1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-12-13 02:52:54 -05:00
denoland-deno/ext/node/ops/crypto/cipher.rs

533 lines
15 KiB
Rust
Raw Normal View History

// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
use aes::cipher::block_padding::Pkcs7;
use aes::cipher::BlockDecryptMut;
use aes::cipher::BlockEncryptMut;
use aes::cipher::KeyIvInit;
use deno_core::error::range_error;
use deno_core::error::type_error;
use deno_core::error::AnyError;
use deno_core::Resource;
use digest::generic_array::GenericArray;
use digest::KeyInit;
use std::borrow::Cow;
use std::cell::RefCell;
use std::rc::Rc;
type Tag = Option<Vec<u8>>;
type Aes128Gcm = aead_gcm_stream::AesGcm<aes::Aes128>;
type Aes256Gcm = aead_gcm_stream::AesGcm<aes::Aes256>;
enum Cipher {
Aes128Cbc(Box<cbc::Encryptor<aes::Aes128>>),
Aes128Ecb(Box<ecb::Encryptor<aes::Aes128>>),
Aes192Ecb(Box<ecb::Encryptor<aes::Aes192>>),
Aes256Ecb(Box<ecb::Encryptor<aes::Aes256>>),
Aes128Gcm(Box<Aes128Gcm>),
Aes256Gcm(Box<Aes256Gcm>),
Aes256Cbc(Box<cbc::Encryptor<aes::Aes256>>),
// TODO(kt3k): add more algorithms Aes192Cbc, etc.
}
enum Decipher {
Aes128Cbc(Box<cbc::Decryptor<aes::Aes128>>),
Aes128Ecb(Box<ecb::Decryptor<aes::Aes128>>),
Aes192Ecb(Box<ecb::Decryptor<aes::Aes192>>),
Aes256Ecb(Box<ecb::Decryptor<aes::Aes256>>),
Aes128Gcm(Box<Aes128Gcm>),
Aes256Gcm(Box<Aes256Gcm>),
Aes256Cbc(Box<cbc::Decryptor<aes::Aes256>>),
// TODO(kt3k): add more algorithms Aes192Cbc, Aes128GCM, etc.
}
pub struct CipherContext {
cipher: Rc<RefCell<Cipher>>,
}
pub struct DecipherContext {
decipher: Rc<RefCell<Decipher>>,
}
impl CipherContext {
pub fn new(algorithm: &str, key: &[u8], iv: &[u8]) -> Result<Self, AnyError> {
Ok(Self {
cipher: Rc::new(RefCell::new(Cipher::new(algorithm, key, iv)?)),
})
}
pub fn set_aad(&self, aad: &[u8]) {
self.cipher.borrow_mut().set_aad(aad);
}
pub fn encrypt(&self, input: &[u8], output: &mut [u8]) {
self.cipher.borrow_mut().encrypt(input, output);
}
pub fn take_tag(self) -> Tag {
Rc::try_unwrap(self.cipher).ok()?.into_inner().take_tag()
}
pub fn r#final(
self,
auto_pad: bool,
input: &[u8],
output: &mut [u8],
) -> Result<Tag, AnyError> {
Rc::try_unwrap(self.cipher)
.map_err(|_| type_error("Cipher context is already in use"))?
.into_inner()
.r#final(auto_pad, input, output)
}
}
impl DecipherContext {
pub fn new(algorithm: &str, key: &[u8], iv: &[u8]) -> Result<Self, AnyError> {
Ok(Self {
decipher: Rc::new(RefCell::new(Decipher::new(algorithm, key, iv)?)),
})
}
pub fn set_aad(&self, aad: &[u8]) {
self.decipher.borrow_mut().set_aad(aad);
}
pub fn decrypt(&self, input: &[u8], output: &mut [u8]) {
self.decipher.borrow_mut().decrypt(input, output);
}
pub fn r#final(
self,
auto_pad: bool,
input: &[u8],
output: &mut [u8],
auth_tag: &[u8],
) -> Result<(), AnyError> {
Rc::try_unwrap(self.decipher)
.map_err(|_| type_error("Decipher context is already in use"))?
.into_inner()
.r#final(auto_pad, input, output, auth_tag)
}
}
impl Resource for CipherContext {
fn name(&self) -> Cow<str> {
"cryptoCipher".into()
}
}
impl Resource for DecipherContext {
fn name(&self) -> Cow<str> {
"cryptoDecipher".into()
}
}
impl Cipher {
fn new(
algorithm_name: &str,
key: &[u8],
iv: &[u8],
) -> Result<Self, AnyError> {
use Cipher::*;
Ok(match algorithm_name {
"aes-128-cbc" => {
Aes128Cbc(Box::new(cbc::Encryptor::new(key.into(), iv.into())))
}
"aes-128-ecb" => Aes128Ecb(Box::new(ecb::Encryptor::new(key.into()))),
"aes-192-ecb" => Aes192Ecb(Box::new(ecb::Encryptor::new(key.into()))),
"aes-256-ecb" => Aes256Ecb(Box::new(ecb::Encryptor::new(key.into()))),
"aes-128-gcm" => {
if iv.len() != 12 {
return Err(type_error("IV length must be 12 bytes"));
}
let cipher =
aead_gcm_stream::AesGcm::<aes::Aes128>::new(key.into(), iv);
Aes128Gcm(Box::new(cipher))
}
"aes-256-gcm" => {
if iv.len() != 12 {
return Err(type_error("IV length must be 12 bytes"));
}
let cipher =
aead_gcm_stream::AesGcm::<aes::Aes256>::new(key.into(), iv);
Aes256Gcm(Box::new(cipher))
}
"aes256" | "aes-256-cbc" => {
if key.len() != 32 {
return Err(range_error("Invalid key length"));
}
if iv.len() != 16 {
return Err(type_error("Invalid initialization vector"));
}
Aes256Cbc(Box::new(cbc::Encryptor::new(key.into(), iv.into())))
}
_ => return Err(type_error(format!("Unknown cipher {algorithm_name}"))),
})
}
fn set_aad(&mut self, aad: &[u8]) {
use Cipher::*;
match self {
Aes128Gcm(cipher) => {
cipher.set_aad(aad);
}
Aes256Gcm(cipher) => {
cipher.set_aad(aad);
}
_ => {}
}
}
/// encrypt encrypts the data in the middle of the input.
fn encrypt(&mut self, input: &[u8], output: &mut [u8]) {
use Cipher::*;
match self {
Aes128Cbc(encryptor) => {
assert!(input.len() % 16 == 0);
for (input, output) in input.chunks(16).zip(output.chunks_mut(16)) {
encryptor.encrypt_block_b2b_mut(input.into(), output.into());
}
}
Aes128Ecb(encryptor) => {
assert!(input.len() % 16 == 0);
for (input, output) in input.chunks(16).zip(output.chunks_mut(16)) {
encryptor.encrypt_block_b2b_mut(input.into(), output.into());
}
}
Aes192Ecb(encryptor) => {
assert!(input.len() % 16 == 0);
for (input, output) in input.chunks(16).zip(output.chunks_mut(16)) {
encryptor.encrypt_block_b2b_mut(input.into(), output.into());
}
}
Aes256Ecb(encryptor) => {
assert!(input.len() % 16 == 0);
for (input, output) in input.chunks(16).zip(output.chunks_mut(16)) {
encryptor.encrypt_block_b2b_mut(input.into(), output.into());
}
}
Aes128Gcm(cipher) => {
output[..input.len()].copy_from_slice(input);
cipher.encrypt(output);
}
Aes256Gcm(cipher) => {
output[..input.len()].copy_from_slice(input);
cipher.encrypt(output);
}
Aes256Cbc(encryptor) => {
assert!(input.len() % 16 == 0);
for (input, output) in input.chunks(16).zip(output.chunks_mut(16)) {
encryptor.encrypt_block_b2b_mut(input.into(), output.into());
}
}
}
}
/// r#final encrypts the last block of the input data.
fn r#final(
self,
auto_pad: bool,
input: &[u8],
output: &mut [u8],
) -> Result<Tag, AnyError> {
assert!(input.len() < 16);
use Cipher::*;
match (self, auto_pad) {
(Aes128Cbc(encryptor), true) => {
let _ = (*encryptor)
.encrypt_padded_b2b_mut::<Pkcs7>(input, output)
.map_err(|_| type_error("Cannot pad the input data"))?;
Ok(None)
}
(Aes128Cbc(mut encryptor), false) => {
encryptor.encrypt_block_b2b_mut(
GenericArray::from_slice(input),
GenericArray::from_mut_slice(output),
);
Ok(None)
}
(Aes128Ecb(encryptor), true) => {
let _ = (*encryptor)
.encrypt_padded_b2b_mut::<Pkcs7>(input, output)
.map_err(|_| type_error("Cannot pad the input data"))?;
Ok(None)
}
(Aes128Ecb(mut encryptor), false) => {
encryptor.encrypt_block_b2b_mut(
GenericArray::from_slice(input),
GenericArray::from_mut_slice(output),
);
Ok(None)
}
(Aes192Ecb(encryptor), true) => {
let _ = (*encryptor)
.encrypt_padded_b2b_mut::<Pkcs7>(input, output)
.map_err(|_| type_error("Cannot pad the input data"))?;
Ok(None)
}
(Aes192Ecb(mut encryptor), false) => {
encryptor.encrypt_block_b2b_mut(
GenericArray::from_slice(input),
GenericArray::from_mut_slice(output),
);
Ok(None)
}
(Aes256Ecb(encryptor), true) => {
let _ = (*encryptor)
.encrypt_padded_b2b_mut::<Pkcs7>(input, output)
.map_err(|_| type_error("Cannot pad the input data"))?;
Ok(None)
}
(Aes256Ecb(mut encryptor), false) => {
encryptor.encrypt_block_b2b_mut(
GenericArray::from_slice(input),
GenericArray::from_mut_slice(output),
);
Ok(None)
}
(Aes128Gcm(cipher), _) => Ok(Some(cipher.finish().to_vec())),
(Aes256Gcm(cipher), _) => Ok(Some(cipher.finish().to_vec())),
(Aes256Cbc(encryptor), true) => {
let _ = (*encryptor)
.encrypt_padded_b2b_mut::<Pkcs7>(input, output)
.map_err(|_| type_error("Cannot pad the input data"))?;
Ok(None)
}
(Aes256Cbc(mut encryptor), false) => {
encryptor.encrypt_block_b2b_mut(
GenericArray::from_slice(input),
GenericArray::from_mut_slice(output),
);
Ok(None)
}
}
}
fn take_tag(self) -> Tag {
use Cipher::*;
match self {
Aes128Gcm(cipher) => Some(cipher.finish().to_vec()),
Aes256Gcm(cipher) => Some(cipher.finish().to_vec()),
_ => None,
}
}
}
impl Decipher {
fn new(
algorithm_name: &str,
key: &[u8],
iv: &[u8],
) -> Result<Self, AnyError> {
use Decipher::*;
Ok(match algorithm_name {
"aes-128-cbc" => {
Aes128Cbc(Box::new(cbc::Decryptor::new(key.into(), iv.into())))
}
"aes-128-ecb" => Aes128Ecb(Box::new(ecb::Decryptor::new(key.into()))),
"aes-192-ecb" => Aes192Ecb(Box::new(ecb::Decryptor::new(key.into()))),
"aes-256-ecb" => Aes256Ecb(Box::new(ecb::Decryptor::new(key.into()))),
"aes-128-gcm" => {
if iv.len() != 12 {
return Err(type_error("IV length must be 12 bytes"));
}
let decipher =
aead_gcm_stream::AesGcm::<aes::Aes128>::new(key.into(), iv);
Aes128Gcm(Box::new(decipher))
}
"aes-256-gcm" => {
if iv.len() != 12 {
return Err(type_error("IV length must be 12 bytes"));
}
let decipher =
aead_gcm_stream::AesGcm::<aes::Aes256>::new(key.into(), iv);
Aes256Gcm(Box::new(decipher))
}
"aes256" | "aes-256-cbc" => {
if key.len() != 32 {
return Err(range_error("Invalid key length"));
}
if iv.len() != 16 {
return Err(type_error("Invalid initialization vector"));
}
Aes256Cbc(Box::new(cbc::Decryptor::new(key.into(), iv.into())))
}
_ => return Err(type_error(format!("Unknown cipher {algorithm_name}"))),
})
}
fn set_aad(&mut self, aad: &[u8]) {
use Decipher::*;
match self {
Aes128Gcm(decipher) => {
decipher.set_aad(aad);
}
Aes256Gcm(decipher) => {
decipher.set_aad(aad);
}
_ => {}
}
}
/// decrypt decrypts the data in the middle of the input.
fn decrypt(&mut self, input: &[u8], output: &mut [u8]) {
use Decipher::*;
match self {
Aes128Cbc(decryptor) => {
assert!(input.len() % 16 == 0);
for (input, output) in input.chunks(16).zip(output.chunks_mut(16)) {
decryptor.decrypt_block_b2b_mut(input.into(), output.into());
}
}
Aes128Ecb(decryptor) => {
assert!(input.len() % 16 == 0);
for (input, output) in input.chunks(16).zip(output.chunks_mut(16)) {
decryptor.decrypt_block_b2b_mut(input.into(), output.into());
}
}
Aes192Ecb(decryptor) => {
assert!(input.len() % 16 == 0);
for (input, output) in input.chunks(16).zip(output.chunks_mut(16)) {
decryptor.decrypt_block_b2b_mut(input.into(), output.into());
}
}
Aes256Ecb(decryptor) => {
assert!(input.len() % 16 == 0);
for (input, output) in input.chunks(16).zip(output.chunks_mut(16)) {
decryptor.decrypt_block_b2b_mut(input.into(), output.into());
}
}
Aes128Gcm(decipher) => {
output[..input.len()].copy_from_slice(input);
decipher.decrypt(output);
}
Aes256Gcm(decipher) => {
output[..input.len()].copy_from_slice(input);
decipher.decrypt(output);
}
Aes256Cbc(decryptor) => {
assert!(input.len() % 16 == 0);
for (input, output) in input.chunks(16).zip(output.chunks_mut(16)) {
decryptor.decrypt_block_b2b_mut(input.into(), output.into());
}
}
}
}
/// r#final decrypts the last block of the input data.
fn r#final(
self,
auto_pad: bool,
input: &[u8],
output: &mut [u8],
auth_tag: &[u8],
) -> Result<(), AnyError> {
use Decipher::*;
match (self, auto_pad) {
(Aes128Cbc(decryptor), true) => {
assert!(input.len() == 16);
let _ = (*decryptor)
.decrypt_padded_b2b_mut::<Pkcs7>(input, output)
.map_err(|_| type_error("Cannot unpad the input data"))?;
Ok(())
}
(Aes128Cbc(mut decryptor), false) => {
decryptor.decrypt_block_b2b_mut(
GenericArray::from_slice(input),
GenericArray::from_mut_slice(output),
);
Ok(())
}
(Aes128Ecb(decryptor), true) => {
assert!(input.len() == 16);
let _ = (*decryptor)
.decrypt_padded_b2b_mut::<Pkcs7>(input, output)
.map_err(|_| type_error("Cannot unpad the input data"))?;
Ok(())
}
(Aes128Ecb(mut decryptor), false) => {
decryptor.decrypt_block_b2b_mut(
GenericArray::from_slice(input),
GenericArray::from_mut_slice(output),
);
Ok(())
}
(Aes192Ecb(decryptor), true) => {
assert!(input.len() == 16);
let _ = (*decryptor)
.decrypt_padded_b2b_mut::<Pkcs7>(input, output)
.map_err(|_| type_error("Cannot unpad the input data"))?;
Ok(())
}
(Aes192Ecb(mut decryptor), false) => {
decryptor.decrypt_block_b2b_mut(
GenericArray::from_slice(input),
GenericArray::from_mut_slice(output),
);
Ok(())
}
(Aes256Ecb(decryptor), true) => {
assert!(input.len() == 16);
let _ = (*decryptor)
.decrypt_padded_b2b_mut::<Pkcs7>(input, output)
.map_err(|_| type_error("Cannot unpad the input data"))?;
Ok(())
}
(Aes256Ecb(mut decryptor), false) => {
decryptor.decrypt_block_b2b_mut(
GenericArray::from_slice(input),
GenericArray::from_mut_slice(output),
);
Ok(())
}
(Aes128Gcm(decipher), true) => {
let tag = decipher.finish();
if tag.as_slice() == auth_tag {
Ok(())
} else {
Err(type_error("Failed to authenticate data"))
}
}
(Aes128Gcm(_), false) => Err(type_error(
"setAutoPadding(false) not supported for Aes256Gcm yet",
)),
(Aes256Gcm(decipher), true) => {
let tag = decipher.finish();
if tag.as_slice() == auth_tag {
Ok(())
} else {
Err(type_error("Failed to authenticate data"))
}
}
(Aes256Gcm(_), false) => Err(type_error(
"setAutoPadding(false) not supported for Aes256Gcm yet",
)),
(Aes256Cbc(decryptor), true) => {
assert!(input.len() == 16);
let _ = (*decryptor)
.decrypt_padded_b2b_mut::<Pkcs7>(input, output)
.map_err(|_| type_error("Cannot unpad the input data"))?;
Ok(())
}
(Aes256Cbc(mut decryptor), false) => {
decryptor.decrypt_block_b2b_mut(
GenericArray::from_slice(input),
GenericArray::from_mut_slice(output),
);
Ok(())
}
}
}
}