
#[serde]
pub fn op_node_private_encrypt(
#[serde] key: StringOrBuffer,
#[serde] msg: StringOrBuffer,
#[smi] padding: u32,
) -> Result<ToJsBuffer, AnyError> {
let key = RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)?;
let mut rng = rand::thread_rng();
match padding {
1 => Ok(
key
2023-10-30 11:25:12 -04:00
.as_ref()
.encrypt(&mut rng, Pkcs1v15Encrypt, &msg)?
.into(),
),
4 => Ok(
key
2023-10-30 11:25:12 -04:00
.as_ref()
.encrypt(&mut rng, Oaep::new::<sha1::Sha1>(), &msg)?
.into(),
),
_ => Err(type_error("Unknown padding")),
}
}
#[op2]
#[serde]
pub fn op_node_private_decrypt(
#[serde] key: StringOrBuffer,
#[serde] msg: StringOrBuffer,
#[smi] padding: u32,
) -> Result<ToJsBuffer, AnyError> {
let key = RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)?;
match padding {
2023-10-30 11:25:12 -04:00
1 => Ok(key.decrypt(Pkcs1v15Encrypt, &msg)?.into()),
4 => Ok(key.decrypt(Oaep::new::<sha1::Sha1>(), &msg)?.into()),
_ => Err(type_error("Unknown padding")),
}
}
#[op2]
#[serde]
pub fn op_node_public_encrypt(
#[serde] key: StringOrBuffer,
#[serde] msg: StringOrBuffer,
#[smi] padding: u32,
) -> Result<ToJsBuffer, AnyError> {
let key = RsaPublicKey::from_public_key_pem((&key).try_into()?)?;
let mut rng = rand::thread_rng();
match padding {
2023-10-30 11:25:12 -04:00
1 => Ok(key.encrypt(&mut rng, Pkcs1v15Encrypt, &msg)?.into()),
4 => Ok(
key
2023-10-30 11:25:12 -04:00
.encrypt(&mut rng, Oaep::new::<sha1::Sha1>(), &msg)?
.into(),
),
_ => Err(type_error("Unknown padding")),
}
}
#[op2(fast)]
#[smi]
pub fn op_node_create_cipheriv(
state: &mut OpState,
#[string] algorithm: &str,
#[buffer] key: &[u8],
#[buffer] iv: &[u8],
) -> u32 {
state.resource_table.add(
match cipher::CipherContext::new(algorithm, key, iv) {
Ok(context) => context,
Err(_) => return 0,
},
)
}
#[op2(fast)]
pub fn op_node_cipheriv_set_aad(
state: &mut OpState,
#[smi] rid: u32,
#[buffer] aad: &[u8],
) -> bool {
let context = match state.resource_table.get::<cipher::CipherContext>(rid) {
Ok(context) => context,
Err(_) => return false,
};
context.set_aad(aad);
true
}
#[op2(fast)]
pub fn op_node_cipheriv_encrypt(
state: &mut OpState,
#[smi] rid: u32,
#[buffer] input: &[u8],
#[buffer] output: &mut [u8],
) -> bool {
let context = match state.resource_table.get::<cipher::CipherContext>(rid) {
Ok(context) => context,
Err(_) => return false,
};
context.encrypt(input, output);
true
}
#[op2]
#[serde]
pub fn op_node_cipheriv_final(
state: &mut OpState,
#[smi] rid: u32,
#[buffer] input: &[u8],
#[buffer] output: &mut [u8],
) -> Result<Option<Vec<u8>>, AnyError> {
let context = state.resource_table.take::<cipher::CipherContext>(rid)?;
let context = Rc::try_unwrap(context)
.map_err(|_| type_error("Cipher context is already in use"))?;
context.r#final(input, output)
}
#[op2(fast)]
#[smi]
pub fn op_node_create_decipheriv(
state: &mut OpState,
#[string] algorithm: &str,
#[buffer] key: &[u8],
#[buffer] iv: &[u8],
) -> u32 {
state.resource_table.add(
match cipher::DecipherContext::new(algorithm, key, iv) {
Ok(context) => context,
Err(_) => return 0,
},
)
}
#[op2(fast)]
pub fn op_node_decipheriv_set_aad(
state: &mut OpState,
#[smi] rid: u32,
#[buffer] aad: &[u8],
) -> bool {
let context = match state.resource_table.get::<cipher::DecipherContext>(rid) {
Ok(context) => context,
Err(_) => return false,
};
context.set_aad(aad);
true
}
#[op2(fast)]
pub fn op_node_decipheriv_decrypt(
state: &mut OpState,
#[smi] rid: u32,
#[buffer] input: &[u8],
#[buffer] output: &mut [u8],
) -> bool {
let context = match state.resource_table.get::<cipher::DecipherContext>(rid) {
Ok(context) => context,
Err(_) => return false,
};
context.decrypt(input, output);
true
}
#[op2(fast)]
pub fn op_node_decipheriv_final(
state: &mut OpState,
#[smi] rid: u32,
#[buffer] input: &[u8],
#[buffer] output: &mut [u8],
#[buffer] auth_tag: &[u8],
) -> Result<(), AnyError> {
let context = state.resource_table.take::<cipher::DecipherContext>(rid)?;
let context = Rc::try_unwrap(context)
.map_err(|_| type_error("Cipher context is already in use"))?;
context.r#final(input, output, auth_tag)
}
#[op2]
#[serde]
pub fn op_node_sign(
#[buffer] digest: &[u8],
#[string] digest_type: &str,
#[serde] key: StringOrBuffer,
#[string] _type: &str,
#[string] format: &str,
) -> Result<ToJsBuffer, AnyError> {
let (label, doc) =
pkcs8::SecretDocument::from_pem(std::str::from_utf8(&key).unwrap())?;
let oid;
let pkey = match format {
"pem" => {
if label == "PRIVATE KEY" {
let pk_info = pkcs8::PrivateKeyInfo::try_from(doc.as_bytes())?;
oid = pk_info.algorithm.oid;
pk_info.private_key
} else if label == "RSA PRIVATE KEY" {
oid = RSA_ENCRYPTION_OID;
doc.as_bytes()
} else {
return Err(type_error("Invalid PEM label"));
}
}
_ => return Err(type_error("Unsupported key format")),
};
match oid {
RSA_ENCRYPTION_OID => {
use rsa::pkcs1v15::SigningKey;
let key = RsaPrivateKey::from_pkcs1_der(pkey)?;
Ok(
match digest_type {
"sha224" => {
2023-10-30 11:25:12 -04:00
let signing_key = SigningKey::<sha2::Sha224>::new(key);
signing_key.sign_prehash(digest)?.to_vec()
}
"sha256" => {
2023-10-30 11:25:12 -04:00
let signing_key = SigningKey::<sha2::Sha256>::new(key);
signing_key.sign_prehash(digest)?.to_vec()
}
"sha384" => {
2023-10-30 11:25:12 -04:00
let signing_key = SigningKey::<sha2::Sha384>::new(key);
signing_key.sign_prehash(digest)?.to_vec()
}
"sha512" => {
2023-10-30 11:25:12 -04:00
let signing_key = SigningKey::<sha2::Sha512>::new(key);
signing_key.sign_prehash(digest)?.to_vec()
}
_ => {
return Err(type_error(format!(
"Unknown digest algorithm: {}",
digest_type
)))
}
}
.into(),
)
}
_ => Err(type_error("Unsupported signing key")),
}
}
#[op2]
pub fn op_node_verify(
#[buffer] digest: &[u8],
#[string] digest_type: &str,
#[serde] key: StringOrBuffer,
#[string] key_type: &str,
#[string] key_format: &str,
#[buffer] signature: &[u8],
) -> Result<bool, AnyError> {
match key_type {
"rsa" => {
use rsa::pkcs1v15::VerifyingKey;
let key = match key_format {
"pem" => RsaPublicKey::from_public_key_pem((&key).try_into()?)
.map_err(|_| type_error("Invalid RSA public key"))?,
// TODO(kt3k): Support der and jwk formats
_ => {
return Err(type_error(format!(
"Unsupported key format: {}",
key_format
)))
}
};
Ok(match digest_type {
2023-10-30 11:25:12 -04:00
"sha224" => VerifyingKey::<sha2::Sha224>::new(key)
.verify_prehash(digest, &signature.try_into()?)
.is_ok(),
2023-10-30 11:25:12 -04:00
"sha256" => VerifyingKey::<sha2::Sha256>::new(key)
.verify_prehash(digest, &signature.try_into()?)
.is_ok(),
2023-10-30 11:25:12 -04:00
"sha384" => VerifyingKey::<sha2::Sha384>::new(key)
.verify_prehash(digest, &signature.try_into()?)
.is_ok(),
2023-10-30 11:25:12 -04:00
"sha512" => VerifyingKey::<sha2::Sha512>::new(key)
.verify_prehash(digest, &signature.try_into()?)
.is_ok(),
_ => {
return Err(type_error(format!(
"Unknown digest algorithm: {}",
digest_type
)))
}
})
}
_ => Err(type_error(format!(
"Verifying with {} keys is not supported yet",
key_type
))),
}
}
fn pbkdf2_sync(
password: &[u8],
salt: &[u8],
iterations: u32,
digest: &str,
derived_key: &mut [u8],
) -> Result<(), AnyError> {
macro_rules! pbkdf2_hmac {
($digest:ty) => {{
pbkdf2::pbkdf2_hmac::<$digest>(password, salt, iterations, derived_key)
}};
}
match digest {
"md4" => pbkdf2_hmac!(md4::Md4),
"md5" => pbkdf2_hmac!(md5::Md5),
"ripemd160" => pbkdf2_hmac!(ripemd::Ripemd160),
"sha1" => pbkdf2_hmac!(sha1::Sha1),
"sha224" => pbkdf2_hmac!(sha2::Sha224),
"sha256" => pbkdf2_hmac!(sha2::Sha256),
"sha384" => pbkdf2_hmac!(sha2::Sha384),
"sha512" => pbkdf2_hmac!(sha2::Sha512),
_ => return Err(type_error("Unknown digest")),
}
Ok(())
}
#[op2]
pub fn op_node_pbkdf2(
#[serde] password: StringOrBuffer,
#[serde] salt: StringOrBuffer,
#[smi] iterations: u32,
#[string] digest: &str,
#[buffer] derived_key: &mut [u8],
) -> bool {
pbkdf2_sync(&password, &salt, iterations, digest, derived_key).is_ok()
}
#[op2(async)]
#[serde]
pub async fn op_node_pbkdf2_async(
#[serde] password: StringOrBuffer,
#[serde] salt: StringOrBuffer,
#[smi] iterations: u32,
#[string] digest: String,
#[number] keylen: usize,
) -> Result<ToJsBuffer, AnyError> {
spawn_blocking(move || {
let mut derived_key = vec![0; keylen];
pbkdf2_sync(&password, &salt, iterations, &digest, &mut derived_key)
.map(|_| derived_key.into())
})
.await?
}
#[op2(fast)]
pub fn op_node_generate_secret(#[buffer] buf: &mut [u8]) {
rand::thread_rng().fill(buf);
}
#[op2(async)]
#[serde]
pub async fn op_node_generate_secret_async(#[smi] len: i32) -> ToJsBuffer {
spawn_blocking(move || {
let mut buf = vec![0u8; len as usize];
rand::thread_rng().fill(&mut buf[..]);
buf.into()
})
.await
.unwrap()
}
fn hkdf_sync(
hash: &str,
ikm: &[u8],
salt: &[u8],
info: &[u8],
okm: &mut [u8],
) -> Result<(), AnyError> {
macro_rules! hkdf {
($hash:ty) => {{
let hk = Hkdf::<$hash>::new(Some(salt), ikm);
hk.expand(info, okm)
.map_err(|_| type_error("HKDF-Expand failed"))?;
}};
}
match hash {
"md4" => hkdf!(md4::Md4),
"md5" => hkdf!(md5::Md5),
"ripemd160" => hkdf!(ripemd::Ripemd160),
"sha1" => hkdf!(sha1::Sha1),
"sha224" => hkdf!(sha2::Sha224),
"sha256" => hkdf!(sha2::Sha256),
"sha384" => hkdf!(sha2::Sha384),
"sha512" => hkdf!(sha2::Sha512),
_ => return Err(type_error("Unknown digest")),
}
Ok(())
}
#[op2(fast)]
pub fn op_node_hkdf(
#[string] hash: &str,
#[buffer] ikm: &[u8],
#[buffer] salt: &[u8],
#[buffer] info: &[u8],
#[buffer] okm: &mut [u8],
) -> Result<(), AnyError> {
hkdf_sync(hash, ikm, salt, info, okm)
}
#[op2(async)]
#[serde]
pub async fn op_node_hkdf_async(
#[string] hash: String,
#[buffer] ikm: JsBuffer,
#[buffer] salt: JsBuffer,
#[buffer] info: JsBuffer,
#[number] okm_len: usize,
) -> Result<ToJsBuffer, AnyError> {
spawn_blocking(move || {
let mut okm = vec![0u8; okm_len];
hkdf_sync(&hash, &ikm, &salt, &info, &mut okm)?;
Ok(okm.into())
})
.await?
}
use rsa::pkcs1::EncodeRsaPrivateKey;
use rsa::pkcs1::EncodeRsaPublicKey;
use self::primes::Prime;
fn generate_rsa(
modulus_length: usize,
public_exponent: usize,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
let mut rng = rand::thread_rng();
let private_key = RsaPrivateKey::new_with_exp(
&mut rng,
modulus_length,
&rsa::BigUint::from_usize(public_exponent).unwrap(),
)?;
let public_key = private_key.to_public_key();
let private_key_der = private_key.to_pkcs1_der()?.as_bytes().to_vec();
let public_key_der = public_key.to_pkcs1_der()?.to_vec();
Ok((private_key_der.into(), public_key_der.into()))
}
#[op2]
#[serde]
pub fn op_node_generate_rsa(
#[number] modulus_length: usize,
#[number] public_exponent: usize,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
generate_rsa(modulus_length, public_exponent)
}
#[op2(async)]
#[serde]
pub async fn op_node_generate_rsa_async(
#[number] modulus_length: usize,
#[number] public_exponent: usize,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
spawn_blocking(move || generate_rsa(modulus_length, public_exponent)).await?
}
fn dsa_generate(
modulus_length: usize,
divisor_length: usize,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
let mut rng = rand::thread_rng();
use dsa::pkcs8::EncodePrivateKey;
use dsa::pkcs8::EncodePublicKey;
use dsa::Components;
use dsa::KeySize;
use dsa::SigningKey;
let key_size = match (modulus_length, divisor_length) {
#[allow(deprecated)]
(1024, 160) => KeySize::DSA_1024_160,
(2048, 224) => KeySize::DSA_2048_224,
(2048, 256) => KeySize::DSA_2048_256,
(3072, 256) => KeySize::DSA_3072_256,
_ => return Err(type_error("Invalid modulus_length or divisor_length")),
};
let components = Components::generate(&mut rng, key_size);
let signing_key = SigningKey::generate(&mut rng, components);
let verifying_key = signing_key.verifying_key();
Ok((
signing_key
.to_pkcs8_der()
.map_err(|_| type_error("Not valid pkcs8"))?
.as_bytes()
.to_vec()
.into(),
verifying_key
.to_public_key_der()
.map_err(|_| type_error("Not valid spki"))?
.to_vec()
.into(),
))
}
#[op2]
#[serde]
pub fn op_node_dsa_generate(
#[number] modulus_length: usize,
#[number] divisor_length: usize,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
dsa_generate(modulus_length, divisor_length)
}
#[op2(async)]
#[serde]
pub async fn op_node_dsa_generate_async(
#[number] modulus_length: usize,
#[number] divisor_length: usize,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
spawn_blocking(move || dsa_generate(modulus_length, divisor_length)).await?
}
fn ec_generate(
named_curve: &str,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
use ring::signature::EcdsaKeyPair;
use ring::signature::KeyPair;
let curve = match named_curve {
"P-256" => &ring::signature::ECDSA_P256_SHA256_FIXED_SIGNING,
"P-384" => &ring::signature::ECDSA_P384_SHA384_FIXED_SIGNING,
_ => return Err(type_error("Unsupported named curve")),
};
let rng = ring::rand::SystemRandom::new();
let pkcs8 = EcdsaKeyPair::generate_pkcs8(curve, &rng)
.map_err(|_| type_error("Failed to generate EC key"))?;
let public_key = EcdsaKeyPair::from_pkcs8(curve, pkcs8.as_ref(), &rng)
.map_err(|_| type_error("Failed to generate EC key"))?
.public_key()
.as_ref()
.to_vec();
Ok((pkcs8.as_ref().to_vec().into(), public_key.into()))
}
#[op2]
#[serde]
pub fn op_node_ec_generate(
#[string] named_curve: &str,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
ec_generate(named_curve)
}
#[op2(async)]
#[serde]
pub async fn op_node_ec_generate_async(
#[string] named_curve: String,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
spawn_blocking(move || ec_generate(&named_curve)).await?
}
fn ed25519_generate() -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
use ring::signature::Ed25519KeyPair;
use ring::signature::KeyPair;
let mut rng = thread_rng();
let mut seed = vec![0u8; 32];
rng.fill(seed.as_mut_slice());
let pair = Ed25519KeyPair::from_seed_unchecked(&seed)
.map_err(|_| type_error("Failed to generate Ed25519 key"))?;
let public_key = pair.public_key().as_ref().to_vec();
Ok((seed.into(), public_key.into()))
}
#[op2]
#[serde]
pub fn op_node_ed25519_generate() -> Result<(ToJsBuffer, ToJsBuffer), AnyError>
{
ed25519_generate()
}
#[op2(async)]
#[serde]
pub async fn op_node_ed25519_generate_async(
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
spawn_blocking(ed25519_generate).await?
}
fn x25519_generate() -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
// u-coordinate of the base point.
const X25519_BASEPOINT_BYTES: [u8; 32] = [
9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
];
let mut pkey = [0; 32];
let mut rng = thread_rng();
rng.fill(pkey.as_mut_slice());
let pkey_copy = pkey.to_vec();
// https://www.rfc-editor.org/rfc/rfc7748#section-6.1
// pubkey = x25519(a, 9) which is constant-time Montgomery ladder.
// https://eprint.iacr.org/2014/140.pdf page 4
// https://eprint.iacr.org/2017/212.pdf algorithm 8
// pubkey is in LE order.
let pubkey = x25519_dalek::x25519(pkey, X25519_BASEPOINT_BYTES);
Ok((pkey_copy.into(), pubkey.to_vec().into()))
}
#[op2]
#[serde]
pub fn op_node_x25519_generate() -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
x25519_generate()
}
#[op2(async)]
#[serde]
pub async fn op_node_x25519_generate_async(
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
spawn_blocking(x25519_generate).await?
}
fn dh_generate_group(
group_name: &str,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
let dh = match group_name {
"modp5" => dh::DiffieHellman::group::<dh::Modp1536>(),
"modp14" => dh::DiffieHellman::group::<dh::Modp2048>(),
"modp15" => dh::DiffieHellman::group::<dh::Modp3072>(),
"modp16" => dh::DiffieHellman::group::<dh::Modp4096>(),
"modp17" => dh::DiffieHellman::group::<dh::Modp6144>(),
"modp18" => dh::DiffieHellman::group::<dh::Modp8192>(),
_ => return Err(type_error("Unsupported group name")),
};
Ok((
dh.private_key.into_vec().into(),
dh.public_key.into_vec().into(),
))
}
#[op2]
#[serde]
pub fn op_node_dh_generate_group(
#[string] group_name: &str,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
dh_generate_group(group_name)
}
#[op2(async)]
#[serde]
pub async fn op_node_dh_generate_group_async(
#[string] group_name: String,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
spawn_blocking(move || dh_generate_group(&group_name)).await?
}
fn dh_generate(
prime: Option<&[u8]>,
prime_len: usize,
generator: usize,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
let prime = prime
.map(|p| p.into())
.unwrap_or_else(|| Prime::generate(prime_len));
let dh = dh::DiffieHellman::new(prime, generator);
Ok((
dh.private_key.into_vec().into(),
dh.public_key.into_vec().into(),
))
}
#[op2]
#[serde]
pub fn op_node_dh_generate(
#[serde] prime: Option<&[u8]>,
#[number] prime_len: usize,
#[number] generator: usize,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
dh_generate(prime, prime_len, generator)
}
// TODO(lev): This duplication should be avoided.
#[op2]
#[serde]
pub fn op_node_dh_generate2(
#[buffer] prime: JsBuffer,
#[number] prime_len: usize,
#[number] generator: usize,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
dh_generate(Some(prime).as_deref(), prime_len, generator)
}
#[op2]
#[serde]
pub fn op_node_dh_compute_secret(
#[buffer] prime: JsBuffer,
#[buffer] private_key: JsBuffer,
#[buffer] their_public_key: JsBuffer,
) -> Result<ToJsBuffer, AnyError> {
let pubkey: BigUint = BigUint::from_bytes_be(their_public_key.as_ref());
let privkey: BigUint = BigUint::from_bytes_be(private_key.as_ref());
let primei: BigUint = BigUint::from_bytes_be(prime.as_ref());
let shared_secret: BigUint = pubkey.modpow(&privkey, &primei);
Ok(shared_secret.to_bytes_be().into())
}
#[op2(async)]
#[serde]
pub async fn op_node_dh_generate_async(
#[buffer] prime: Option<JsBuffer>,
#[number] prime_len: usize,
#[number] generator: usize,
) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> {
spawn_blocking(move || dh_generate(prime.as_deref(), prime_len, generator))
.await?
}
#[op2(fast)]
#[smi]
pub fn op_node_random_int(
#[smi] min: i32,
#[smi] max: i32,
) -> Result<i32, AnyError> {
let mut rng = rand::thread_rng();
// Uniform distribution is required to avoid Modulo Bias
// https://en.wikipedia.org/wiki/FisherYates_shuffle#Modulo_bias
let dist = Uniform::from(min..max);
Ok(dist.sample(&mut rng))
}
#[allow(clippy::too_many_arguments)]
fn scrypt(
password: StringOrBuffer,
salt: StringOrBuffer,
keylen: u32,
cost: u32,
block_size: u32,
parallelization: u32,
_maxmem: u32,
output_buffer: &mut [u8],
) -> Result<(), AnyError> {
// Construct Params
let params = scrypt::Params::new(
cost as u8,
block_size,
parallelization,
keylen as usize,
)
.unwrap();
// Call into scrypt
let res = scrypt::scrypt(&password, &salt, &params, output_buffer);
if res.is_ok() {
Ok(())
} else {
// TODO(lev): key derivation failed, so what?
Err(generic_error("scrypt key derivation failed"))
}
}
#[allow(clippy::too_many_arguments)]
#[op2]
pub fn op_node_scrypt_sync(
#[serde] password: StringOrBuffer,
#[serde] salt: StringOrBuffer,
#[smi] keylen: u32,
#[smi] cost: u32,
#[smi] block_size: u32,
#[smi] parallelization: u32,
#[smi] maxmem: u32,
#[anybuffer] output_buffer: &mut [u8],
) -> Result<(), AnyError> {
scrypt(
password,
salt,
keylen,
cost,
block_size,
parallelization,
maxmem,
output_buffer,
)
}
#[op2(async)]
#[serde]
pub async fn op_node_scrypt_async(
#[serde] password: StringOrBuffer,
#[serde] salt: StringOrBuffer,
#[smi] keylen: u32,
#[smi] cost: u32,
#[smi] block_size: u32,
#[smi] parallelization: u32,
#[smi] maxmem: u32,
) -> Result<ToJsBuffer, AnyError> {
spawn_blocking(move || {
let mut output_buffer = vec![0u8; keylen as usize];
let res = scrypt(
password,
salt,
keylen,
cost,
block_size,
parallelization,
maxmem,
&mut output_buffer,
);
if res.is_ok() {
Ok(output_buffer.into())
} else {
// TODO(lev): rethrow the error?
Err(generic_error("scrypt failure"))
}
})
.await?
}
#[op2(fast)]
#[smi]
pub fn op_node_ecdh_generate_keys(
#[string] curve: &str,
#[buffer] pubbuf: &mut [u8],
#[buffer] privbuf: &mut [u8],
) -> Result<ResourceId, AnyError> {
let mut rng = rand::thread_rng();
match curve {
"secp256k1" => {
let privkey =
elliptic_curve::SecretKey::<k256::Secp256k1>::random(&mut rng);
let pubkey = privkey.public_key();
pubbuf.copy_from_slice(pubkey.to_sec1_bytes().as_ref());
privbuf.copy_from_slice(privkey.to_nonzero_scalar().to_bytes().as_ref());
Ok(0)
}
"prime256v1" | "secp256r1" => {
let privkey = elliptic_curve::SecretKey::<NistP256>::random(&mut rng);
let pubkey = privkey.public_key();
pubbuf.copy_from_slice(pubkey.to_sec1_bytes().as_ref());
privbuf.copy_from_slice(privkey.to_nonzero_scalar().to_bytes().as_ref());
Ok(0)
}
"secp384r1" => {
let privkey = elliptic_curve::SecretKey::<NistP384>::random(&mut rng);
let pubkey = privkey.public_key();
pubbuf.copy_from_slice(pubkey.to_sec1_bytes().as_ref());
privbuf.copy_from_slice(privkey.to_nonzero_scalar().to_bytes().as_ref());
Ok(0)
}
"secp224r1" => {
let privkey = elliptic_curve::SecretKey::<NistP224>::random(&mut rng);
let pubkey = privkey.public_key();
pubbuf.copy_from_slice(pubkey.to_sec1_bytes().as_ref());
privbuf.copy_from_slice(privkey.to_nonzero_scalar().to_bytes().as_ref());
Ok(0)
}
&_ => todo!(),
}
}
#[op2]
pub fn op_node_ecdh_compute_secret(
#[string] curve: &str,
#[buffer] this_priv: Option<JsBuffer>,
#[buffer] their_pub: &mut [u8],
#[buffer] secret: &mut [u8],
) -> Result<(), AnyError> {
match curve {
"secp256k1" => {
let their_public_key =
elliptic_curve::PublicKey::<k256::Secp256k1>::from_sec1_bytes(
their_pub,
)
.expect("bad public key");
let this_private_key =
elliptic_curve::SecretKey::<k256::Secp256k1>::from_slice(
&this_priv.expect("must supply private key"),
)
.expect("bad private key");
let shared_secret = elliptic_curve::ecdh::diffie_hellman(
this_private_key.to_nonzero_scalar(),
their_public_key.as_affine(),
);
secret.copy_from_slice(shared_secret.raw_secret_bytes());
Ok(())
}
"prime256v1" | "secp256r1" => {
let their_public_key =
elliptic_curve::PublicKey::<NistP256>::from_sec1_bytes(their_pub)
.expect("bad public key");
let this_private_key = elliptic_curve::SecretKey::<NistP256>::from_slice(
&this_priv.expect("must supply private key"),
)
.expect("bad private key");
let shared_secret = elliptic_curve::ecdh::diffie_hellman(
this_private_key.to_nonzero_scalar(),
their_public_key.as_affine(),
);
secret.copy_from_slice(shared_secret.raw_secret_bytes());
Ok(())
}
"secp384r1" => {
let their_public_key =
elliptic_curve::PublicKey::<NistP384>::from_sec1_bytes(their_pub)
.expect("bad public key");
let this_private_key = elliptic_curve::SecretKey::<NistP384>::from_slice(
&this_priv.expect("must supply private key"),
)
.expect("bad private key");
let shared_secret = elliptic_curve::ecdh::diffie_hellman(
this_private_key.to_nonzero_scalar(),
their_public_key.as_affine(),
);
secret.copy_from_slice(shared_secret.raw_secret_bytes());
Ok(())
}
"secp224r1" => {
let their_public_key =
elliptic_curve::PublicKey::<NistP224>::from_sec1_bytes(their_pub)
.expect("bad public key");
let this_private_key = elliptic_curve::SecretKey::<NistP224>::from_slice(
&this_priv.expect("must supply private key"),
)
.expect("bad private key");
let shared_secret = elliptic_curve::ecdh::diffie_hellman(
this_private_key.to_nonzero_scalar(),
their_public_key.as_affine(),
);
secret.copy_from_slice(shared_secret.raw_secret_bytes());
Ok(())
}
&_ => todo!(),
}
}
#[op2(fast)]
pub fn op_node_ecdh_compute_public_key(
#[string] curve: &str,
#[buffer] privkey: &[u8],
#[buffer] pubkey: &mut [u8],
) -> Result<(), AnyError> {
match curve {
"secp256k1" => {
let this_private_key =
elliptic_curve::SecretKey::<k256::Secp256k1>::from_slice(privkey)
.expect("bad private key");
let public_key = this_private_key.public_key();
pubkey.copy_from_slice(public_key.to_sec1_bytes().as_ref());
Ok(())
}
"prime256v1" | "secp256r1" => {
let this_private_key =
elliptic_curve::SecretKey::<NistP256>::from_slice(privkey)
.expect("bad private key");
let public_key = this_private_key.public_key();
pubkey.copy_from_slice(public_key.to_sec1_bytes().as_ref());
Ok(())
}
"secp384r1" => {
let this_private_key =
elliptic_curve::SecretKey::<NistP384>::from_slice(privkey)
.expect("bad private key");
let public_key = this_private_key.public_key();
pubkey.copy_from_slice(public_key.to_sec1_bytes().as_ref());
Ok(())
}
"secp224r1" => {
let this_private_key =
elliptic_curve::SecretKey::<NistP224>::from_slice(privkey)
.expect("bad private key");
let public_key = this_private_key.public_key();
pubkey.copy_from_slice(public_key.to_sec1_bytes().as_ref());
Ok(())
}
&_ => todo!(),
}
}
#[inline]
fn gen_prime(size: usize) -> ToJsBuffer {
primes::Prime::generate(size).0.to_bytes_be().into()
}
#[op2]
#[serde]
pub fn op_node_gen_prime(#[number] size: usize) -> ToJsBuffer {
gen_prime(size)
}
#[op2(async)]
#[serde]
pub async fn op_node_gen_prime_async(
#[number] size: usize,
) -> Result<ToJsBuffer, AnyError> {
Ok(spawn_blocking(move || gen_prime(size)).await?)
}
#[derive(serde::Serialize)]
#[serde(tag = "type")]
pub enum AsymmetricKeyDetails {
#[serde(rename = "rsa")]
#[serde(rename_all = "camelCase")]
Rsa {
modulus_length: usize,
public_exponent: V8BigInt,
},
#[serde(rename = "rsa-pss")]
#[serde(rename_all = "camelCase")]
RsaPss {
modulus_length: usize,
public_exponent: V8BigInt,
hash_algorithm: String,
salt_length: u32,
},
#[serde(rename = "ec")]
#[serde(rename_all = "camelCase")]
Ec { named_curve: String },
}
// https://oidref.com/
const ID_SHA1_OID: rsa::pkcs8::ObjectIdentifier =
rsa::pkcs8::ObjectIdentifier::new_unwrap("1.3.14.3.2.26");
const ID_SHA256_OID: rsa::pkcs8::ObjectIdentifier =
rsa::pkcs8::ObjectIdentifier::new_unwrap("2.16.840.1.101.3.4.2.1");
const ID_SHA384_OID: rsa::pkcs8::ObjectIdentifier =
rsa::pkcs8::ObjectIdentifier::new_unwrap("2.16.840.1.101.3.4.2.2");
const ID_SHA512_OID: rsa::pkcs8::ObjectIdentifier =
rsa::pkcs8::ObjectIdentifier::new_unwrap("2.16.840.1.101.3.4.2.3");
const ID_MFG1: rsa::pkcs8::ObjectIdentifier =
rsa::pkcs8::ObjectIdentifier::new_unwrap("1.2.840.113549.1.1.8");
pub const ID_SECP256R1_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.2.840.10045.3.1.7");
pub const ID_SECP384R1_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.3.132.0.34");
pub const ID_SECP521R1_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.3.132.0.35");
// Default HashAlgorithm for RSASSA-PSS-params (sha1)
//
// sha1 HashAlgorithm ::= {
// algorithm id-sha1,
// parameters SHA1Parameters : NULL
// }
//
// SHA1Parameters ::= NULL
static SHA1_HASH_ALGORITHM: Lazy<rsa::pkcs8::AlgorithmIdentifierRef<'static>> =
Lazy::new(|| rsa::pkcs8::AlgorithmIdentifierRef {
// id-sha1
oid: ID_SHA1_OID,
// NULL
parameters: Some(asn1::AnyRef::from(asn1::Null)),
});
// TODO(@littledivy): `pkcs8` should provide AlgorithmIdentifier to Any conversion.
static ENCODED_SHA1_HASH_ALGORITHM: Lazy<Vec<u8>> =
Lazy::new(|| SHA1_HASH_ALGORITHM.to_der().unwrap());
// Default MaskGenAlgrithm for RSASSA-PSS-params (mgf1SHA1)
//
// mgf1SHA1 MaskGenAlgorithm ::= {
// algorithm id-mgf1,
// parameters HashAlgorithm : sha1
// }
static MGF1_SHA1_MASK_ALGORITHM: Lazy<
rsa::pkcs8::AlgorithmIdentifierRef<'static>,
> = Lazy::new(|| rsa::pkcs8::AlgorithmIdentifierRef {
// id-mgf1
oid: ID_MFG1,
// sha1
parameters: Some(
asn1::AnyRef::from_der(&ENCODED_SHA1_HASH_ALGORITHM).unwrap(),
),
});
pub const RSA_ENCRYPTION_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.2.840.113549.1.1.1");
pub const RSASSA_PSS_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.2.840.113549.1.1.10");
pub const EC_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.2.840.10045.2.1");
// The parameters field associated with OID id-RSASSA-PSS
// Defined in RFC 3447, section A.2.3
//
// RSASSA-PSS-params ::= SEQUENCE {
// hashAlgorithm [0] HashAlgorithm DEFAULT sha1,
// maskGenAlgorithm [1] MaskGenAlgorithm DEFAULT mgf1SHA1,
// saltLength [2] INTEGER DEFAULT 20,
// trailerField [3] TrailerField DEFAULT trailerFieldBC
// }
pub struct PssPrivateKeyParameters<'a> {
pub hash_algorithm: rsa::pkcs8::AlgorithmIdentifierRef<'a>,
pub mask_gen_algorithm: rsa::pkcs8::AlgorithmIdentifierRef<'a>,
pub salt_length: u32,
}
// Context-specific tag number for hashAlgorithm.
const HASH_ALGORITHM_TAG: rsa::pkcs8::der::TagNumber =
rsa::pkcs8::der::TagNumber::new(0);
// Context-specific tag number for maskGenAlgorithm.
const MASK_GEN_ALGORITHM_TAG: rsa::pkcs8::der::TagNumber =
rsa::pkcs8::der::TagNumber::new(1);
// Context-specific tag number for saltLength.
const SALT_LENGTH_TAG: rsa::pkcs8::der::TagNumber =
rsa::pkcs8::der::TagNumber::new(2);
impl<'a> TryFrom<rsa::pkcs8::der::asn1::AnyRef<'a>>
for PssPrivateKeyParameters<'a>
{
type Error = rsa::pkcs8::der::Error;
fn try_from(
any: rsa::pkcs8::der::asn1::AnyRef<'a>,
) -> rsa::pkcs8::der::Result<PssPrivateKeyParameters> {
any.sequence(|decoder| {
let hash_algorithm = decoder
.context_specific::<rsa::pkcs8::AlgorithmIdentifierRef>(
HASH_ALGORITHM_TAG,
pkcs8::der::TagMode::Explicit,
)?
.map(TryInto::try_into)
.transpose()?
.unwrap_or(*SHA1_HASH_ALGORITHM);
let mask_gen_algorithm = decoder
.context_specific::<rsa::pkcs8::AlgorithmIdentifierRef>(
MASK_GEN_ALGORITHM_TAG,
pkcs8::der::TagMode::Explicit,
)?
.map(TryInto::try_into)
.transpose()?
.unwrap_or(*MGF1_SHA1_MASK_ALGORITHM);
let salt_length = decoder
.context_specific::<u32>(
SALT_LENGTH_TAG,
pkcs8::der::TagMode::Explicit,
)?
.map(TryInto::try_into)
.transpose()?
.unwrap_or(20);
Ok(Self {
hash_algorithm,
mask_gen_algorithm,
salt_length,
})
})
}
}
fn parse_private_key(
key: &[u8],
format: &str,
type_: &str,
) -> Result<pkcs8::SecretDocument, AnyError> {
match format {
"pem" => {
let (label, doc) =
pkcs8::SecretDocument::from_pem(std::str::from_utf8(key).unwrap())?;
if label != "PRIVATE KEY" {
return Err(type_error("Invalid PEM label"));
}
Ok(doc)
}
"der" => {
match type_ {
"pkcs8" => pkcs8::SecretDocument::from_pkcs8_der(key)
.map_err(|_| type_error("Invalid PKCS8 private key")),
"pkcs1" => pkcs8::SecretDocument::from_pkcs1_der(key)
.map_err(|_| type_error("Invalid PKCS1 private key")),
// TODO(@littledivy): sec1 type
_ => Err(type_error(format!("Unsupported key type: {}", type_))),
}
}
_ => Err(type_error(format!("Unsupported key format: {}", format))),
}
}
#[op2]
#[serde]
pub fn op_node_create_private_key(
#[buffer] key: &[u8],
#[string] format: &str,
#[string] type_: &str,
) -> Result<AsymmetricKeyDetails, AnyError> {
use rsa::pkcs1::der::Decode;
let doc = parse_private_key(key, format, type_)?;
let pk_info = pkcs8::PrivateKeyInfo::try_from(doc.as_bytes())?;
let alg = pk_info.algorithm.oid;
match alg {
RSA_ENCRYPTION_OID => {
let private_key =
rsa::pkcs1::RsaPrivateKey::from_der(pk_info.private_key)?;
let modulus_length = private_key.modulus.as_bytes().len() * 8;
Ok(AsymmetricKeyDetails::Rsa {
modulus_length,
public_exponent: BigInt::from_bytes_be(
num_bigint::Sign::Plus,
private_key.public_exponent.as_bytes(),
)
.into(),
})
}
RSASSA_PSS_OID => {
let params = PssPrivateKeyParameters::try_from(
pk_info
.algorithm
.parameters
.ok_or_else(|| type_error("Malformed parameters".to_string()))?,
)
.map_err(|_| type_error("Malformed parameters".to_string()))?;
let hash_alg = params.hash_algorithm;
let hash_algorithm = match hash_alg.oid {
ID_SHA1_OID => "sha1",
ID_SHA256_OID => "sha256",
ID_SHA384_OID => "sha384",
ID_SHA512_OID => "sha512",
_ => return Err(type_error("Unsupported hash algorithm")),
};
let private_key =
rsa::pkcs1::RsaPrivateKey::from_der(pk_info.private_key)?;
let modulus_length = private_key.modulus.as_bytes().len() * 8;
Ok(AsymmetricKeyDetails::RsaPss {
modulus_length,
public_exponent: BigInt::from_bytes_be(
num_bigint::Sign::Plus,
private_key.public_exponent.as_bytes(),
)
.into(),
hash_algorithm: hash_algorithm.to_string(),
salt_length: params.salt_length,
})
}
EC_OID => {
let named_curve = pk_info
.algorithm
.parameters_oid()
.map_err(|_| type_error("malformed parameters"))?;
let named_curve = match named_curve {
ID_SECP256R1_OID => "p256",
ID_SECP384R1_OID => "p384",
ID_SECP521R1_OID => "p521",
_ => return Err(type_error("Unsupported named curve")),
};
Ok(AsymmetricKeyDetails::Ec {
named_curve: named_curve.to_string(),
})
}
_ => Err(type_error("Unsupported algorithm")),
}
}