This commit adds a fallback mechanism for absent compiled source file.
Because imported type declaration files are not emitted by TS compiler
and their imports are not elided users often hit "No such file or directory"
error. With this commit in such situation an empty source file will be
provided to V8 with a warning to the user suggesting using "import type"/
"export type" syntax instead.
This commit adds a "--no-check" option to following subcommands:
- "deno cache"
- "deno info"
- "deno run"
- "deno test"
The "--no-check" options allows to skip type checking step and instead
directly transpiles TS sources to JS sources.
This solution uses `ts.transpileModule()` API and is just an interim
solution before implementing it fully in Rust.
This commit adds incremental compilation capabilities to internal TS compiler.
Instead of using "ts.createProgram()" API for compilation step (during deno
startup), "ts.createIncrementalProgram()" API is used instead.
Thanks to TS' ".tsbuildinfo" file that already stores all necessary metadata
for compilation I was able to remove our own invention that is ".graph" file.
".tsbuildinfo" file is stored alongside compiled source and is used to
cache-bust outdated dependencies, facilitated by the "version" field.
The value for "version" field is computed in Rust during loading of module
graph and is basically a hash of the file contents.
Please keep in mind that incremental compilation is only used for initial
compilation (or dynamic imports compilation) - bundling and runtime compiler
APIs haven't been changed at all.
Due to problems with source map I changed compilation settings to inline
source map (inlineSourceMap instead of sourceMap).
Currently WebAssembly runtime errors don't propagate up to the user as
they use urls to denote where the error occurred which get caught by the source-map
pipeline which doesn't support the wasm scheme.
This commit:
* added default file globs so "deno lint" can be run
without arguments (just like "deno fmt")
* added test for globs in "deno lint"
* upgrade "deno_lint" crate to v0.1.9
This commit fixes several regressions in TS compiler:
* double compilation of same module during same process run
* compilation of JavaScript entry point with non-JS imports
* unexpected skip of emit during compilation
Additional checks were added to ensure "allowJs" setting is
used in TS compiler if JavaScript has non-JS dependencies.
This commit fixes regression that caused TS dependencies
not being compiled.
Check was added that ensures TS compiler is run if
any of dependencies in module graph is TS/TSX/JSX.
This PR addresses many problems with module graph loading
introduced in #5029, as well as many long standing issues.
"ModuleGraphLoader" has been wired to "ModuleLoader" implemented
on "State" - that means that dependency analysis and fetching is done
before spinning up TS compiler worker.
Basic dependency tracking for TS compilation has been implemented.
Errors caused by import statements are now annotated with import
location.
Co-authored-by: Ryan Dahl <ry@tinyclouds.org>
Since everything that Deno loads is treated as an ES Module,
it means that all code is treated as "use strict" except for
when using the REPL. This PR changes that so code in the
REPL is also always evaluated with "use strict". There are
also a couple other places where we load code as scripts
which should also use "use strict" just in case.
This commit changes how error occurring in SWC are handled.
Changed lexer settings to properly handle TS decorators.
Changed output of SWC error to annotate with position in file.
This commit fixes a bug introduced in #5029 that caused bad
handling of redirects during module analysis.
Also ensured that duplicate modules are not downloaded.
This commit completely overhauls how module analysis is
performed in TS compiler by moving the logic to Rust.
In the current setup module analysis is performed using
"ts.preProcessFile" API in a special TS compiler worker
running on a separate thread.
"ts.preProcessFile" allowed us to build a lot of functionality
in CLI including X-TypeScript-Types header support
and @deno-types directive support. Unfortunately at the
same time complexity of the ops required to perform
supporting tasks exploded and caused some hidden
permission escapes.
This PR introduces "ModuleGraphLoader" which can parse
source and load recursively all dependent source files; as
well as declaration files. All dependencies used in TS
compiler and now fetched and collected upfront in Rust
before spinning up TS compiler.
To achieve feature parity with existing APIs this commit
includes a lot of changes:
* add "ModuleGraphLoader"
- can fetch local and remote sources
- parses source code using SWC and extracts imports, exports, file references, special
headers
- this struct inherited all of the hidden complexity and cruft from TS version and requires
several follow up PRs
* rewrite cli/tsc.rs to perform module analysis upfront and send all required source code to
TS worker in one message
* remove op_resolve_modules and op_fetch_source_files from cli/ops/compiler.rs
* run TS worker on the same thread
This commit removes "check_stderr" setting from itest! macro used
to generate integration tests. Without this setting on tests discarded
output of stderr making it very hard to debug the problem in test.
Numerous tests were changed by adding "--quiet" flag to not display
"Compile"/"Download" prompts.
This PR hot-fixes permission escapes in dynamic imports, workers
and runtime compiler APIs.
"permissions" parameter was added to public APIs of SourceFileFetcher
and appropriate permission checks are performed during loading of
local and remote files.
Importing .wasm files is non-standardized therefore deciding to
support current functionality past 1.0 release is risky.
Besides that .wasm import posed many challenges in our codebase
due to complex interactions with TS compiler which spawned
thread for each encountered .wasm import.
This commit removes:
- cli/compilers/wasm.rs
- cli/compilers/wasm_wrap.js
- two integration tests related to .wasm imports
The issue is solved by proxying websocket messages over a pair of
`futures::mpsc::unbounded` channels. As these are are implemented in
the 'futures' crate, they can't participate in Tokio's cooperative
task yielding.
This PR removes the hack in CLI that allows to run scripts with shorthand: deno script.ts.
Removing this functionality because it hacks around short-comings of clap our CLI parser. We agree that this shorthand syntax is desirable, but it needs to be rethinked and reimplemented. For 1.0 we should go with conservative approach that is correct.