Keep a cache for source maps and source lines.
We sort of already had a cache argument for source map lookup
functions but we just passed an empty map instead of storing it.
Extended it to cache source line lookups as well and plugged it
into runtime state.
The following transformations gradually faced by "JsError" have all been
moved up front to "JsError::from_v8_exception()":
- finding the first non-"deno:" source line;
- moving "JsError::script_resource_name" etc. into the first error stack
in case of syntax errors;
- source mapping "JsError::script_resource_name" etc. when wrapping
the error even though the frame locations are source mapped earlier;
- removing "JsError::{script_resource_name,line_number,start_column,end_column}"
entirely in favour of "js_error.frames.get(0)".
We also no longer pass a js-side callback to "core/02_error.js" from cli.
I avoided doing this on previous occasions because the source map lookups
were in an awkward place.
This commit adds new "deno check" subcommand.
Currently it is an alias for "deno cache" with the difference that remote
modules don't emit TS diagnostics by default.
Prints warning for "deno run" subcommand if "--check" flag is not present
and there's no "--no-check" flag. Adds "DENO_FUTURE_CHECK" env
variable that allows to opt into new behavior now.
This commit fixes CJS/ESM interop in compat mode for dynamically
imported modules.
"ProcState::prepare_module_load" was changed to accept a list
of "graph roots" without associated "module kind". That module kind
was always hardcoded to "ESM" which is not true for CJS/ESM interop -
a CommonJs module might be imported using "import()" function. In
such case the root of the graph should have "CommonJs" module kind
instead of "ESM".
This commit adds CJS/ESM interoperability when running in --compat mode.
Before executing files, they are analyzed and all CommonJS modules are
transformed on the fly to a ES modules. This is done by utilizing analyze_cjs()
functionality from deno_ast. After discovering exports and reexports, an ES
module is rendered and saved in memory for later use.
There's a caveat that all files ending with ".js" extension are considered as
CommonJS modules (unless there's a related "package.json" with "type": "module").
This commit adds proper support for import assertions and JSON modules.
Implementation of "core/modules.rs" was changed to account for multiple possible
module types, instead of always assuming that the code is an "ES module". In
effect "ModuleMap" now has knowledge about each modules' type (stored via
"ModuleType" enum). Module loading pipeline now stores information about
expected module type for each request and validates that expected type matches
discovered module type based on file's "MediaType".
Relevant tests were added to "core/modules.rs" and integration tests,
additionally multiple WPT tests were enabled.
There are still some rough edges in the implementation and not all WPT were
enabled, due to:
a) unclear BOM handling in source code by "FileFetcher"
b) design limitation of Deno's "FileFetcher" that doesn't download the same
module multiple times in a single run
Co-authored-by: Kitson Kelly <me@kitsonkelly.com>
This commit introduces "ProcState::maybe_resolver" field, which
stores a single instance of resolver for the whole lifetime of the
process, instead of creating these resolvers for each creation
of module graph. As a result, this resolver can be used in fallback
case where graph is not constructed (REPL, loading modules using
"require") unifying resolution logic.
This commit integrates import map and "classic" resolutions in
the "--compat" mode when using ES modules; in effect
"http:", "https:" and "blob:" imports now work in compat mode.
The algorithm works as follows:
1. If there's an import map, try to resolve using it and if succeeded
return the specifier
2. Try to resolve using "Node ESM resolution", and if succeeded return
the specifier
3. Fall back to regular ESM resolution