Potential fix for type-code mismatch in FFI buffer types. The code
supports ArrayBuffers, but types only reflect TypedArray support.
There's also an existing type for this sort of stuff: `BufferSource`.
(Although, it uses `ArrayBufferView` which doesn't actually connect with
the TypedArray interfaces specifically, but it's just a type inheritance
difference and nothing more.)
Makes `op_ffi_ptr_of` fast. One of the tests changed from printing
`false` to `true` as the fast `&[u8]` slice path creates the slice with
a null pointer. Thus the `op_ffi_ptr_of` will now return a null pointer
value whereas previously it returned a dangling pointer value.
This PR makes pointer read methods of `Deno.UnsafePointerView` Fast API
compliant, with the exception of `getCString` which cannot be made fast
with current V8 Fast API.
Fixes #15136
Currently `UnsafeCallback` class' `ref()` and `unref()` methods rely on
the `event_loop_middleware` implementation in core. If even a single
`UnsafeCallback` is ref'ed, then the FFI event loop middleware will
always return `true` to signify that there may still be more work for
the event loop to do.
The middleware handling in core does not wait a moment to check again,
but will instead synchronously directly re-poll the event loop and
middlewares for more work. This becomes a live-loop.
This PR introduces a `Future` implementation for the `CallbackInfo`
struct that acts as the intermediary data storage between an
`UnsafeCallback` and the `libffi` C callback. Ref'ing a callback now
means calling an async op that binds to the `CallbackInfo` Future and
only resolves once the callback is unref'ed. The `libffi` C callback
will call the waker of this Future when it fires to make sure that the
main thread wakes up to receive the callback.
Welcome to better optimised op calls! Currently opSync is called with parameters of every type and count. This most definitely makes the call megamorphic. Additionally, it seems that spread params leads to V8 not being able to optimise the calls quite as well (apparently Fast Calls cannot be used with spread params).
Monomorphising op calls should lead to some improved performance. Now that unwrapping of sync ops results is done on Rust side, this is pretty simple:
```
opSync("op_foo", param1, param2);
// -> turns to
ops.op_foo(param1, param2);
```
This means sync op calls are now just directly calling the native binding function. When V8 Fast API Calls are enabled, this will enable those to be called on the optimised path.
Monomorphising async ops likely requires using callbacks and is left as an exercise to the reader.
This commit simplifies the TypeScript types used for interacting with Deno FFI. The basis is that types are now first grouped into logical wholes, NativeNumberType, NativeBigIntType etc. These wholes are combined into the NativeType and NativeResultType general types.
Additionally, this PR removes the { function: { parameters: [], result: "void" } } type declaration from parameters (and result types. Now functions are merely passed and returned as "function".
This commit adds support for unstable FFI
callbacks. A callback is registered using
the `Deno.UnsafeCallback` API.
The backing memory for the callback can
be disposed of using `Deno.UnsafeCallback#close`.
It is not safe to pass the callback after calling
close.
Callbacks from other than the isolate thread
are not supported.
Co-authored-by: Divy Srivastava <dj.srivastava23@gmail.com>
Co-authored-by: Bert Belder <bertbelder@gmail.com>
This commit adds support for passing buffer arguments across
FFI boundary.
Co-authored-by: eliassjogreen <eliassjogreen1@gmail.com>
Co-authored-by: Bert Belder <bertbelder@gmail.com>
This commit removes implementation of "native plugins" and replaces
it with FFI API.
Effectively "Deno.openPlugin" API was replaced with "Deno.dlopen" API.