Also removes permissions being passed in for node resolution. It was
completely useless because we only checked it for reading package.json
files, but Deno reading package.json files for resolution is perfectly
fine.
My guess is this is also a perf improvement because Deno is doing less
work.
The mixed `number | bigint` representation was useful optimization for
pointers. Now, pointers are represented as V8 externals. As part of the
FFI stabilization effort we want to make `bigint` the only
representation for `u64` and `i64`.
BigInt representation performance is almost on par with mixed
representation with the added benefit that its less confusing and users
don't need manual checks and conversions for doing operations on the
value.
```
cpu: AMD Ryzen 5 7530U with Radeon Graphics
runtime: deno 1.43.6+92a8d09 (x86_64-unknown-linux-gnu)
file:///home/divy/gh/ffi/main.ts
benchmark time (avg) iter/s (min … max) p75 p99 p995
-------------------------------------------------------------------------- -----------------------------
nop 4.01 ns/iter 249,533,690.5 (3.97 ns … 10.8 ns) 3.97 ns 4.36 ns 9.03 ns
ret bigint 7.74 ns/iter 129,127,186.8 (7.72 ns … 10.46 ns) 7.72 ns 8.11 ns 8.82 ns
ret i32 7.81 ns/iter 128,087,100.5 (7.77 ns … 12.72 ns) 7.78 ns 8.57 ns 9.75 ns
ret bigint (add op) 15.02 ns/iter 66,588,253.2 (14.64 ns … 24.99 ns) 14.76 ns 19.13 ns 19.44 ns
ret i32 (add op) 12.02 ns/iter 83,209,131.8 (11.95 ns … 18.18 ns) 11.98 ns 13.11 ns 14.5 ns
```
Migrate to op2. Making a few decisions to get this across the line:
- Empty slices, no matter where the come from, are null pointers. The v8
bugs (https://bugs.chromium.org/p/v8/issues/detail?id=13489) and
(https://bugs.chromium.org/p/v8/issues/detail?id=13488) make passing
around zero-length slice pointers too dangerous as they might be
uninitialized or null data.
- Offsets and lengths are `#[number] isize` and `#[number] usize`
respectively -- 53 bits should be enough for anyone
- Pointers are bigints. This is a u64 in the fastcall world, and can
accept Integer/Int32/Number/BigInt v8 types in the slow world.
This commit adds new "--deny-*" permission flags. These are complimentary to
"--allow-*" flags.
These flags can be used to restrict access to certain resources, even if they
were granted using "--allow-*" flags or the "--allow-all" ("-A") flag.
Eg. specifying "--allow-read --deny-read" will result in a permission error,
while "--allow-read --deny-read=/etc" will allow read access to all FS but the
"/etc" directory.
Runtime permissions APIs ("Deno.permissions") were adjusted as well, mainly
by adding, a new "PermissionStatus.partial" field. This field denotes that
while permission might be granted to requested resource, it's only partial (ie.
a "--deny-*" flag was specified that excludes some of the requested resources).
Eg. specifying "--allow-read=foo/ --deny-read=foo/bar" and then querying for
permissions like "Deno.permissions.query({ name: "read", path: "foo/" })"
will return "PermissionStatus { state: "granted", onchange: null, partial: true }",
denoting that some of the subpaths don't have read access.
Closes #18804.
---------
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
Co-authored-by: Nayeem Rahman <nayeemrmn99@gmail.com>
Follow-up to #18210:
* we are passing the generated `cfg` object into the state function
rather than passing individual config fields
* reduce cloning dramatically by making the state_fn `FnOnce`
* `take` for `ExtensionBuilder` to avoid more unnecessary copies
* renamed `config` to `options`
This implements two macros to simplify extension registration and centralize a lot of the boilerplate as a base for future improvements:
* `deno_core::ops!` registers a block of `#[op]`s, optionally with type
parameters, useful for places where we share lists of ops
* `deno_core::extension!` is used to register an extension, and creates
two methods that can be used at runtime/snapshot generation time:
`init_ops` and `init_ops_and_esm`.
---------
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
This commit removes "deno_core::RuntimeOptions::extensions_with_js".
Now it's embedders' responsibility to properly register extensions
that will not contains JavaScript sources when running from an existing
snapshot.
Prerequisite for https://github.com/denoland/deno/pull/18080
This commit splits "<ext_name>::init" functions into "init_ops" and
"init_ops_and_esm". That way we don't have to construct list of
ESM sources on each startup if we're running with a snapshot.
In a follow up commit "deno_core" will be changed to not have a split
between "extensions" and "extensions_with_js" - it will be embedders'
responsibility to pass appropriately configured extensions.
Prerequisite for https://github.com/denoland/deno/pull/18080
There's no point for this API to expect result. If something fails it should
result in a panic during build time to signal to embedder that setup is
wrong.
This API is required by several extensions like "ext/node", "ext/ffi"
and also FS APIs that we want to move to a separate crate. Because
of that "pathFromURL" API was moved to "deno_web" extension so
other extension crates can rely on it.
This PR refactors all internal js files (except core) to be written as
ES modules.
`__bootstrap`has been mostly replaced with static imports in form in
`internal:[path to file from repo root]`.
To specify if files are ESM, an `esm` method has been added to
`Extension`, similar to the `js` method.
A new ModuleLoader called `InternalModuleLoader` has been added to
enable the loading of internal specifiers, which is used in all
situations except when a snapshot is only loaded, and not a new one is
created from it.
---------
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
- [x] `dlfcn.rs` - `dlopen()`-related code.
- [x] `turbocall.rs` - Call trampoline JIT compiler.
- [x] `repr.rs` - Pointer representation. Home of the UnsafePointerView
ops.
- [x] `symbol.rs` - Function symbol related code.
- [x] `callback.rs` - Home of `Deno.UnsafeCallback` ops.
- [x] `ir.rs` - Intermediate representation for values. Home of the
`NativeValue` type.
- [x] `call.rs` - Generic call ops. Home to everything related to
calling FFI symbols.
- [x] `static.rs` - static symbol support
I find easier to work with this setup, I eventually want to expand
TurboCall to unroll type conversion loop in generic calls, generate code
for individual symbols (lazy function pointers), etc.
Fixes https://github.com/denoland/deno/issues/16934
Example compiler error:
```
error: mutable opstate is not supported in async ops
--> core/ops_builtin.rs:122:1
|
122 | #[op]
| ^^^^^
|
= note: this error originates in the attribute macro `op` (in Nightly builds, run with -Z macro-backtrace for more info)
```
Currently, slow call path will always create a dangling pointer to
replace a null pointer when called with eg. a `new Uint8Array()`
parameter, which V8 initialises as a null pointer backed buffer.
However, the fast call path will never change the pointer value and will
thus expose a null pointer. Thus, it's possible that the pointer value
that a native call sees coming from Deno changes between two sequential
invocations of the same function with the exact same parameters.
Since null pointers can be quite important, and `Uint8Array` is the
chosen fast path for Deno FFI `"buffer"` parameters, I think it is
fairly important that the null pointer be properly exposed to the native
code. Thus this PR.
### `*mut c_void`
While here, I also changed the type of our pointer values to `*mut
c_void`. This is mainly due to JS buffers always being `*mut`, and
because we offer a way to turn a pointer into a JS `ArrayBuffer`
(`op_ffi_get_buf`) which is read-write. I'm not exactly sure which way
we should really go here, we have pointers that are definitely mut but
we also cannot assume all of our pointers are. So, do we go with the
maxima or the minima?
### `optimisedCall(new Uint8Array())`
V8 seems to have a bug where calling an optimised function with a newly
created empty `Uint8Array` (no argument or 0) will not see the data
pointer being null but instead it's some stable pointer, perhaps
pointing to some internal null-backing-store. The pointer value is also
an odd (not even) number, so it might specifically be a tagged pointer.
This will probably be an issue for some users, if they try to use eg.
`method(cstr("something"), new Uint8Array())` as a way to do a fast call
to `method` with a null pointer as the second parameter.
If instead of a `new Uint8Array()` the user instead uses some `const
NULL = new Uint8Array()` where the `NULL` buffer has been passed to a
slow call previously, then the fast call will properly see a null
pointer.
I'll take this up with some V8 engineers to see if this couldn't be
fixed.
<!--
Before submitting a PR, please read http://deno.land/manual/contributing
1. Give the PR a descriptive title.
Examples of good title:
- fix(std/http): Fix race condition in server
- docs(console): Update docstrings
- feat(doc): Handle nested reexports
Examples of bad title:
- fix #7123
- update docs
- fix bugs
2. Ensure there is a related issue and it is referenced in the PR text.
3. Ensure there are tests that cover the changes.
4. Ensure `cargo test` passes.
5. Ensure `./tools/format.js` passes without changing files.
6. Ensure `./tools/lint.js` passes.
-->
Makes `op_ffi_ptr_of` fast. One of the tests changed from printing
`false` to `true` as the fast `&[u8]` slice path creates the slice with
a null pointer. Thus the `op_ffi_ptr_of` will now return a null pointer
value whereas previously it returned a dangling pointer value.
This PR makes pointer read methods of `Deno.UnsafePointerView` Fast API
compliant, with the exception of `getCString` which cannot be made fast
with current V8 Fast API.
Fixes #15136
Currently `UnsafeCallback` class' `ref()` and `unref()` methods rely on
the `event_loop_middleware` implementation in core. If even a single
`UnsafeCallback` is ref'ed, then the FFI event loop middleware will
always return `true` to signify that there may still be more work for
the event loop to do.
The middleware handling in core does not wait a moment to check again,
but will instead synchronously directly re-poll the event loop and
middlewares for more work. This becomes a live-loop.
This PR introduces a `Future` implementation for the `CallbackInfo`
struct that acts as the intermediary data storage between an
`UnsafeCallback` and the `libffi` C callback. Ref'ing a callback now
means calling an async op that binds to the `CallbackInfo` Future and
only resolves once the callback is unref'ed. The `libffi` C callback
will call the waker of this Future when it fires to make sure that the
main thread wakes up to receive the callback.
The return type checking for `"function"` type FFI values was incorrect
and presumed that functions were still being registered as objects
containing a "function" key.
While here, I also removed the whole return type checking logic as it
was needed for optionally creating BigInts on return when needed, but
serde_v8 does this automatically now (I think).
Mea culpa. Back when I re-introduced parameter and return value types to
FFI callbacks I failed to properly account for the change in match arm
logic. As a result, usize and isize parameters in FFI callbacks
currently enter the branch meant for void only.
This PR changes the match arms to all be explicit, making sure that void
is the only arm marked unreachable and that it stays that way.