// Copyright 2018-2025 the Deno authors. MIT license. use std::fmt::Debug; use std::str::FromStr; use deno_core::unsync::MaskFutureAsSend; #[cfg(tokio_unstable)] use tokio_metrics::RuntimeMonitor; /// Default configuration for tokio. In the future, this method may have different defaults /// depending on the platform and/or CPU layout. const fn tokio_configuration() -> (u32, u32, usize) { (61, 31, 1024) } fn tokio_env(name: &'static str, default: T) -> T where ::Err: Debug, { match std::env::var(name) { Ok(value) => value.parse().unwrap(), Err(_) => default, } } pub fn create_basic_runtime() -> tokio::runtime::Runtime { let (event_interval, global_queue_interval, max_io_events_per_tick) = tokio_configuration(); tokio::runtime::Builder::new_current_thread() .enable_io() .enable_time() .event_interval(tokio_env("DENO_TOKIO_EVENT_INTERVAL", event_interval)) .global_queue_interval(tokio_env( "DENO_TOKIO_GLOBAL_QUEUE_INTERVAL", global_queue_interval, )) .max_io_events_per_tick(tokio_env( "DENO_TOKIO_MAX_IO_EVENTS_PER_TICK", max_io_events_per_tick, )) // This limits the number of threads for blocking operations (like for // synchronous fs ops) or CPU bound tasks like when we run dprint in // parallel for deno fmt. // The default value is 512, which is an unhelpfully large thread pool. We // don't ever want to have more than a couple dozen threads. .max_blocking_threads(if cfg!(windows) { // on windows, tokio uses blocking tasks for child process IO, make sure // we have enough available threads for other tasks to run 4 * std::thread::available_parallelism() .map(|n| n.get()) .unwrap_or(8) } else { 32 }) .build() .unwrap() } #[inline(always)] fn create_and_run_current_thread_inner( future: F, metrics_enabled: bool, ) -> R where F: std::future::Future + 'static, R: Send + 'static, { let rt = create_basic_runtime(); // Since this is the main future, we want to box it in debug mode because it tends to be fairly // large and the compiler won't optimize repeated copies. We also make this runtime factory // function #[inline(always)] to avoid holding the unboxed, unused future on the stack. #[cfg(debug_assertions)] // SAFETY: this this is guaranteed to be running on a current-thread executor let future = Box::pin(unsafe { MaskFutureAsSend::new(future) }); #[cfg(not(debug_assertions))] // SAFETY: this this is guaranteed to be running on a current-thread executor let future = unsafe { MaskFutureAsSend::new(future) }; #[cfg(tokio_unstable)] let join_handle = if metrics_enabled { rt.spawn(async move { let metrics_interval: u64 = std::env::var("DENO_TOKIO_METRICS_INTERVAL") .ok() .and_then(|val| val.parse().ok()) .unwrap_or(1000); let handle = tokio::runtime::Handle::current(); let runtime_monitor = RuntimeMonitor::new(&handle); tokio::spawn(async move { #[allow(clippy::print_stderr)] for interval in runtime_monitor.intervals() { eprintln!("{:#?}", interval); // wait 500ms tokio::time::sleep(std::time::Duration::from_millis( metrics_interval, )) .await; } }); future.await }) } else { rt.spawn(future) }; #[cfg(not(tokio_unstable))] let join_handle = rt.spawn(future); let r = rt.block_on(join_handle).unwrap().into_inner(); // Forcefully shutdown the runtime - we're done executing JS code at this // point, but there might be outstanding blocking tasks that were created and // latered "unrefed". They won't terminate on their own, so we're forcing // termination of Tokio runtime at this point. rt.shutdown_background(); r } #[inline(always)] pub fn create_and_run_current_thread(future: F) -> R where F: std::future::Future + 'static, R: Send + 'static, { create_and_run_current_thread_inner(future, false) } #[inline(always)] pub fn create_and_run_current_thread_with_maybe_metrics(future: F) -> R where F: std::future::Future + 'static, R: Send + 'static, { let metrics_enabled = std::env::var("DENO_TOKIO_METRICS").ok().is_some(); create_and_run_current_thread_inner(future, metrics_enabled) }