1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-12-22 23:34:47 -05:00

core: remove support for moving deno_buf ownership from C++ to JavaScript

The functionality hasn't been in use for a long time. Without this feature,
the `alloc_ptr` and `alloc_len` fields are no longer necessary.
This commit is contained in:
Bert Belder 2019-05-02 00:18:18 +02:00
parent c05cbc8eac
commit ae0544b7ce
6 changed files with 40 additions and 144 deletions

View file

@ -19,16 +19,9 @@ pub struct isolate {
_unused: [u8; 0],
}
/// If "alloc_ptr" is not null, this type represents a buffer which is created
/// in C side, and then passed to Rust side by `deno_recv_cb`. Finally it should
/// be moved back to C side by `deno_respond`. If it is not passed to
/// `deno_respond` in the end, it will be leaked.
///
/// If "alloc_ptr" is null, this type represents a borrowed slice.
/// This type represents a borrowed slice.
#[repr(C)]
pub struct deno_buf {
alloc_ptr: *const u8,
alloc_len: usize,
data_ptr: *const u8,
data_len: usize,
}
@ -41,8 +34,6 @@ impl deno_buf {
#[inline]
pub fn empty() -> Self {
Self {
alloc_ptr: null(),
alloc_len: 0,
data_ptr: null(),
data_len: 0,
}
@ -51,8 +42,6 @@ impl deno_buf {
#[inline]
pub unsafe fn from_raw_parts(ptr: *const u8, len: usize) -> Self {
Self {
alloc_ptr: null(),
alloc_len: 0,
data_ptr: ptr,
data_len: len,
}
@ -64,8 +53,6 @@ impl<'a> From<&'a [u8]> for deno_buf {
#[inline]
fn from(x: &'a [u8]) -> Self {
Self {
alloc_ptr: null(),
alloc_len: 0,
data_ptr: x.as_ref().as_ptr(),
data_len: x.len(),
}

View file

@ -167,57 +167,33 @@ v8::Local<v8::Uint8Array> ImportBuf(DenoIsolate* d, deno_buf buf) {
return v8::Local<v8::Uint8Array>();
}
if (buf.alloc_ptr == nullptr) {
// If alloc_ptr isn't set, we memcpy.
// This is currently used for flatbuffers created in Rust.
// To avoid excessively allocating new ArrayBuffers, we try to reuse a
// single global ArrayBuffer. The caveat is that users must extract data
// from it before the next tick. We only do this for ArrayBuffers less than
// 1024 bytes.
v8::Local<v8::ArrayBuffer> ab;
void* data;
if (buf.data_len > GLOBAL_IMPORT_BUF_SIZE) {
// Simple case. We allocate a new ArrayBuffer for this.
ab = v8::ArrayBuffer::New(d->isolate_, buf.data_len);
data = ab->GetContents().Data();
} else {
// Fast case. We reuse the global ArrayBuffer.
if (d->global_import_buf_.IsEmpty()) {
// Lazily initialize it.
DCHECK_NULL(d->global_import_buf_ptr_);
ab = v8::ArrayBuffer::New(d->isolate_, GLOBAL_IMPORT_BUF_SIZE);
d->global_import_buf_.Reset(d->isolate_, ab);
d->global_import_buf_ptr_ = ab->GetContents().Data();
} else {
DCHECK(d->global_import_buf_ptr_);
ab = d->global_import_buf_.Get(d->isolate_);
}
data = d->global_import_buf_ptr_;
}
memcpy(data, buf.data_ptr, buf.data_len);
auto view = v8::Uint8Array::New(ab, 0, buf.data_len);
return view;
// To avoid excessively allocating new ArrayBuffers, we try to reuse a single
// global ArrayBuffer. The caveat is that users must extract data from it
// before the next tick. We only do this for ArrayBuffers less than 1024
// bytes.
v8::Local<v8::ArrayBuffer> ab;
void* data;
if (buf.data_len > GLOBAL_IMPORT_BUF_SIZE) {
// Simple case. We allocate a new ArrayBuffer for this.
ab = v8::ArrayBuffer::New(d->isolate_, buf.data_len);
data = ab->GetContents().Data();
} else {
auto ab = v8::ArrayBuffer::New(
d->isolate_, reinterpret_cast<void*>(buf.alloc_ptr), buf.alloc_len,
v8::ArrayBufferCreationMode::kInternalized);
auto view =
v8::Uint8Array::New(ab, buf.data_ptr - buf.alloc_ptr, buf.data_len);
return view;
// Fast case. We reuse the global ArrayBuffer.
if (d->global_import_buf_.IsEmpty()) {
// Lazily initialize it.
DCHECK_NULL(d->global_import_buf_ptr_);
ab = v8::ArrayBuffer::New(d->isolate_, GLOBAL_IMPORT_BUF_SIZE);
d->global_import_buf_.Reset(d->isolate_, ab);
d->global_import_buf_ptr_ = ab->GetContents().Data();
} else {
DCHECK(d->global_import_buf_ptr_);
ab = d->global_import_buf_.Get(d->isolate_);
}
data = d->global_import_buf_ptr_;
}
}
static deno_buf GetContents(v8::Isolate* isolate,
v8::Local<v8::ArrayBufferView> view) {
auto ab = view->Buffer();
auto contents = ab->GetContents();
deno_buf buf;
buf.alloc_ptr = reinterpret_cast<uint8_t*>(contents.Data());
buf.alloc_len = contents.ByteLength();
buf.data_ptr = buf.alloc_ptr + view->ByteOffset();
buf.data_len = view->ByteLength();
return buf;
memcpy(data, buf.data_ptr, buf.data_len);
auto view = v8::Uint8Array::New(ab, 0, buf.data_len);
return view;
}
// Sets the recv_ callback.
@ -247,13 +223,12 @@ void Send(const v8::FunctionCallbackInfo<v8::Value>& args) {
v8::HandleScope handle_scope(isolate);
deno_buf control = {nullptr, 0u, nullptr, 0u};
if (args.Length() > 0) {
v8::Local<v8::Value> control_v = args[0];
if (control_v->IsArrayBufferView()) {
control =
GetContents(isolate, v8::Local<v8::ArrayBufferView>::Cast(control_v));
}
deno_buf control = {nullptr, 0};
if (args[0]->IsArrayBufferView()) {
auto view = v8::Local<v8::ArrayBufferView>::Cast(args[0]);
auto data =
reinterpret_cast<uint8_t*>(view->Buffer()->GetContents().Data());
control = {data + view->ByteOffset(), view->ByteLength()};
}
PinnedBuf zero_copy =

View file

@ -17,10 +17,8 @@ typedef deno::PinnedBuf::Raw deno_pinned_buf;
// Data that gets transmitted.
typedef struct {
uint8_t* alloc_ptr; // Start of memory allocation (from `new uint8_t[len]`).
size_t alloc_len; // Length of the memory allocation.
uint8_t* data_ptr; // Start of logical contents (within the allocation).
size_t data_len; // Length of logical contents.
uint8_t* data_ptr;
size_t data_len;
} deno_buf;
typedef struct {

View file

@ -157,7 +157,7 @@ static intptr_t external_references[] = {
reinterpret_cast<intptr_t>(MessageCallback),
0};
static const deno_buf empty_buf = {nullptr, 0, nullptr, 0};
static const deno_buf empty_buf = {nullptr, 0};
static const deno_snapshot empty_snapshot = {nullptr, 0};
Deno* NewFromSnapshot(void* user_data, deno_recv_cb cb);

View file

@ -41,17 +41,6 @@ TEST(LibDenoTest, ErrorsCorrectly) {
deno_delete(d);
}
deno_buf strbuf(const char* str) {
auto len = strlen(str);
deno_buf buf;
buf.alloc_ptr = new uint8_t[len];
buf.alloc_len = len;
buf.data_ptr = buf.alloc_ptr;
buf.data_len = len;
memcpy(buf.data_ptr, str, len);
return buf;
}
void assert_null(deno_pinned_buf b) {
EXPECT_EQ(b.data_ptr, nullptr);
EXPECT_EQ(b.data_len, 0u);
@ -85,7 +74,8 @@ TEST(LibDenoTest, RecvReturnBar) {
EXPECT_EQ(buf.data_ptr[0], 'a');
EXPECT_EQ(buf.data_ptr[1], 'b');
EXPECT_EQ(buf.data_ptr[2], 'c');
deno_respond(d, user_data, strbuf("bar"));
uint8_t response[] = {'b', 'a', 'r'};
deno_respond(d, user_data, {response, sizeof response});
};
Deno* d = deno_new(deno_config{0, snapshot, empty, recv_cb});
deno_execute(d, d, "a.js", "RecvReturnBar()");
@ -101,60 +91,6 @@ TEST(LibDenoTest, DoubleRecvFails) {
deno_delete(d);
}
TEST(LibDenoTest, SendRecvSlice) {
static int count = 0;
auto recv_cb = [](auto user_data, auto buf, auto zero_copy_buf) {
auto d = reinterpret_cast<Deno*>(user_data);
assert_null(zero_copy_buf);
static const size_t alloc_len = 1024;
size_t i = count++;
// Check the size and offset of the slice.
size_t data_offset = buf.data_ptr - buf.alloc_ptr;
EXPECT_EQ(data_offset, i * 11);
EXPECT_EQ(buf.data_len, alloc_len - i * 30);
EXPECT_EQ(buf.alloc_len, alloc_len);
// Check values written by the JS side.
EXPECT_EQ(buf.data_ptr[0], 100 + i);
EXPECT_EQ(buf.data_ptr[buf.data_len - 1], 100 - i);
// Make copy of the backing buffer -- this is currently necessary
// because deno_respond() takes ownership over the buffer, but we are
// not given ownership of `buf` by our caller.
uint8_t* alloc_ptr = new uint8_t[alloc_len];
memcpy(alloc_ptr, buf.alloc_ptr, alloc_len);
// Make a slice that is a bit shorter than the original.
deno_buf buf2{alloc_ptr, alloc_len, alloc_ptr + data_offset,
buf.data_len - 19};
// Place some values into the buffer for the JS side to verify.
buf2.data_ptr[0] = 200 + i;
buf2.data_ptr[buf2.data_len - 1] = 200 - i;
// Send back.
deno_respond(d, user_data, buf2);
};
Deno* d = deno_new(deno_config{0, snapshot, empty, recv_cb});
deno_execute(d, d, "a.js", "SendRecvSlice()");
EXPECT_EQ(nullptr, deno_last_exception(d));
EXPECT_EQ(count, 5);
deno_delete(d);
}
TEST(LibDenoTest, JSSendArrayBufferViewTypes) {
static int count = 0;
auto recv_cb = [](auto _, auto buf, auto zero_copy_buf) {
assert_null(zero_copy_buf);
count++;
size_t data_offset = buf.data_ptr - buf.alloc_ptr;
EXPECT_EQ(data_offset, 2468u);
EXPECT_EQ(buf.data_len, 1000u);
EXPECT_EQ(buf.alloc_len, 4321u);
EXPECT_EQ(buf.data_ptr[0], count);
};
Deno* d = deno_new(deno_config{0, snapshot, empty, recv_cb});
deno_execute(d, nullptr, "a.js", "JSSendArrayBufferViewTypes()");
EXPECT_EQ(nullptr, deno_last_exception(d));
EXPECT_EQ(count, 3);
deno_delete(d);
}
TEST(LibDenoTest, TypedArraySnapshots) {
Deno* d = deno_new(deno_config{0, snapshot, empty, nullptr});
deno_execute(d, nullptr, "a.js", "TypedArraySnapshots()");
@ -266,7 +202,7 @@ TEST(LibDenoTest, EncodeErrorBug) {
TEST(LibDenoTest, Shared) {
uint8_t s[] = {0, 1, 2};
deno_buf shared = {nullptr, 0, s, 3};
deno_buf shared = {s, sizeof s};
Deno* d = deno_new(deno_config{0, snapshot, shared, nullptr});
deno_execute(d, nullptr, "a.js", "Shared()");
EXPECT_EQ(nullptr, deno_last_exception(d));
@ -301,7 +237,7 @@ TEST(LibDenoTest, LibDenoEvalContextError) {
TEST(LibDenoTest, SharedAtomics) {
int32_t s[] = {0, 1, 2};
deno_buf shared = {nullptr, 0, reinterpret_cast<uint8_t*>(s), sizeof s};
deno_buf shared = {reinterpret_cast<uint8_t*>(s), sizeof s};
Deno* d = deno_new(deno_config{0, empty_snapshot, shared, nullptr});
deno_execute(d, nullptr, "a.js",
"Atomics.add(new Int32Array(Deno.core.shared), 0, 1)");

View file

@ -6,7 +6,7 @@
#include "testing/gtest/include/gtest/gtest.h"
extern deno_snapshot snapshot; // Loaded in libdeno/test.cc
const deno_buf empty = {nullptr, 0, nullptr, 0};
const deno_buf empty = {nullptr, 0};
const deno_snapshot empty_snapshot = {nullptr, 0};
#endif // TEST_H_