Welcome to better optimised op calls! Currently opSync is called with parameters of every type and count. This most definitely makes the call megamorphic. Additionally, it seems that spread params leads to V8 not being able to optimise the calls quite as well (apparently Fast Calls cannot be used with spread params).
Monomorphising op calls should lead to some improved performance. Now that unwrapping of sync ops results is done on Rust side, this is pretty simple:
```
opSync("op_foo", param1, param2);
// -> turns to
ops.op_foo(param1, param2);
```
This means sync op calls are now just directly calling the native binding function. When V8 Fast API Calls are enabled, this will enable those to be called on the optimised path.
Monomorphising async ops likely requires using callbacks and is left as an exercise to the reader.
This commit adds "Deno.core.setFormatExceptionCallback" which
can be used to provide custom formatting for errors. It is useful
in cases when user throws something that is non-Error (eg.
a string, plain object, etc).
This commit changes default mode of type-checking to "local"
and adds "--check" flag to following subcommands:
- deno bench
- deno bundle
- deno cache
- deno compile
- deno eval
- deno install
- deno test
This commit adds better reporting of uncaught errors
in top level scope of testing files. This change affects
both console runner as well as LSP runner.
This commit changes "deno test" to filter out stack frames if it is beneficial to the user.
This is the case when there are stack frames coming from "internal" code
below frames coming from user code.
Co-authored-by: Nayeem Rahman <nayeemrmn99@gmail.com>
This commit fixes and edge case, where testing/benching code could pledge new
permission set before restoring the previous pledge.
Appropriate panics were added and tests that assert that process is killed
in case of "recursive pledge".
This commit rewrites test runner to send structured error data from JavaScript
to Rust instead of passing strings. This will allow to customize display of errors
in test report (which will be addressed in follow up commits).
The following transformations gradually faced by "JsError" have all been
moved up front to "JsError::from_v8_exception()":
- finding the first non-"deno:" source line;
- moving "JsError::script_resource_name" etc. into the first error stack
in case of syntax errors;
- source mapping "JsError::script_resource_name" etc. when wrapping
the error even though the frame locations are source mapped earlier;
- removing "JsError::{script_resource_name,line_number,start_column,end_column}"
entirely in favour of "js_error.frames.get(0)".
We also no longer pass a js-side callback to "core/02_error.js" from cli.
I avoided doing this on previous occasions because the source map lookups
were in an awkward place.
This commit changes "deno test" to better denote user output coming
from test cases.
This is done by printing "---- output ----" and "---- output end ----"
markers if an output is produced. The output from "console" and
"Deno.core.print" is captured, as well as direct writes to "Deno.stdout"
and "Deno.stderr".
To achieve that new APIs were added to "deno_core" crate, that allow
to replace an existing resource with a different one (while keeping resource
ids intact). Resources for stdout and stderr are replaced by pipes.
Co-authored-by: David Sherret <dsherret@gmail.com>
Following changes were done in this commit:
- remove "test" prefix before each test
- use gray color for "running N tests from ..." prompt
- use relative path or remote URL instead of full URL in "running N tests from ..." prompt
- in "failures" section, add file path/remote URL before the test name
Co-authored-by: Yoshiya Hinosawa <stibium121@gmail.com>
This commit adds "--trace-ops" flag to "deno test" subcommand.
This flag enables saving of stack traces for async ops, that before were always
saved. While the feature proved to be very useful it comes with a significant performance
hit, it's caused by excessive source mapping of stack frames.
This commit improves the error messages for the `deno test` async op
sanitizer. It does this in two ways:
- it uses handwritten error messages for each op that could be leaking
- it includes traces showing where each op was started
This "async op tracing" functionality is a new feature in deno_core.
It likely has a significant performance impact, which is why it is only
enabled in tests.
This commit makes the errors produced from the resource sanitizer much
more human readable. It does this by using real words rather than our
"resource names" when referring to resources, and by giving helpful
hints on how to clean up each of the resources.
This change also makes the timers implementation closer to the spec, and
sets up the stage to implement AbortSignal.timeout() (whatwg/dom#1032).
Fixes #8965
Fixes #10974
Fixes #11398
Although not easy to replicate in the wild, the `deno test` op sanitizer
can fail when there are intervals that started before a test runs, since
the op sanitizer can end up running in the time between the timer op for
an interval's run resolves and the op for the next run starts.
This change fixes that by adding a new macrotask callback that will run
after the timer macrotask queue has drained. This ensures that there is
a timer op if there are any timers which are unresolved by the time the
op sanitizer runs.
Although not easy to replicate in the wild, the `deno test` op sanitizer
can fail when there are intervals that started before a test runs, since
the op sanitizer can end up running in the time between the timer op for
an interval's run resolves and the op for the next run starts.
This change fixes that by adding a new macrotask callback that will run
after the timer macrotask queue has drained. This ensures that there is
a timer op if there are any timers which are unresolved by the time the
op sanitizer runs.
This commit merges the two vectors of specifiers into a single one introducing
the concept of a "TestMode" which is a tri-state enum specifying how a specifier
is to be tested (as documentation, as an executable module or as both).
This is determined during the collection phase and determines how a specifier
will be executed based on how the specifier was collected (directly or not) and
if it has an eligible media_type when fetched.
For example "deno test README.md" is marked as documentation because, while it
is a direct inclusion it is not an executable media type therefore will only
have the fenced code blocks that can be parsed from it tested.