This note about how `v8::SnapshotCreator::create_blob` must not be
called from a `HandleScope` stopped being relevant in #6801, and was
now attached to code that had nothing to do with `HandleScope`s.
Streamlines a common middleware pattern and provides foundations for avoiding variably sized v8::ExternalReferences & enabling fully monomorphic op callpaths
When an exception is thrown during the processing of streaming WebAssembly,
`op_wasm_streaming_abort` is called. This op calls into V8, which synchronously
rejects the promise and calls into the promise rejection handler, if applicable.
But calling an op borrows the isolate's `JsRuntimeState` for the duration of the
op, which means it is borrowed when V8 calls into `promise_reject_callback`,
which tries to borrow it again, panicking.
This change changes `op_wasm_streaming_abort` from an op to a binding
(`Deno.core.abortWasmStreaming`). Although that binding must borrow the
`JsRuntimeState` in order to access the `WasmStreamingResource` stored in the
`OpTable`, it also takes ownership of that `WasmStreamingResource` instance,
which means it can drop any borrows of the `JsRuntimeState` before calling into
V8.
In the implementation of structured serialization in
`Deno.core.serialize`, whenever there is a serialization error, an
exception will be thrown with the message "Failed to serialize
response", even though V8 provides a message to use in such cases.
This change instead throws an exception with the V8-provided message,
if there is one.
This commit adds "--trace-ops" flag to "deno test" subcommand.
This flag enables saving of stack traces for async ops, that before were always
saved. While the feature proved to be very useful it comes with a significant performance
hit, it's caused by excessive source mapping of stack frames.
This commit improves the error messages for the `deno test` async op
sanitizer. It does this in two ways:
- it uses handwritten error messages for each op that could be leaking
- it includes traces showing where each op was started
This "async op tracing" functionality is a new feature in deno_core.
It likely has a significant performance impact, which is why it is only
enabled in tests.
This commit rewrites "InspectorSession" to no longer implement "Future"
trait but instead implement "Stream" trait. "Stream" trait is implemented
by yielding a raw pointer to the "v8::inspector::V8InspectorSession" and
received message. In effect received messages are no longer dispatched
from within the future, but are explicitly dispatched by the caller.
This change should allow us to dispatch a message to the session when
another message is being dispatched, ie.
"V8InspectorSesssion::dispatch_protocol_message" is already on the
call stack.
This commit changes flow in inspector code to no longer require
"Runtime.runIfWaitingForDebugger" message to complete a handshake.
Even though clients like Chrome DevTools always send this message on startup,
it is against the protocol to require this message to start an inspector
session.
Instead "Runtime.runIfWaitingForDebugger" is required only when running with
"--inspect-brk" flag, which matches behavior of Node.js.
`CrossIsolateStore`, `ExtensionBuilder` and `InMemoryChannelResource`
are private types which are referred to by other public APIs, and so
don't show up as links in the rustdoc. This is especially confusing for
`ExtensionBuilder`, since there is nothing in the docs that explains how
to build an extension.
Exposing these three types doesn't add any new capabilities:
`ExtensionBuilder` can be created from `Extension::builder()`,
`SharedArrayBufferStore` and `CompiledWasmModuleStore` already enable
doing anything that `CrossIsolateStore` can do by itself, and
`InMemoryChannelResource` isn't constructable.
This commit adds proper support for import assertions and JSON modules.
Implementation of "core/modules.rs" was changed to account for multiple possible
module types, instead of always assuming that the code is an "ES module". In
effect "ModuleMap" now has knowledge about each modules' type (stored via
"ModuleType" enum). Module loading pipeline now stores information about
expected module type for each request and validates that expected type matches
discovered module type based on file's "MediaType".
Relevant tests were added to "core/modules.rs" and integration tests,
additionally multiple WPT tests were enabled.
There are still some rough edges in the implementation and not all WPT were
enabled, due to:
a) unclear BOM handling in source code by "FileFetcher"
b) design limitation of Deno's "FileFetcher" that doesn't download the same
module multiple times in a single run
Co-authored-by: Kitson Kelly <me@kitsonkelly.com>
Provide a programmatic means of intercepting rejected promises without a
.catch() handler. Needed for Node compat mode.
Also do a first pass at uncaughtException support because they're
closely intertwined in Node. It's like that Frank Sinatra song:
you can't have one without the other.
Stepping stone for #7013.
This commit adds an ability to "ref" or "unref" pending ops.
Up to this point Deno had a notion of "async ops" and "unref async ops";
the former keep event loop alive, while the latter do not block event loop
from finishing. It was not possible to change between op types after
dispatching, one had to decide which type to use before dispatch.
Instead of storing ops in two separate "FuturesUnordered" collections,
now ops are stored in a single collection, with supplemental "HashSet"
storing ids of promises that were "unrefed".
Two APIs were added to "Deno.core":
"Deno.core.refOp(promiseId)" which allows to mark promise id
to be "refed" and keep event loop alive (the default behavior)
"Deno.core.unrefOp(promiseId)" which allows to mark promise
id as "unrefed" which won't block event loop from exiting
This commit adds several new "Deno.core" bindings:
* "setNextTickCallback"
* "hasScheduledTick"
* "setHasScheduledTick"
* "runMicrotasks"
Additionally it changes "Deno.core.setMacrotaskCallback" to
allow registering multiple callbacks. All these changes were necessary
to polyfill "process.nextTick" in Node compat layer.
Co-authored-by: Ben Noordhuis <info@bnoordhuis.nl>