Note: If the package information has already been cached, then this
requires running with `--reload` or for the registry information to be
fetched some other way (ex. the cache busting).
Closes #15544
---------
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
This is the initial support for npm and node specifiers in `deno
compile`. The npm packages are included in the binary and read from it via
a virtual file system. This also supports the `--node-modules-dir` flag,
dependencies specified in a package.json, and npm binary commands (ex.
`deno compile --unstable npm:cowsay`)
Closes #16632
We can make `NodePermissions` rely on interior mutability (which the
`PermissionsContainer` is already doing) in order to not have to clone
everything all the time. This also reduces the chance of an accidental
`borrow` while `borrrow_mut`.
1. Breaks up functionality within `ProcState` into several other structs
to break out the responsibilities (`ProcState` is only a data struct
now).
2. Moves towards being able to inject dependencies more easily and have
functionality only require what it needs.
3. Exposes `Arc<T>` around the "service structs" instead of it being
embedded within them. The idea behind embedding them was to reduce the
verbosity of needing to pass around `Arc<...>`, but I don't think it was
exactly working and as we move more of these structs to be more
injectable I don't think the extra verbosity will be a big deal.
This reloads an npm package's dependency's information when a
version/version req/tag is not found.
This PR applies only to dependencies of npm packages. It does NOT yet
cause npm specifiers to have their dependency information cache busted.
That requires a different solution, but this should help cache bust in
more scenarios.
Part of #16901, but doesn't close it yet
This has been bothering me for a while and it became more painful while
working on #18136 because injecting the shared progress bar became very
verbose. Basically we should move the creation of all these npm structs
up to a higher level.
This is a stepping stone for a future refactor where we can improve how
we create all our structs.
This changes npm specifiers to be handled by deno_graph and resolved to
an npm package name and version when the specifier is encountered. It
also slightly changes how npm specifier resolution occurs—previously it
would collect all the npm specifiers and resolve them all at once, but
now it resolves them on the fly as they are encountered in the module
graph.
https://github.com/denoland/deno_graph/pull/232
---------
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
This PR fixes peer dependency resolution to only resolve peers based on
the current graph traversal path. Previously, it would resolve a peers
by looking at a graph node's ancestors, which is not correct because
graph nodes are shared by different resolutions.
It also stores more information about peer dependency resolution in the
lockfile.
The `NpmPackageId` struct is being renamed to `NpmPackageNodeId`. In a
future PR it will be moved down into only npm dependency resolution and
a `NpmPackageId` struct will be introduced in `deno_graph` that only has
the name and version of the package (no peer dependency identifier
information). So a `NpmPackageReq` will map to an `NpmPackageId`, which
will map to an `NpmPackageNodeId` in the npm resolution.
This commit changes signature of "deno_core::ModuleLoader::resolve" to pass
an enum indicating whether or not we're resolving a specifier for dynamic import.
Additionally "CliModuleLoader" was changes to store both "parent permissions" (or
"root permissions") as well as "dynamic permissions" that allow to check for permissions
in top-level module load an dynamic imports.
Then all code paths that have anything to do with Node/npm compat are now checking
for permissions which are passed from module loader instance associated with given
worker.
This adds support for peer dependencies in npm packages.
1. If not found higher in the tree (ancestor and ancestor siblings),
peer dependencies are resolved like a dependency similar to npm 7.
2. Optional peer dependencies are only resolved if found higher in the
tree.
3. This creates "copy packages" or duplicates of a package when a
package has different resolution due to peer dependency resolution—see
https://pnpm.io/how-peers-are-resolved. Unlike pnpm though, duplicates
of packages will have `_1`, `_2`, etc. added to the end of the package
version in the directory in order to minimize the chance of hitting the
max file path limit on Windows. This is done for both the local
"node_modules" directory and also the global npm cache. The files are
hard linked in this case to reduce hard drive space.
This is a first pass and the code is definitely more inefficient than it
could be.
Closes #15823