We use information about build in several extension crates like
"ext/node" or "runtime/". In an effort to move "fs" APIs to a separate
crate it is a prerequisite to have this information available outside
of the "runtime/" crate.
This commit moves definition of "build" object to "Deno.core" that is
later forwarded to "Deno.build".
Join two independent ops into one. A fast impl of one + a slow callback
of another. Here's an example showing optimized paths for latin-1 via
fast call and the next-best fallback using V8 apis.
```rust
#[op(v8)]
fn op_encoding_encode_into_fallback(
scope: &mut v8::HandleScope,
input: serde_v8::Value,
// ...
#[op(fast, slow = op_encoding_encode_into_fallback)]
fn op_encoding_encode_into(
input: Cow<'_, str>,
// ...
```
Benchmark results of the fallback path:
```
time target/release/deno run -A --unstable ./cli/tests/testdata/benches/text_encoder_into_perf.js
________________________________________________________
Executed in 70.90 millis fish external
usr time 57.76 millis 0.23 millis 57.53 millis
sys time 17.02 millis 1.28 millis 15.74 millis
target/release/deno_main run -A --unstable ./cli/tests/testdata/benches/text_encoder_into_perf.js
________________________________________________________
Executed in 154.00 millis fish external
usr time 67.14 millis 0.26 millis 66.88 millis
sys time 38.82 millis 1.47 millis 37.35 millis
```
JavaScript APIs from "runtime/js/40_files.js" combined abstractions
for stdio streams ("Stdout", "Stderr", "Stdin") and file system file
("File", "FsFile"). APIs from "runtime/js/40_read_file.js" and
"runtime/js/40_write_file.js" were implemented using ops from
"runtime/ops/fs.rs".
This file was removed and relevant APIs were moved to "deno_io/12_io.js"
and "runtime/js/30_fs.js".
This work is meant to enable factoring out "deno_fs" crate.
This commit changes "include_js_files!" macro from "deno_core"
in a way that "dir" option doesn't cause specifiers to be rewritten
to include it.
Example:
```
include_js_files! {
dir "js",
"hello.js",
}
```
The above definition required embedders to use:
`import ... from "internal:<ext_name>/js/hello.js"`.
But with this change, the "js" directory in which the files are stored
is an implementation detail, which for embedders results in:
`import ... from "internal:<ext_name>/hello.js"`.
The directory the files are stored in, is an implementation detail and
in some cases might result in a significant size difference for the
snapshot. As an example, in "deno_node" extension, we store the
source code in "polyfills" directory; which resulted in each specifier
to look like "internal:deno_node/polyfills/<module_name>", but with
this change it's "internal:deno_node/<module_name>".
Given that "deno_node" has over 100 files, many of them having
several import specifiers to the same extension, this change removes
10 characters from each import specifier.
This is a super basic initial implementation. We don't create a
`node_modules/.bin` folder at the moment and add it to the PATH like we
should which is necessary to make command name resolution in the
subprocess work properly (ex. you run a script that launches another
script that then tries to launch an "npx command"... this won't work
atm).
Closes #17492
This changes npm specifiers to be handled by deno_graph and resolved to
an npm package name and version when the specifier is encountered. It
also slightly changes how npm specifier resolution occurs—previously it
would collect all the npm specifiers and resolve them all at once, but
now it resolves them on the fly as they are encountered in the module
graph.
https://github.com/denoland/deno_graph/pull/232
---------
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
This commits adds auto-discovery of "package.json" file when running
"deno run" and "deno task" subcommands. In case of "deno run" the
"package.json" is being looked up starting from the directory of the
script that is being run, stopping early if "deno.json(c)" file is found
(ie. FS tree won't be traversed "up" from "deno.json").
When "package.json" is discovered the "--node-modules-dir" flag is
implied, leading to creation of local "node_modules/" directory - we
did that, because most tools relying on "package.json" will expect
"node_modules/" directory to be present (eg. Vite). Additionally
"dependencies" and "devDependencies" specified in the "package.json"
are downloaded on startup.
This is a stepping stone to supporting bare specifier imports, but
the actual integration will be done in a follow up commit.
---------
Co-authored-by: David Sherret <dsherret@gmail.com>
This commit changes definition of "ExtensionFileSource", by changing
"code" field to being "ExtensionFileSourceCode" enum. Currently the enum
has only a single variant "IncludedInBinary". It is done in preparation
to allow embedders to decide if they want to include the source code in the
binary when snapshotting (in most cases they shouldn't do that).
In the follow up commit we'll add more variants to
"ExtensionFileSourceCode".
"include_js_files_dir!" macro was removed in favor "include_js_files!"
macro which can now accept "dir" option.
Adds two test files: "cli/tests/unit_node/process_test.ts" and
"cli/tests/unit_node/child_process_test.ts"
---------
Co-authored-by: Yoshiya Hinosawa <stibium121@gmail.com>
This PR changes Node.js/npm compatibility layer to use polyfills for
built-in Node.js
embedded in the snapshot (that are coming from "ext/node" extension).
As a result loading `std/node`, either from
"https://deno.land/std@<latest>/" or
from "DENO_NODE_COMPAT_URL" env variable were removed. All code that is
imported via "npm:" specifiers now uses code embedded in the snapshot.
Several fixes were applied to various modules in "ext/node" to make
tests pass.
---------
Co-authored-by: Yoshiya Hinosawa <stibium121@gmail.com>
Co-authored-by: Divy Srivastava <dj.srivastava23@gmail.com>
Fixes denoland#16922.
The error messages in the `ffi` module are somewhat cryptic when passing
functions that have invalid `parameters` or `result` type strings. While
the generated serializer for the `ForeignFunction` struct correctly
outputs a correct and verbose message, the user sees a far less helpful
`data did not match any variant` message instead.
The underlying cause appears to be the fallback message in the
auto-derived deserializer for untagged enums [1] generated as a result
of `ForeignSymbol` being marked as `#[serde(untagged)]` [2]. Passing an
unexpected value for `NativeType` causes it to error out while
attempting to deserialize both enum variants -- once because it's not a
match for the `ForeignStatic` variant, and once because the
`ForeignFunction` deserializer rejects the invalid type for the
parameters/return type. This is currently open as [serde
#773](https://github.com/serde-rs/serde/issues/773), and not a trivial
exercise to fix generically.
[1]
https://github.com/serde-rs/serde/blob/v0.9.7/serde_derive/src/de.rs#L730
[2] https://github.com/denoland/deno/blob/main/ext/ffi/dlfcn.rs#L102
[3] https://github.com/serde-rs/serde/issues/773
Note that the auto-generated deserializer for untagged enums uses a
private API to buffer deserializer content that we don't have access to.
Instead, we can make use of the `serde_value` crate to buffer the
values. This can likely be removed once the official buffering API lands
(see [4] and [5]). In addition, this crate pulls in `serde_json` as a
cheap way to test that the deserializer works properly.
[4] https://github.com/serde-rs/serde/issues/741
[5] https://github.com/serde-rs/serde/pull/2348
This commit moves "deno_std/node" in "ext/node" crate. The code is
transpiled and snapshotted during the build process.
During the first pass a minimal amount of work was done to create the
snapshot, a lot of code in "ext/node" depends on presence of "Deno"
global. This code will be gradually fixed in the follow up PRs to migrate
it to import relevant APIs from "internal:" modules.
Currently the code from snapshot is not used in any way, and all
Node/npm compatibility still uses code from
"https://deno.land/std/node" (or from the location specified by
"DENO_NODE_COMPAT_URL"). This will also be handled in a follow
up PRs.
---------
Co-authored-by: crowlkats <crowlkats@toaxl.com>
Co-authored-by: Divy Srivastava <dj.srivastava23@gmail.com>
Co-authored-by: Yoshiya Hinosawa <stibium121@gmail.com>
This commit stabilizes Node-API, the "--unstable" flag is no longer
required to load native extensions. "--allow-ffi" permission is still
required to load them.
Fixes https://github.com/denoland/deno/issues/17761
Tugstenite already sends a pong for a recieved ping. This automatically
happens when the socket read is being driven. From
https://github.com/snapview/tokio-tungstenite/issues/88
> You need to read from the read-side of the socket so that it
receives/handles pings, and on the next write it would then send the
corresponding pong.
Here's the source:
e1033afd95/src/protocol/mod.rs (L374-L380)
```rust
// Upon receipt of a Ping frame, an endpoint MUST send a Pong frame in
// response, unless it already received a Close frame. It SHOULD
// respond with Pong frame as soon as is practical. (RFC 6455)
if let Some(pong) = self.pong.take() {
trace!("Sending pong reply");
self.send_one_frame(stream, pong)?;
}
```
WIth this patch, all Autobahn tests from 1-8 pass. Fixed cases: 2.1,
2.2, 2.3, 2.4, 2.6, 2.9, 2.10, 2.11, 5.6, 5.7, 5.8, 5.19, 5.20
To run the test yourself, follow
https://www.notion.so/denolandinc/Autobahn-WebSocket-testsuite-723a86f450ce4823b4ef9cb3dc4c7869?pvs=4
This was not caught in the previous test case, as the response body was
smaller than the size of `HEAD` response.
This made `nwritten < responseLen` check in `writeFixedResponse` to
fail, and not trigger `op_flash_respond_async` as a result.
When the response body is larger than the `HEAD` though, as in the
updated test case (`HEAD` i 120 bytes, where our response is 300 bytes),
it would think that we still have something to send, and effectively
panic, as `op_flash_respond` already removed the request from the pool.
This change, makes the `handleResponse` function always calculate the
number of bytes to transmit when `HEAD` request is encountered.
Effectively ignoring `Content-Length` of the body, but still setting it
correctly in the request header itself.
Fixes https://github.com/denoland/deno/issues/17737
This commit moves some code around from "cli/node/mod.rs" to
"ext/node". Additionally "ext/node" was changed to factor out
"ops.rs" and "polyfill.rs" modules.
This commit does preparatory work to allow snapshotting Node.js
compatibility layer, that currently lives in `std/node`. The logic was
changed to allow loading some modules from the snapshot and
some from the remote URL.
Additionally "module_es_shim.js" that provides exports for "node:module"
is now snapshotted.
This PR refactors all internal js files (except core) to be written as
ES modules.
`__bootstrap`has been mostly replaced with static imports in form in
`internal:[path to file from repo root]`.
To specify if files are ESM, an `esm` method has been added to
`Extension`, similar to the `js` method.
A new ModuleLoader called `InternalModuleLoader` has been added to
enable the loading of internal specifiers, which is used in all
situations except when a snapshot is only loaded, and not a new one is
created from it.
---------
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
Currently fast ops will always check for the alignment of a TypedArray
when getting a slice out of them. A match is then done to ensure that
some slice was received and if not a fallback will be requested.
For Uint8Arrays (and WasmMemory which is equivalent to a Uint8Array) the
alignment will always be okay. Rust probably optimises this away for the
most part (since the Uint8Array check is `x % 1 != 0`), but what it
cannot optimise away is the fast ops path's request for fallback options
parameter.
The extra parameter's cost is likely negligible but V8 will need to
check if a fallback was requested and prepare the fallback call just in
case it was. In the future the lack of a fallback may also enable V8 to
much better optimise the result handling.
For V8 created buffers, it seems like all buffers are actually always
guaranteed to be properly aligned: All buffers seem to always be created
8-byte aligned, and creating a 32 bit array or 64 bit array with a
non-aligned offset from an ArrayBuffer is not allowed. Unfortunately,
Deno FFI cannot give the same guarantees, and it is actually possible
for eg. 32 bit arrays to be created unaligned using it. These arrays
work fine (at least on Linux) so it seems like this is not illegal, it
just means that we cannot remove the alignment checking for 32 bit
arrays.
This patch makes `NativeType` to `libffi::middle::Type` conversion
failliable and w.t disallows struct with empty fields. libffi does not
handle "empty" struct because they don't exist in C (or Rust).
Fixes #17481
Bump the rsa crate to 0.7.0
The API for the `rsa` crate has changed significantly, but I have
verified that tests continue to pass throughout this update.
I mistakenly held on to a RefCell's borrow for the whole time of
iteration, but since these counters can be refed/unrefed from any
thread that is a mistake.
Updated third_party dlint to v0.37.0 for GitHub Actions. This PR
includes following changes:
* fix(prefer-primordials): Stop using array pattern assignments
* fix(prefer-primordials): Stop using global intrinsics except for
`SharedArrayBuffer`
* feat(guard-for-in): Apply new guard-for-in rule
If the JS handler gets a POST, PUT, or PATCH request, but doesn't
`await` the body, deno would panic because it will try to read the body
even though the request has already been handled.
Not sure how/where to test this case, so I could use some help with
that.
The leading cause of the problem was that `handleResponse` has
`tryRespondChunked` passed as an argument, which in turn is implemented
as a call to `core.ops.op_try_flash_respond_chuncked`, that throws in
the repro code.
`handleResponse` was not handled correctly, as it not returned any
value, and had no `catch` attached to it.
It also effectively was never correctly handled inside two other blocks
with `resp.then` and `PromisePrototypeCatch(PromisePrototypeThen(resp,
"..."))` as well, as it just short-circuited the promise with an empty
resolve, instead of relying on the last `(async () => {})` block.
This change makes `handleResponse` return a correct value and attach
`onError` handler to the "non-thenable" variant of response handling
code.
This commit fixes "cleanup hooks" in NAPI integration in two ways:
- don't hold to RefCell's borrow while iterating over hooks
- allow a hook to remove itself when being called