We were calling `expand_glob` on our excludes, which is very expensive
and unnecessary because we can pattern match while traversing instead.
1. Doesn't expand "exclude" globs. Instead pattern matches while walking
the directory.
2. Splits up the "include" into base paths and applicable file patterns.
This causes less pattern matching to occur because we're only pattern
matching on patterns that might match and not ones in completely
unrelated directories.
This PR fixes #21658.
- `check` subcommand sees `exclude` option in `deno.json`. When some
paths passed with `check` command listed in `exclude`, they are ignored.
- When some files are listed in `exclude` and imported indirectly among
module graph, they are checked.
Adds an `--unstable-sloppy-imports` flag which supports the
following for `file:` specifiers:
* Allows writing `./mod` in a specifier to do extension probing.
- ex. `import { Example } from "./example"` instead of `import { Example
} from "./example.ts"`
* Allows writing `./routes` to do directory extension probing for files
like `./routes/index.ts`
* Allows writing `./mod.js` for *mod.ts* files.
This functionality is **NOT RECOMMENDED** for general use with Deno:
1. It's not as optimal for perf:
https://marvinh.dev/blog/speeding-up-javascript-ecosystem-part-2/
1. It makes tooling in the ecosystem more complex in order to have to
understand this.
1. The "Deno way" is to be explicit about what you're doing. It's better
in the long run.
1. It doesn't work if published to the Deno registry because doing stuff
like extension probing with remote specifiers would be incredibly slow.
This is instead only recommended to help with migrating existing
projects to Deno. For example, it's very useful for getting CJS projects
written with import/export declaration working in Deno without modifying
module specifiers and for supporting TS ESM projects written with
`./mod.js` specifiers.
This feature will output warnings to guide the user towards correcting
their specifiers. Additionally, quick fixes are provided in the LSP to
update these specifiers:
This PR causes Deno to include more files in the graph based on how a
template literal looks that's provided to a dynamic import:
```ts
const file = await import(`./dir/${expr}`);
```
In this case, it will search the `dir` directory and descendant
directories for any .js/jsx/etc modules and include them in the graph.
To opt out of this behaviour, move the template literal to a separate
line:
```ts
const specifier = `./dir/${expr}`
const file = await import(specifier);
```
This commit adds unstable workspace support. This is extremely
bare-bones and
minimal first-pass at this.
With this change `deno.json` supports specifying `workspaces` key, that
accepts a list of subdirectories. Each workspace can have its own import
map. It's required to specify a `"name"` and `"version"` properties in the
configuration file for the workspace:
```jsonc
// deno.json
{
"workspaces": [
"a",
"b"
},
"imports": {
"express": "npm:express@5"
}
}
```
``` jsonc
// a/deno.json
{
"name": "a",
"version": "1.0.2",
"imports": {
"kleur": "npm:kleur"
}
}
```
```jsonc
// b/deno.json
{
"name": "b",
"version": "0.51.0",
"imports": {
"chalk": "npm:chalk"
}
}
```
`--unstable-workspaces` flag is required to use this feature:
```
$ deno run --unstable-workspaces mod.ts
```
---------
Co-authored-by: David Sherret <dsherret@gmail.com>
As title. This will help use the two independently from the other, which
will help in an upcoming deno doc PR where I need to parse the source
files with scope analysis.
This PR adds a new unstable "bring your own node_modules" (BYONM)
functionality currently behind a `--unstable-byonm` flag (`"unstable":
["byonm"]` in a deno.json).
This enables users to run a separate install command (ex. `npm install`,
`pnpm install`) then run `deno run main.ts` and Deno will respect the
layout of the node_modules directory as setup by the separate install
command. It also works with npm/yarn/pnpm workspaces.
For this PR, the behaviour is opted into by specifying
`--unstable-byonm`/`"unstable": ["byonm"]`, but in the future we may
make this the default behaviour as outlined in
https://github.com/denoland/deno/issues/18967#issuecomment-1761248941
This is an extremely rough initial implementation. Errors are
terrible in this and the LSP requires frequent restarts. Improvements
will be done in follow up PRs.
This makes `CliNpmResolver` a trait. The terminology used is:
- **managed** - Deno manages the node_modules folder and does an
auto-install (ex. `ManagedCliNpmResolver`)
- **byonm** - "Bring your own node_modules" (ex. `ByonmCliNpmResolver`,
which is in this PR, but unimplemented at the moment)
Part of #18967
This commit adds "deno jupyter" subcommand which
provides a Deno kernel for Jupyter notebooks.
The implementation is mostly based on Deno's REPL and
reuses large parts of it (though there's some clean up that
needs to happen in follow up PRs). Not all functionality of
Jupyter kernel is implemented and some message type
are still not implemented (eg. "inspect_request") but
the kernel is fully working and provides all the capatibilities
that the Deno REPL has; including TypeScript transpilation
and npm packages support.
Closes https://github.com/denoland/deno/issues/13016
---------
Co-authored-by: Adam Powers <apowers@ato.ms>
Co-authored-by: Kyle Kelley <rgbkrk@gmail.com>
Rename some of the helper methods on the Fs trait to be suffixed with
`_sync` / `_async`, in preparation of the introduction of more async
methods for some helpers.
Also adds a `read_text_file_async` helper to complement the renamed
`read_text_file_sync` helper.
Code run within Deno-mode and Node-mode should have access to a
slightly different set of globals. Previously this was done through a
compile time code-transform for Node-mode, but this is not ideal and has
many edge cases, for example Node's globalThis having a different
identity than Deno's globalThis.
This commit makes the `globalThis` of the entire runtime a semi-proxy.
This proxy returns a different set of globals depending on the caller's
mode. This is not a full proxy, because it is shadowed by "real"
properties on globalThis. This is done to avoid the overhead of a full
proxy for all globalThis operations.
The globals between Deno-mode and Node-mode are now properly segregated.
This means that code running in Deno-mode will not have access to Node's
globals, and vice versa. Deleting a managed global in Deno-mode will
NOT delete the corresponding global in Node-mode, and vice versa.
---------
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
Co-authored-by: Aapo Alasuutari <aapo.alasuutari@gmail.com>
It's not used anymore. Subsequently allows removing
`ModuleMap::op_state`, allowing `ModuleMap` to have a sane default so
`JsRuntime::module_map` no longer needs to be optional.
Rather than disallowing `ext:` resolution, clear the module map after
initializing extensions so extension modules are anonymized. This
operation is explicitly called in `deno_runtime`. Re-inject `node:`
specifiers into the module map after doing this.
Fixes #17717.
This is the initial support for npm and node specifiers in `deno
compile`. The npm packages are included in the binary and read from it via
a virtual file system. This also supports the `--node-modules-dir` flag,
dependencies specified in a package.json, and npm binary commands (ex.
`deno compile --unstable npm:cowsay`)
Closes #16632
This removes `ProcState` and replaces it with a new `CliFactory` which
initializes our "service structs" on demand. This isn't a performance
improvement at the moment for `deno run`, but might unlock performance
improvements in the future.
We can make `NodePermissions` rely on interior mutability (which the
`PermissionsContainer` is already doing) in order to not have to clone
everything all the time. This also reduces the chance of an accidental
`borrow` while `borrrow_mut`.
This is just a straight refactor and I didn't do any cleanup in
ext/node. After this PR we can start to clean it up and make things
private that don't need to be public anymore.
1. Breaks up functionality within `ProcState` into several other structs
to break out the responsibilities (`ProcState` is only a data struct
now).
2. Moves towards being able to inject dependencies more easily and have
functionality only require what it needs.
3. Exposes `Arc<T>` around the "service structs" instead of it being
embedded within them. The idea behind embedding them was to reduce the
verbosity of needing to pass around `Arc<...>`, but I don't think it was
exactly working and as we move more of these structs to be more
injectable I don't think the extra verbosity will be a big deal.
Removes the functions in the `emit` module and replaces them with an
`Emitter` struct that can have "ctor dependencies" injected rather than
using functions to pass along the dependencies.
This is part of a long term refactor to move more functionality out of
proc state.
This is a follow-on to the earlier work in reducing string copies,
mainly focused on ensuring that ASCII strings are easy to provide to the
JS runtime.
While we are replacing a 16-byte reference in a number of places with a
24-byte structure (measured via `std::mem::size_of`), the reduction in
copies wins out over the additional size of the arguments passed into
functions.
Benchmarking shows approximately the same if not slightly less wallclock
time/instructions retired, but I believe this continues to open up
further refactoring opportunities.
Reduce the number of copies and allocations of script code by carrying
around ownership/reference information from creation time.
As an advantage, this allows us to maintain the identity of `&'static
str`-based scripts and use v8's external 1-byte strings (to avoid
incorrectly passing non-ASCII strings, debug `assert!`s gate all string
reference paths).
Benchmark results:
Perf improvements -- ~0.1 - 0.2ms faster, but should reduce garbage
w/external strings and reduces data copies overall. May also unlock some
more interesting optimizations in the future.
This requires adding some generics to functions, but manual
monomorphization has been applied (outer/inner function) to avoid code
bloat.
This changes npm specifiers to be handled by deno_graph and resolved to
an npm package name and version when the specifier is encountered. It
also slightly changes how npm specifier resolution occurs—previously it
would collect all the npm specifiers and resolve them all at once, but
now it resolves them on the fly as they are encountered in the module
graph.
https://github.com/denoland/deno_graph/pull/232
---------
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
This PR changes Node.js/npm compatibility layer to use polyfills for
built-in Node.js
embedded in the snapshot (that are coming from "ext/node" extension).
As a result loading `std/node`, either from
"https://deno.land/std@<latest>/" or
from "DENO_NODE_COMPAT_URL" env variable were removed. All code that is
imported via "npm:" specifiers now uses code embedded in the snapshot.
Several fixes were applied to various modules in "ext/node" to make
tests pass.
---------
Co-authored-by: Yoshiya Hinosawa <stibium121@gmail.com>
Co-authored-by: Divy Srivastava <dj.srivastava23@gmail.com>
This commit does preparatory work to allow snapshotting Node.js
compatibility layer, that currently lives in `std/node`. The logic was
changed to allow loading some modules from the snapshot and
some from the remote URL.
Additionally "module_es_shim.js" that provides exports for "node:module"
is now snapshotted.
This commit changes "ProcState" to store "file_fetcher" field in an "Arc",
allowing it to be preserved between restarts and thus keeping the state
alive between the restarts. File watchers for "deno test" and "deno bench"
now reset "ProcState" between restarts.
This commit changes signature of "deno_core::ModuleLoader::resolve" to pass
an enum indicating whether or not we're resolving a specifier for dynamic import.
Additionally "CliModuleLoader" was changes to store both "parent permissions" (or
"root permissions") as well as "dynamic permissions" that allow to check for permissions
in top-level module load an dynamic imports.
Then all code paths that have anything to do with Node/npm compat are now checking
for permissions which are passed from module loader instance associated with given
worker.
Turns out we were cloning permissions which after prompting were discarded,
so the state of permissions was never preserved. To handle that we need to store
all permissions behind "Arc<Mutex<>>" (because there are situations where we
need to send them to other thread).
Testing and benching code still uses "Permissions" in most places - it's undesirable
to share the same permission set between various test/bench files - otherwise
granting or revoking permissions in one file would influence behavior of other test
files.
This commit adds a cache for CJS and ESM analysis that is backed by an
SQLite file.
The connection to the DB is lazily created on first use, so shouldn't
have impact on the startup time.
Benched with running Vite
Deno v1.26:
```
$ deno task dev
Warning deno task is unstable and may drastically change in the future
Task dev deno run -A --unstable --node-modules-dir npm:vite
VITE v3.1.4 ready in 961 ms
➜ Local: http://localhost:5173/
➜ Network: use --host to expose
```
This branch:
```
../deno/target/release/deno task dev
Warning deno task is unstable and may drastically change in the future
Task dev deno run -A --unstable --node-modules-dir npm:vite
VITE v3.1.4 ready in 330 ms
➜ Local: http://localhost:5173/
➜ Network: use --host to expose
```
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
This commit fixes CJS/ESM interop in compat mode for dynamically
imported modules.
"ProcState::prepare_module_load" was changed to accept a list
of "graph roots" without associated "module kind". That module kind
was always hardcoded to "ESM" which is not true for CJS/ESM interop -
a CommonJs module might be imported using "import()" function. In
such case the root of the graph should have "CommonJs" module kind
instead of "ESM".
This commit adds new option to "Worker" Web API that allows to
configure permissions.
New "Worker.deno.permissions" option can be used to define limited
permissions to the worker thread by either:
- inherit set of parent thread permissions
- use limited subset of parent thread permissions
- revoke all permissions (full sandbox)
In order to achieve this functionality "CliModuleLoader"
was modified to accept "initial permissions", which are used
for top module loading (ie. uses parent thread permission set
to load top level module of a worker).