1. Breaks up functionality within `ProcState` into several other structs
to break out the responsibilities (`ProcState` is only a data struct
now).
2. Moves towards being able to inject dependencies more easily and have
functionality only require what it needs.
3. Exposes `Arc<T>` around the "service structs" instead of it being
embedded within them. The idea behind embedding them was to reduce the
verbosity of needing to pass around `Arc<...>`, but I don't think it was
exactly working and as we move more of these structs to be more
injectable I don't think the extra verbosity will be a big deal.
1. Fixes a cosmetic issue in the repl where it would display lsp warning
messages.
2. Lazily loads dependencies from the package.json on use.
3. Supports using bare specifiers from package.json in the REPL.
Closes #17929
Closes #18494
These methods are confusing because the arguments are backwards. I feel
like they should have never been added to `Option<T>` and that clippy
should suggest rewriting to
`map(...).unwrap_or(...)`/`map(...).unwrap_or_else(|| ...)`
https://github.com/rust-lang/rfcs/issues/1025
This has been bothering me for a while and it became more painful while
working on #18136 because injecting the shared progress bar became very
verbose. Basically we should move the creation of all these npm structs
up to a higher level.
This is a stepping stone for a future refactor where we can improve how
we create all our structs.
This lazily does an "npm install" when any package name matches what's
found in the package.json or when running a script from package.json
with deno task.
Part of #17916
Closes #17928
This changes npm specifiers to be handled by deno_graph and resolved to
an npm package name and version when the specifier is encountered. It
also slightly changes how npm specifier resolution occurs—previously it
would collect all the npm specifiers and resolve them all at once, but
now it resolves them on the fly as they are encountered in the module
graph.
https://github.com/denoland/deno_graph/pull/232
---------
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
This PR fixes peer dependency resolution to only resolve peers based on
the current graph traversal path. Previously, it would resolve a peers
by looking at a graph node's ancestors, which is not correct because
graph nodes are shared by different resolutions.
It also stores more information about peer dependency resolution in the
lockfile.
This commits adds auto-discovery of "package.json" file when running
"deno run" and "deno task" subcommands. In case of "deno run" the
"package.json" is being looked up starting from the directory of the
script that is being run, stopping early if "deno.json(c)" file is found
(ie. FS tree won't be traversed "up" from "deno.json").
When "package.json" is discovered the "--node-modules-dir" flag is
implied, leading to creation of local "node_modules/" directory - we
did that, because most tools relying on "package.json" will expect
"node_modules/" directory to be present (eg. Vite). Additionally
"dependencies" and "devDependencies" specified in the "package.json"
are downloaded on startup.
This is a stepping stone to supporting bare specifier imports, but
the actual integration will be done in a follow up commit.
---------
Co-authored-by: David Sherret <dsherret@gmail.com>
This commit changes signature of "deno_core::ModuleLoader::resolve" to pass
an enum indicating whether or not we're resolving a specifier for dynamic import.
Additionally "CliModuleLoader" was changes to store both "parent permissions" (or
"root permissions") as well as "dynamic permissions" that allow to check for permissions
in top-level module load an dynamic imports.
Then all code paths that have anything to do with Node/npm compat are now checking
for permissions which are passed from module loader instance associated with given
worker.
Previously `jsxImportSource` was resolved relative to the config file
during graph building, and relative to the emitted module during
runtime.
This is now fixed so that the JSX import source is resolved relative to
the module both during graph building and at runtime.