VScode will typically send a `textDocument/semanticTokens/full` request
followed by `textDocument/semanticTokens/range`, and occassionally
request semantic tokens even when we know nothing has changed. Semantic
tokens also get refreshed on each change. Computing semantic tokens is
relatively heavy in TSC, so we should avoid it as much as possible.
Caches the semantic tokens for open documents, to avoid making TSC do
unnecessary work. Results in a noticeable improvement in local
benchmarking
before:
```
Starting Deno benchmark
-> Start benchmarking lsp
- Simple Startup/Shutdown
(10 runs, mean: 383ms)
- Big Document/Several Edits
(5 runs, mean: 1079ms)
- Find/Replace
(10 runs, mean: 59ms)
- Code Lens
(10 runs, mean: 440ms)
- deco-cx/apps Multiple Edits + Navigation
(5 runs, mean: 9921ms)
<- End benchmarking lsp
```
after:
```
Starting Deno benchmark
-> Start benchmarking lsp
- Simple Startup/Shutdown
(10 runs, mean: 395ms)
- Big Document/Several Edits
(5 runs, mean: 1024ms)
- Find/Replace
(10 runs, mean: 56ms)
- Code Lens
(10 runs, mean: 438ms)
- deco-cx/apps Multiple Edits + Navigation
(5 runs, mean: 8927ms)
<- End benchmarking lsp
```
Moves sloppy import resolution from the loader to the resolver.
Also adds some test helper functions to make the lsp tests less verbose
---------
Co-authored-by: David Sherret <dsherret@gmail.com>
Fixes the `Debug Failure` errors described in
https://github.com/denoland/deno/issues/23643#issuecomment-2094552765 .
The issue here was that we were passing diagnostic codes as strings but
TSC expects the codes to be numbers. This resulted in some quick fixes
not working (as illustrated by the test added here which fails before
this PR).
The first commit is the actual fix. The rest are just test related.
The actual handling of `$projectChanged` is quick, but JS requests are
not. The cleared caches only get repopulated on the next actual request,
so just batch the change notification in with the next actual request.
No significant difference in benchmarks on my machine, but this speeds
up `did_change` handling and reduces our total number of JS requests (in
addition to coalescing multiple JS change notifs into one).
This PR enables V8 code cache for ES modules and for `require` scripts
through `op_eval_context`. Code cache artifacts are transparently stored
and fetched using sqlite db and are passed to V8. `--no-code-cache` can
be used to disable.
---------
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
I'm running into a node resolution bug in the lsp only and while
tracking it down I noticed this one.
Fixed by moving the project version out of `Documents`.
Currently we evict a lot of the caches on the JS side of things on every
request, namely script versions, script file names, and compiler
settings (as of #23283, it's not quite every request but it's still
unnecessarily often).
This PR reports changes to the JS side, so that it can evict exactly the
caches that it needs too. We might want to do some batching in the
future so as not to do 1 request per change.
This functionality was broken. The series of events was:
1. Load the npm resolution from the lockfile.
2. Discover only a subset of the specifiers in the documents.
3. Clear the npm snapshot.
4. Redo npm resolution with the new specifiers (~500ms).
What this now does:
1. Load the npm resolution from the lockfile.
2. Discover only a subset of the specifiers in the documents and take
into account the specifiers from the lockfile.
3. Do not redo resolution (~1ms).
Fixes #23163.
The client-facing warning doesn't provide any value and is super
annoying. We still emit a warning message on the server side for format
errors, which should fulfill the same (less intrusive) purpose.
This implementation heavily depends on there being a lockfile, meaning
JSR specifiers will always diagnose as uncached unless it's there. In
practice this affects cases where a `deno.json` isn't being used. Our
NPM specifier support isn't subject to this.
The reason for this is that the version constraint solving code is
currently buried in `deno_graph` and not usable from the LSP, so the
only way to reuse that logic is the solved-version map in the lockfile's
`packages.specifiers`.