This is the release commit being forwarded back to main for 2.0.6
Signed-off-by: Divy Srivastava <dj.srivastava23@gmail.com>
Co-authored-by: Divy Srivastava <dj.srivastava23@gmail.com>
`performance.timeOrigin` was being set from when JS started executing,
but `op_now` measures from an `std::time::Instant` stored in `OpState`,
which is created at a completely different time. This caused
`performance.timeOrigin` to be very incorrect. This PR corrects the
origin and also cleans up some of the timer code.
Compared to `Date.now()`, `performance`'s time origin is now
consistently within 5us (0.005ms) of system time.
![image](https://github.com/user-attachments/assets/0a7be04a-4f6d-4816-bd25-38a2e6136926)
This is the release commit being forwarded back to main for 2.0.2
Co-authored-by: bartlomieju <bartlomieju@users.noreply.github.com>
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
This is the release commit being forwarded back to main for 2.0.1
Co-authored-by: bartlomieju <bartlomieju@users.noreply.github.com>
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
Fixes #22995. Fixes #23000.
There were a handful of bugs here causing the hang (each with a
corresponding minimized test):
- We were canceling recv futures when `receiveMessageOnPort` was called,
but this caused the "receive loop" in the message port to exit. This was
due to the fact that `CancelHandle`s are never reset (i.e., once you
`cancel` a `CancelHandle`, it remains cancelled). That meant that after
`receieveMessageOnPort` was called, the subsequent calls to
`op_message_port_recv_message` would throw `Interrupted` exceptions, and
we would exit the loop.
The cancellation, however, isn't actually necessary.
`op_message_port_recv_message` only borrows the underlying port for long
enough to poll the receiver, so the borrow there could never overlap
with `op_message_port_recv_message_sync`.
- Calling `MessagePort.unref()` caused the "receive loop" in the message
port to exit. This was because we were setting
`messageEventListenerCount` to 0 on unref. Not only does that break the
counter when multiple `MessagePort`s are present in the same thread, but
we also exited the "receive loop" whenever the listener count was 0. I
assume this was to prevent the recv promise from keeping the event loop
open.
Instead of this, I chose to just unref the recv promise as needed to
control the event loop.
- The last bug causing the hang (which was a doozy to debug) ended up
being an unfortunate interaction between how we implement our
messageport "receive loop" and a pattern found in `npm:piscina` (which
angular uses). The gist of it is that piscina uses an atomic wait loop
along with `receiveMessageOnPort` in its worker threads, and as the
worker is getting started, the following incredibly convoluted series of
events occurs:
1. Parent sends a MessagePort `p` to worker
2. Parent sends a message `m` to the port `p`
3. Parent notifies the worker with `Atomics.notify` that a new message
is available
4. Worker receives message, adds "message" listener to port `p`
5. Adding the listener triggers `MessagePort.start()` on `p`
6. Receive loop in MessagePort.start receives the message `m`, but then
hits an await point and yields (before dispatching the "message" event)
7. Worker continues execution, starts the atomic wait loop, and
immediately receives the existing notification from the parent that a
message is available
8. Worker attempts to receive the new message `m` with
`receiveMessageOnPort`, but this returns `undefined` because the receive
loop already took the message in 6
9. Atomic wait loop continues to next iteration, waiting for the next
message with `Atomic.wait`
10. `Atomic.wait` blocks the worker thread, which prevents the receive
loop from continuing and dispatching the "message" event for the
received message
11. The parent waits for the worker to respond to the first message, and
waits
12. The thread can't make any more progress, and the whole process hangs
The fix I've chosen here (which I don't particularly love, but it works)
is to just delay the `MessagePort.start` call until the end of the event
loop turn, so that the atomic wait loop receives the message first. This
prevents the hang.
---
Those were the main issues causing the hang. There ended up being a few
other small bugs as well, namely `exit` being emitted multiple times,
and not patching up the message port when it's received by
`receiveMessageOnPort`.
Testing once again if the crates are being properly released.
---------
Co-authored-by: bartlomieju <bartlomieju@users.noreply.github.com>
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
Test run before Deno 2.0 release to make sure that the publishing
process passes correctly.
---------
Co-authored-by: bartlomieju <bartlomieju@users.noreply.github.com>
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
This PR optimizes the case when `performance.measure()` needs to find
the startMark by name. It is a simple change on `findMostRecent` fn to
avoiding copying and reversing the complete entries list.
Adds minor missing tests for:
- `clearMarks()`, general
- `clearMeasures()`, general
- `measure()`, case when the startMarks name exists more than once
### Benchmarks
#### main
```
CPU | AMD Ryzen 7 PRO 6850U with Radeon Graphics
Runtime | Deno 2.0.0-rc.4 (x86_64-unknown-linux-gnu)
benchmark time/iter (avg) iter/s (min … max) p75 p99 p995
---------------------- ----------------------------- --------------------- --------------------------
worst case measure() 2.1 ms 486.9 ( 1.7 ms … 2.4 ms) 2.2 ms 2.4 ms 2.4 ms
```
#### this PR
```
CPU | AMD Ryzen 7 PRO 6850U with Radeon Graphics
Runtime | Deno 2.0.0-rc.4 (x86_64-unknown-linux-gnu)
benchmark time/iter (avg) iter/s (min … max) p75 p99 p995
---------------------- ----------------------------- --------------------- --------------------------
worst case measure() 966.3 µs 1,035 (876.9 µs … 1.1 ms) 1.0 ms 1.1 ms 1.1 ms
```
```ts
Deno.bench("worst case measure()", (b) => {
performance.mark('start');
for (let i = 0; i < 1e5; i += 1) {
performance.mark(crypto.randomUUID());
}
b.start();
performance.measure('total', 'start');
b.end();
performance.clearMarks();
performance.clearMeasures();
});
```
This fixes the fast path for `readableStreamCollectIntoUint8Array` to
only trigger if the readable stream has not yet been disturbed -
because otherwise we may not be able to close it if the
read errors.
Remove `--allow-hrtime` and `--deny-hrtime`. We are doing this because
it is already possible to get access to high resolution timers through
workers and SharedArrayBuffer.
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
To ensure consistency across the codebase, this commit refactors the
code in the `ext` folder to use `throw new Error`` instead of `throw`
for throwing errors.
Fixes https://github.com/denoland/deno/issues/25270
This is the release commit being forwarded back to main for 1.45.3
---------
Co-authored-by: bartlomieju <bartlomieju@users.noreply.github.com>
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>