// Copyright 2018-2020 the Deno authors. All rights reserved. MIT license. // Do not add any dependency to modules.rs! // modules.rs is complex and should remain decoupled from isolate.rs to keep the // Isolate struct from becoming too bloating for users who do not need // asynchronous module loading. use rusty_v8 as v8; use crate::bindings; use crate::ops::*; use crate::shared_queue::SharedQueue; use crate::shared_queue::RECOMMENDED_SIZE; use crate::ErrBox; use crate::JSError; use crate::ResourceTable; use crate::ZeroCopyBuf; use futures::future::FutureExt; use futures::stream::FuturesUnordered; use futures::stream::StreamExt; use futures::task::AtomicWaker; use futures::Future; use std::any::Any; use std::cell::RefCell; use std::collections::HashMap; use std::convert::From; use std::ffi::c_void; use std::mem::forget; use std::ops::Deref; use std::ops::DerefMut; use std::option::Option; use std::pin::Pin; use std::rc::Rc; use std::sync::Once; use std::task::Context; use std::task::Poll; type PendingOpFuture = Pin>>; /// Stores a script used to initialize a Isolate pub struct Script<'a> { pub source: &'a str, pub filename: &'a str, } // TODO(ry) It's ugly that we have both Script and OwnedScript. Ideally we // wouldn't expose such twiddly complexity. struct OwnedScript { pub source: String, pub filename: String, } impl From> for OwnedScript { fn from(s: Script) -> OwnedScript { OwnedScript { source: s.source.to_string(), filename: s.filename.to_string(), } } } pub enum Snapshot { Static(&'static [u8]), JustCreated(v8::StartupData), Boxed(Box<[u8]>), } /// Represents data used to initialize an isolate at startup, either /// in the form of a binary snapshot or a JavaScript source file. pub enum StartupData<'a> { Script(Script<'a>), Snapshot(Snapshot), None, } impl StartupData<'_> { fn into_options(self) -> (Option, Option) { match self { Self::Script(script) => (Some(script.into()), None), Self::Snapshot(snapshot) => (None, Some(snapshot)), Self::None => (None, None), } } } type JSErrorCreateFn = dyn Fn(JSError) -> ErrBox; /// Objects that need to live as long as the isolate #[derive(Default)] struct IsolateAllocations { near_heap_limit_callback_data: Option<(Box>, v8::NearHeapLimitCallback)>, } /// A single execution context of JavaScript. Corresponds roughly to the "Web /// Worker" concept in the DOM. An CoreIsolate is a Future that can be used with /// Tokio. The CoreIsolate future completes when there is an error or when all /// pending ops have completed. /// /// Ops are created in JavaScript by calling Deno.core.dispatch(), and in Rust /// by implementing dispatcher function that takes control buffer and optional zero copy buffer /// as arguments. An async Op corresponds exactly to a Promise in JavaScript. pub struct CoreIsolate { // This is an Option instead of just OwnedIsolate to workaround // an safety issue with SnapshotCreator. See CoreIsolate::drop. v8_isolate: Option, snapshot_creator: Option, has_snapshotted: bool, needs_init: bool, startup_script: Option, allocations: IsolateAllocations, } /// Internal state for CoreIsolate which is stored in one of v8::Isolate's /// embedder slots. pub struct CoreIsolateState { pub resource_table: Rc>, pub global_context: Option>, pub(crate) shared_ab: Option>, pub(crate) js_recv_cb: Option>, pub(crate) js_macrotask_cb: Option>, pub(crate) pending_promise_exceptions: HashMap>, pub(crate) js_error_create_fn: Box, pub(crate) shared: SharedQueue, pending_ops: FuturesUnordered, pending_unref_ops: FuturesUnordered, have_unpolled_ops: bool, pub op_registry: OpRegistry, waker: AtomicWaker, } impl Deref for CoreIsolate { type Target = v8::Isolate; fn deref(&self) -> &v8::Isolate { self.v8_isolate.as_ref().unwrap() } } impl DerefMut for CoreIsolate { fn deref_mut(&mut self) -> &mut v8::Isolate { self.v8_isolate.as_mut().unwrap() } } impl Drop for CoreIsolate { fn drop(&mut self) { if let Some(creator) = self.snapshot_creator.take() { // TODO(ry): in rusty_v8, `SnapShotCreator::get_owned_isolate()` returns // a `struct OwnedIsolate` which is not actually owned, hence the need // here to leak the `OwnedIsolate` in order to avoid a double free and // the segfault that it causes. let v8_isolate = self.v8_isolate.take().unwrap(); forget(v8_isolate); // TODO(ry) V8 has a strange assert which prevents a SnapshotCreator from // being deallocated if it hasn't created a snapshot yet. // https://github.com/v8/v8/blob/73212783fbd534fac76cc4b66aac899c13f71fc8/src/api.cc#L603 // If that assert is removed, this if guard could be removed. // WARNING: There may be false positive LSAN errors here. if self.has_snapshotted { drop(creator); } } } } #[allow(clippy::missing_safety_doc)] pub unsafe fn v8_init() { let platform = v8::new_default_platform().unwrap(); v8::V8::initialize_platform(platform); v8::V8::initialize(); // TODO(ry) This makes WASM compile synchronously. Eventually we should // remove this to make it work asynchronously too. But that requires getting // PumpMessageLoop and RunMicrotasks setup correctly. // See https://github.com/denoland/deno/issues/2544 let argv = vec![ "".to_string(), "--wasm-test-streaming".to_string(), "--no-wasm-async-compilation".to_string(), "--harmony-top-level-await".to_string(), "--experimental-wasm-bigint".to_string(), ]; v8::V8::set_flags_from_command_line(argv); } /// Minimum and maximum bytes of heap used in an isolate pub struct HeapLimits { /// By default V8 starts with a small heap and dynamically grows it to match /// the set of live objects. This may lead to ineffective garbage collections /// at startup if the live set is large. Setting the initial heap size avoids /// such garbage collections. Note that this does not affect young generation /// garbage collections. pub initial: usize, /// When the heap size approaches `max`, V8 will perform series of /// garbage collections and invoke the /// [NearHeapLimitCallback](TODO). /// If the garbage collections do not help and the callback does not /// increase the limit, then V8 will crash with V8::FatalProcessOutOfMemory. pub max: usize, } pub(crate) struct IsolateOptions { will_snapshot: bool, startup_script: Option, startup_snapshot: Option, heap_limits: Option, } impl CoreIsolate { /// startup_data defines the snapshot or script used at startup to initialize /// the isolate. pub fn new(startup_data: StartupData, will_snapshot: bool) -> Self { let (startup_script, startup_snapshot) = startup_data.into_options(); let options = IsolateOptions { will_snapshot, startup_script, startup_snapshot, heap_limits: None, }; Self::from_options(options) } /// This is useful for controlling memory usage of scripts. /// /// See [`HeapLimits`](struct.HeapLimits.html) for more details. /// /// Make sure to use [`add_near_heap_limit_callback`](#method.add_near_heap_limit_callback) /// to prevent v8 from crashing when reaching the upper limit. pub fn with_heap_limits( startup_data: StartupData, heap_limits: HeapLimits, ) -> Self { let (startup_script, startup_snapshot) = startup_data.into_options(); let options = IsolateOptions { will_snapshot: false, startup_script, startup_snapshot, heap_limits: Some(heap_limits), }; Self::from_options(options) } fn from_options(options: IsolateOptions) -> Self { static DENO_INIT: Once = Once::new(); DENO_INIT.call_once(|| { unsafe { v8_init() }; }); let global_context; let (mut isolate, maybe_snapshot_creator) = if options.will_snapshot { // TODO(ry) Support loading snapshots before snapshotting. assert!(options.startup_snapshot.is_none()); let mut creator = v8::SnapshotCreator::new(Some(&bindings::EXTERNAL_REFERENCES)); let isolate = unsafe { creator.get_owned_isolate() }; let mut isolate = CoreIsolate::setup_isolate(isolate); { let scope = &mut v8::HandleScope::new(&mut isolate); let context = bindings::initialize_context(scope); global_context = v8::Global::new(scope, context); creator.set_default_context(context); } (isolate, Some(creator)) } else { let mut params = v8::Isolate::create_params() .external_references(&**bindings::EXTERNAL_REFERENCES); let snapshot_loaded = if let Some(snapshot) = options.startup_snapshot { params = match snapshot { Snapshot::Static(data) => params.snapshot_blob(data), Snapshot::JustCreated(data) => params.snapshot_blob(data), Snapshot::Boxed(data) => params.snapshot_blob(data), }; true } else { false }; if let Some(heap_limits) = options.heap_limits { params = params.heap_limits(heap_limits.initial, heap_limits.max) } let isolate = v8::Isolate::new(params); let mut isolate = CoreIsolate::setup_isolate(isolate); { let scope = &mut v8::HandleScope::new(&mut isolate); let context = if snapshot_loaded { v8::Context::new(scope) } else { // If no snapshot is provided, we initialize the context with empty // main source code and source maps. bindings::initialize_context(scope) }; global_context = v8::Global::new(scope, context); } (isolate, None) }; isolate.set_slot(Rc::new(RefCell::new(CoreIsolateState { global_context: Some(global_context), resource_table: Rc::new(RefCell::new(ResourceTable::default())), pending_promise_exceptions: HashMap::new(), shared_ab: None, js_recv_cb: None, js_macrotask_cb: None, js_error_create_fn: Box::new(JSError::create), shared: SharedQueue::new(RECOMMENDED_SIZE), pending_ops: FuturesUnordered::new(), pending_unref_ops: FuturesUnordered::new(), have_unpolled_ops: false, op_registry: OpRegistry::new(), waker: AtomicWaker::new(), }))); Self { v8_isolate: Some(isolate), snapshot_creator: maybe_snapshot_creator, has_snapshotted: false, needs_init: true, startup_script: options.startup_script, allocations: IsolateAllocations::default(), } } fn setup_isolate(mut isolate: v8::OwnedIsolate) -> v8::OwnedIsolate { isolate.set_capture_stack_trace_for_uncaught_exceptions(true, 10); isolate.set_promise_reject_callback(bindings::promise_reject_callback); isolate } pub fn state(isolate: &v8::Isolate) -> Rc> { let s = isolate.get_slot::>>().unwrap(); s.clone() } /// Executes a bit of built-in JavaScript to provide Deno.sharedQueue. pub(crate) fn shared_init(&mut self) { if self.needs_init { self.needs_init = false; js_check(self.execute("core.js", include_str!("core.js"))); // Maybe execute the startup script. if let Some(s) = self.startup_script.take() { self.execute(&s.filename, &s.source).unwrap() } } } /// Executes traditional JavaScript code (traditional = not ES modules) /// /// ErrBox can be downcast to a type that exposes additional information about /// the V8 exception. By default this type is JSError, however it may be a /// different type if CoreIsolate::set_js_error_create_fn() has been used. pub fn execute( &mut self, js_filename: &str, js_source: &str, ) -> Result<(), ErrBox> { self.shared_init(); let state_rc = Self::state(self); let state = state_rc.borrow(); let scope = &mut v8::HandleScope::with_context( self.v8_isolate.as_mut().unwrap(), state.global_context.as_ref().unwrap(), ); drop(state); let source = v8::String::new(scope, js_source).unwrap(); let name = v8::String::new(scope, js_filename).unwrap(); let origin = bindings::script_origin(scope, name); let tc_scope = &mut v8::TryCatch::new(scope); let script = match v8::Script::compile(tc_scope, source, Some(&origin)) { Some(script) => script, None => { let exception = tc_scope.exception().unwrap(); return exception_to_err_result(tc_scope, exception); } }; match script.run(tc_scope) { Some(_) => Ok(()), None => { assert!(tc_scope.has_caught()); let exception = tc_scope.exception().unwrap(); exception_to_err_result(tc_scope, exception) } } } /// Takes a snapshot. The isolate should have been created with will_snapshot /// set to true. /// /// ErrBox can be downcast to a type that exposes additional information about /// the V8 exception. By default this type is JSError, however it may be a /// different type if CoreIsolate::set_js_error_create_fn() has been used. pub fn snapshot(&mut self) -> v8::StartupData { assert!(self.snapshot_creator.is_some()); let state = Self::state(self); // Note: create_blob() method must not be called from within a HandleScope. // TODO(piscisaureus): The rusty_v8 type system should enforce this. state.borrow_mut().global_context.take(); let snapshot_creator = self.snapshot_creator.as_mut().unwrap(); let snapshot = snapshot_creator .create_blob(v8::FunctionCodeHandling::Keep) .unwrap(); self.has_snapshotted = true; snapshot } /// Defines the how Deno.core.dispatch() acts. /// Called whenever Deno.core.dispatch() is called in JavaScript. zero_copy_buf /// corresponds to the second argument of Deno.core.dispatch(). /// /// Requires runtime to explicitly ask for op ids before using any of the ops. pub fn register_op(&mut self, name: &str, op: F) -> OpId where F: Fn(&mut CoreIsolateState, &mut [ZeroCopyBuf]) -> Op + 'static, { let state_rc = Self::state(self); let mut state = state_rc.borrow_mut(); state.op_registry.register(name, op) } /// Registers a callback on the isolate when the memory limits are approached. /// Use this to prevent V8 from crashing the process when reaching the limit. /// /// Calls the closure with the current heap limit and the initial heap limit. /// The return value of the closure is set as the new limit. pub fn add_near_heap_limit_callback(&mut self, cb: C) where C: FnMut(usize, usize) -> usize + 'static, { let boxed_cb = Box::new(RefCell::new(cb)); let data = boxed_cb.as_ptr() as *mut c_void; let prev = self .allocations .near_heap_limit_callback_data .replace((boxed_cb, near_heap_limit_callback::)); if let Some((_, prev_cb)) = prev { self .v8_isolate .as_mut() .unwrap() .remove_near_heap_limit_callback(prev_cb, 0); } self .v8_isolate .as_mut() .unwrap() .add_near_heap_limit_callback(near_heap_limit_callback::, data); } pub fn remove_near_heap_limit_callback(&mut self, heap_limit: usize) { if let Some((_, cb)) = self.allocations.near_heap_limit_callback_data.take() { self .v8_isolate .as_mut() .unwrap() .remove_near_heap_limit_callback(cb, heap_limit); } } } extern "C" fn near_heap_limit_callback( data: *mut c_void, current_heap_limit: usize, initial_heap_limit: usize, ) -> usize where F: FnMut(usize, usize) -> usize, { let callback = unsafe { &mut *(data as *mut F) }; callback(current_heap_limit, initial_heap_limit) } impl Future for CoreIsolate { type Output = Result<(), ErrBox>; fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll { let core_isolate = self.get_mut(); core_isolate.shared_init(); let state_rc = Self::state(core_isolate); { let state = state_rc.borrow(); state.waker.register(cx.waker()); } let scope = &mut v8::HandleScope::with_context( &mut **core_isolate, state_rc.borrow().global_context.as_ref().unwrap(), ); check_promise_exceptions(scope)?; let mut overflow_response: Option<(OpId, Buf)> = None; loop { let mut state = state_rc.borrow_mut(); // Now handle actual ops. state.have_unpolled_ops = false; let pending_r = state.pending_ops.poll_next_unpin(cx); match pending_r { Poll::Ready(None) => break, Poll::Pending => break, Poll::Ready(Some((op_id, buf))) => { let successful_push = state.shared.push(op_id, &buf); if !successful_push { // If we couldn't push the response to the shared queue, because // there wasn't enough size, we will return the buffer via the // legacy route, using the argument of deno_respond. overflow_response = Some((op_id, buf)); break; } } }; } loop { let mut state = state_rc.borrow_mut(); let unref_r = state.pending_unref_ops.poll_next_unpin(cx); #[allow(clippy::match_wild_err_arm)] match unref_r { Poll::Ready(None) => break, Poll::Pending => break, Poll::Ready(Some((op_id, buf))) => { let successful_push = state.shared.push(op_id, &buf); if !successful_push { // If we couldn't push the response to the shared queue, because // there wasn't enough size, we will return the buffer via the // legacy route, using the argument of deno_respond. overflow_response = Some((op_id, buf)); break; } } }; } { let state = state_rc.borrow(); if state.shared.size() > 0 { drop(state); async_op_response(scope, None)?; // The other side should have shifted off all the messages. let state = state_rc.borrow(); assert_eq!(state.shared.size(), 0); } } { if let Some((op_id, buf)) = overflow_response.take() { async_op_response(scope, Some((op_id, buf)))?; } drain_macrotasks(scope)?; check_promise_exceptions(scope)?; } let state = state_rc.borrow(); // We're idle if pending_ops is empty. if state.pending_ops.is_empty() { Poll::Ready(Ok(())) } else { if state.have_unpolled_ops { state.waker.wake(); } Poll::Pending } } } impl CoreIsolateState { /// Defines the how Deno.core.dispatch() acts. /// Called whenever Deno.core.dispatch() is called in JavaScript. zero_copy_buf /// corresponds to the second argument of Deno.core.dispatch(). /// /// Requires runtime to explicitly ask for op ids before using any of the ops. pub fn register_op(&mut self, name: &str, op: F) -> OpId where F: Fn(&mut CoreIsolateState, &mut [ZeroCopyBuf]) -> Op + 'static, { self.op_registry.register(name, op) } /// Allows a callback to be set whenever a V8 exception is made. This allows /// the caller to wrap the JSError into an error. By default this callback /// is set to JSError::create. pub fn set_js_error_create_fn( &mut self, f: impl Fn(JSError) -> ErrBox + 'static, ) { self.js_error_create_fn = Box::new(f); } pub fn dispatch_op<'s>( &mut self, scope: &mut v8::HandleScope<'s>, op_id: OpId, zero_copy_bufs: &mut [ZeroCopyBuf], ) -> Option<(OpId, Box<[u8]>)> { let op = if let Some(dispatcher) = self.op_registry.get(op_id) { dispatcher(self, zero_copy_bufs) } else { let message = v8::String::new(scope, &format!("Unknown op id: {}", op_id)).unwrap(); let exception = v8::Exception::type_error(scope, message); scope.throw_exception(exception); return None; }; debug_assert_eq!(self.shared.size(), 0); match op { Op::Sync(buf) => { // For sync messages, we always return the response via Deno.core.send's // return value. Sync messages ignore the op_id. let op_id = 0; Some((op_id, buf)) } Op::Async(fut) => { let fut2 = fut.map(move |buf| (op_id, buf)); self.pending_ops.push(fut2.boxed_local()); self.have_unpolled_ops = true; None } Op::AsyncUnref(fut) => { let fut2 = fut.map(move |buf| (op_id, buf)); self.pending_unref_ops.push(fut2.boxed_local()); self.have_unpolled_ops = true; None } } } } fn async_op_response<'s>( scope: &mut v8::HandleScope<'s>, maybe_buf: Option<(OpId, Box<[u8]>)>, ) -> Result<(), ErrBox> { let context = scope.get_current_context(); let global: v8::Local = context.global(scope).into(); let js_recv_cb = CoreIsolate::state(scope) .borrow() .js_recv_cb .as_ref() .map(|cb| v8::Local::new(scope, cb)) .expect("Deno.core.recv has not been called."); let tc_scope = &mut v8::TryCatch::new(scope); match maybe_buf { Some((op_id, buf)) => { let op_id: v8::Local = v8::Integer::new(tc_scope, op_id as i32).into(); let ui8: v8::Local = bindings::boxed_slice_to_uint8array(tc_scope, buf).into(); js_recv_cb.call(tc_scope, global, &[op_id, ui8]) } None => js_recv_cb.call(tc_scope, global, &[]), }; match tc_scope.exception() { None => Ok(()), Some(exception) => exception_to_err_result(tc_scope, exception), } } fn drain_macrotasks<'s>(scope: &mut v8::HandleScope<'s>) -> Result<(), ErrBox> { let context = scope.get_current_context(); let global: v8::Local = context.global(scope).into(); let js_macrotask_cb = match CoreIsolate::state(scope) .borrow_mut() .js_macrotask_cb .as_ref() { Some(cb) => v8::Local::new(scope, cb), None => return Ok(()), }; // Repeatedly invoke macrotask callback until it returns true (done), // such that ready microtasks would be automatically run before // next macrotask is processed. let tc_scope = &mut v8::TryCatch::new(scope); loop { let is_done = js_macrotask_cb.call(tc_scope, global, &[]); if let Some(exception) = tc_scope.exception() { return exception_to_err_result(tc_scope, exception); } let is_done = is_done.unwrap(); if is_done.is_true() { break; } } Ok(()) } pub(crate) fn exception_to_err_result<'s, T>( scope: &mut v8::HandleScope<'s>, exception: v8::Local, ) -> Result { // TODO(piscisaureus): in rusty_v8, `is_execution_terminating()` should // also be implemented on `struct Isolate`. let is_terminating_exception = scope.thread_safe_handle().is_execution_terminating(); let mut exception = exception; if is_terminating_exception { // TerminateExecution was called. Cancel exception termination so that the // exception can be created.. // TODO(piscisaureus): in rusty_v8, `cancel_terminate_execution()` should // also be implemented on `struct Isolate`. scope.thread_safe_handle().cancel_terminate_execution(); // Maybe make a new exception object. if exception.is_null_or_undefined() { let message = v8::String::new(scope, "execution terminated").unwrap(); exception = v8::Exception::error(scope, message); } } let js_error = JSError::from_v8_exception(scope, exception); let state_rc = CoreIsolate::state(scope); let state = state_rc.borrow(); let js_error = (state.js_error_create_fn)(js_error); if is_terminating_exception { // Re-enable exception termination. // TODO(piscisaureus): in rusty_v8, `terminate_execution()` should also // be implemented on `struct Isolate`. scope.thread_safe_handle().terminate_execution(); } Err(js_error) } fn check_promise_exceptions<'s>( scope: &mut v8::HandleScope<'s>, ) -> Result<(), ErrBox> { let state_rc = CoreIsolate::state(scope); let mut state = state_rc.borrow_mut(); if let Some(&key) = state.pending_promise_exceptions.keys().next() { let handle = state.pending_promise_exceptions.remove(&key).unwrap(); drop(state); let exception = v8::Local::new(scope, handle); exception_to_err_result(scope, exception) } else { Ok(()) } } pub fn js_check(r: Result) -> T { if let Err(e) = r { panic!(e.to_string()); } r.unwrap() } #[cfg(test)] pub mod tests { use super::*; use futures::future::lazy; use std::ops::FnOnce; use std::sync::atomic::{AtomicUsize, Ordering}; use std::sync::Arc; pub fn run_in_task(f: F) where F: FnOnce(&mut Context) + Send + 'static, { futures::executor::block_on(lazy(move |cx| f(cx))); } fn poll_until_ready(future: &mut F, max_poll_count: usize) -> F::Output where F: Future + Unpin, { let mut cx = Context::from_waker(futures::task::noop_waker_ref()); for _ in 0..max_poll_count { match future.poll_unpin(&mut cx) { Poll::Pending => continue, Poll::Ready(val) => return val, } } panic!( "CoreIsolate still not ready after polling {} times.", max_poll_count ) } pub enum Mode { Async, AsyncUnref, AsyncZeroCopy(u8), OverflowReqSync, OverflowResSync, OverflowReqAsync, OverflowResAsync, } pub fn setup(mode: Mode) -> (CoreIsolate, Arc) { let dispatch_count = Arc::new(AtomicUsize::new(0)); let dispatch_count_ = dispatch_count.clone(); let mut isolate = CoreIsolate::new(StartupData::None, false); let dispatcher = move |_state: &mut CoreIsolateState, zero_copy: &mut [ZeroCopyBuf]| -> Op { dispatch_count_.fetch_add(1, Ordering::Relaxed); match mode { Mode::Async => { assert_eq!(zero_copy.len(), 1); assert_eq!(zero_copy[0].len(), 1); assert_eq!(zero_copy[0][0], 42); let buf = vec![43u8].into_boxed_slice(); Op::Async(futures::future::ready(buf).boxed()) } Mode::AsyncUnref => { assert_eq!(zero_copy.len(), 1); assert_eq!(zero_copy[0].len(), 1); assert_eq!(zero_copy[0][0], 42); let fut = async { // This future never finish. futures::future::pending::<()>().await; vec![43u8].into_boxed_slice() }; Op::AsyncUnref(fut.boxed()) } Mode::AsyncZeroCopy(count) => { assert_eq!(zero_copy.len(), count as usize); zero_copy.iter().enumerate().for_each(|(idx, buf)| { assert_eq!(buf.len(), 1); assert_eq!(idx, buf[0] as usize); }); let buf = vec![43u8].into_boxed_slice(); Op::Async(futures::future::ready(buf).boxed()) } Mode::OverflowReqSync => { assert_eq!(zero_copy.len(), 1); assert_eq!(zero_copy[0].len(), 100 * 1024 * 1024); let buf = vec![43u8].into_boxed_slice(); Op::Sync(buf) } Mode::OverflowResSync => { assert_eq!(zero_copy.len(), 1); assert_eq!(zero_copy[0].len(), 1); assert_eq!(zero_copy[0][0], 42); let mut vec = Vec::::new(); vec.resize(100 * 1024 * 1024, 0); vec[0] = 99; let buf = vec.into_boxed_slice(); Op::Sync(buf) } Mode::OverflowReqAsync => { assert_eq!(zero_copy.len(), 1); assert_eq!(zero_copy[0].len(), 100 * 1024 * 1024); let buf = vec![43u8].into_boxed_slice(); Op::Async(futures::future::ready(buf).boxed()) } Mode::OverflowResAsync => { assert_eq!(zero_copy.len(), 1); assert_eq!(zero_copy[0].len(), 1); assert_eq!(zero_copy[0][0], 42); let mut vec = Vec::::new(); vec.resize(100 * 1024 * 1024, 0); vec[0] = 4; let buf = vec.into_boxed_slice(); Op::Async(futures::future::ready(buf).boxed()) } } }; isolate.register_op("test", dispatcher); js_check(isolate.execute( "setup.js", r#" function assert(cond) { if (!cond) { throw Error("assert"); } } "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); (isolate, dispatch_count) } #[test] fn test_dispatch() { let (mut isolate, dispatch_count) = setup(Mode::Async); js_check(isolate.execute( "filename.js", r#" let control = new Uint8Array([42]); Deno.core.send(1, control); async function main() { Deno.core.send(1, control); } main(); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); } #[test] fn test_dispatch_no_zero_copy_buf() { let (mut isolate, dispatch_count) = setup(Mode::AsyncZeroCopy(0)); js_check(isolate.execute( "filename.js", r#" Deno.core.send(1); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn test_dispatch_stack_zero_copy_bufs() { let (mut isolate, dispatch_count) = setup(Mode::AsyncZeroCopy(2)); js_check(isolate.execute( "filename.js", r#" let zero_copy_a = new Uint8Array([0]); let zero_copy_b = new Uint8Array([1]); Deno.core.send(1, zero_copy_a, zero_copy_b); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn test_dispatch_heap_zero_copy_bufs() { let (mut isolate, dispatch_count) = setup(Mode::AsyncZeroCopy(5)); js_check(isolate.execute( "filename.js", r#" let zero_copy_a = new Uint8Array([0]); let zero_copy_b = new Uint8Array([1]); let zero_copy_c = new Uint8Array([2]); let zero_copy_d = new Uint8Array([3]); let zero_copy_e = new Uint8Array([4]); Deno.core.send(1, zero_copy_a, zero_copy_b, zero_copy_c, zero_copy_d, zero_copy_e); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn test_poll_async_delayed_ops() { run_in_task(|cx| { let (mut isolate, dispatch_count) = setup(Mode::Async); js_check(isolate.execute( "setup2.js", r#" let nrecv = 0; Deno.core.setAsyncHandler(1, (buf) => { nrecv++; }); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); js_check(isolate.execute( "check1.js", r#" assert(nrecv == 0); let control = new Uint8Array([42]); Deno.core.send(1, control); assert(nrecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); assert!(matches!(isolate.poll_unpin(cx), Poll::Ready(Ok(_)))); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); js_check(isolate.execute( "check2.js", r#" assert(nrecv == 1); Deno.core.send(1, control); assert(nrecv == 1); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); assert!(matches!(isolate.poll_unpin(cx), Poll::Ready(Ok(_)))); js_check(isolate.execute("check3.js", "assert(nrecv == 2)")); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); // We are idle, so the next poll should be the last. assert!(matches!(isolate.poll_unpin(cx), Poll::Ready(Ok(_)))); }); } #[test] fn test_poll_async_optional_ops() { run_in_task(|cx| { let (mut isolate, dispatch_count) = setup(Mode::AsyncUnref); js_check(isolate.execute( "check1.js", r#" Deno.core.setAsyncHandler(1, (buf) => { // This handler will never be called assert(false); }); let control = new Uint8Array([42]); Deno.core.send(1, control); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); // The above op never finish, but isolate can finish // because the op is an unreffed async op. assert!(matches!(isolate.poll_unpin(cx), Poll::Ready(Ok(_)))); }) } #[test] fn terminate_execution() { let (mut isolate, _dispatch_count) = setup(Mode::Async); // TODO(piscisaureus): in rusty_v8, the `thread_safe_handle()` method // should not require a mutable reference to `struct rusty_v8::Isolate`. let v8_isolate_handle = isolate.v8_isolate.as_mut().unwrap().thread_safe_handle(); let terminator_thread = std::thread::spawn(move || { // allow deno to boot and run std::thread::sleep(std::time::Duration::from_millis(100)); // terminate execution let ok = v8_isolate_handle.terminate_execution(); assert!(ok); }); // Rn an infinite loop, which should be terminated. match isolate.execute("infinite_loop.js", "for(;;) {}") { Ok(_) => panic!("execution should be terminated"), Err(e) => { assert_eq!(e.to_string(), "Uncaught Error: execution terminated") } }; // Cancel the execution-terminating exception in order to allow script // execution again. // TODO(piscisaureus): in rusty_v8, `cancel_terminate_execution()` should // also be implemented on `struct Isolate`. let ok = isolate .v8_isolate .as_mut() .unwrap() .thread_safe_handle() .cancel_terminate_execution(); assert!(ok); // Verify that the isolate usable again. isolate .execute("simple.js", "1 + 1") .expect("execution should be possible again"); terminator_thread.join().unwrap(); } #[test] fn dangling_shared_isolate() { let v8_isolate_handle = { // isolate is dropped at the end of this block let (mut isolate, _dispatch_count) = setup(Mode::Async); // TODO(piscisaureus): in rusty_v8, the `thread_safe_handle()` method // should not require a mutable reference to `struct rusty_v8::Isolate`. isolate.v8_isolate.as_mut().unwrap().thread_safe_handle() }; // this should not SEGFAULT v8_isolate_handle.terminate_execution(); } #[test] fn overflow_req_sync() { let (mut isolate, dispatch_count) = setup(Mode::OverflowReqSync); js_check(isolate.execute( "overflow_req_sync.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler(1, (buf) => { asyncRecv++ }); // Large message that will overflow the shared space. let control = new Uint8Array(100 * 1024 * 1024); let response = Deno.core.dispatch(1, control); assert(response instanceof Uint8Array); assert(response.length == 1); assert(response[0] == 43); assert(asyncRecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn overflow_res_sync() { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. let (mut isolate, dispatch_count) = setup(Mode::OverflowResSync); js_check(isolate.execute( "overflow_res_sync.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler(1, (buf) => { asyncRecv++ }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = Deno.core.dispatch(1, control); assert(response instanceof Uint8Array); assert(response.length == 100 * 1024 * 1024); assert(response[0] == 99); assert(asyncRecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn overflow_req_async() { run_in_task(|cx| { let (mut isolate, dispatch_count) = setup(Mode::OverflowReqAsync); js_check(isolate.execute( "overflow_req_async.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler(1, (buf) => { assert(buf.byteLength === 1); assert(buf[0] === 43); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array(100 * 1024 * 1024); let response = Deno.core.dispatch(1, control); // Async messages always have null response. assert(response == null); assert(asyncRecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); assert!(matches!(isolate.poll_unpin(cx), Poll::Ready(Ok(_)))); js_check(isolate.execute("check.js", "assert(asyncRecv == 1);")); }); } #[test] fn overflow_res_async() { run_in_task(|_cx| { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. let (mut isolate, dispatch_count) = setup(Mode::OverflowResAsync); js_check(isolate.execute( "overflow_res_async.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler(1, (buf) => { assert(buf.byteLength === 100 * 1024 * 1024); assert(buf[0] === 4); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = Deno.core.dispatch(1, control); assert(response == null); assert(asyncRecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); poll_until_ready(&mut isolate, 3).unwrap(); js_check(isolate.execute("check.js", "assert(asyncRecv == 1);")); }); } #[test] fn overflow_res_multiple_dispatch_async() { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. run_in_task(|_cx| { let (mut isolate, dispatch_count) = setup(Mode::OverflowResAsync); js_check(isolate.execute( "overflow_res_multiple_dispatch_async.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler(1, (buf) => { assert(buf.byteLength === 100 * 1024 * 1024); assert(buf[0] === 4); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = Deno.core.dispatch(1, control); assert(response == null); assert(asyncRecv == 0); // Dispatch another message to verify that pending ops // are done even if shared space overflows Deno.core.dispatch(1, control); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); poll_until_ready(&mut isolate, 3).unwrap(); js_check(isolate.execute("check.js", "assert(asyncRecv == 2);")); }); } #[test] fn test_pre_dispatch() { run_in_task(|mut cx| { let (mut isolate, _dispatch_count) = setup(Mode::OverflowResAsync); js_check(isolate.execute( "bad_op_id.js", r#" let thrown; try { Deno.core.dispatch(100); } catch (e) { thrown = e; } assert(String(thrown) === "TypeError: Unknown op id: 100"); "#, )); if let Poll::Ready(Err(_)) = isolate.poll_unpin(&mut cx) { unreachable!(); } }); } #[test] fn core_test_js() { run_in_task(|mut cx| { let (mut isolate, _dispatch_count) = setup(Mode::Async); js_check(isolate.execute("core_test.js", include_str!("core_test.js"))); if let Poll::Ready(Err(_)) = isolate.poll_unpin(&mut cx) { unreachable!(); } }); } #[test] fn syntax_error() { let mut isolate = CoreIsolate::new(StartupData::None, false); let src = "hocuspocus("; let r = isolate.execute("i.js", src); let e = r.unwrap_err(); let js_error = e.downcast::().unwrap(); assert_eq!(js_error.end_column, Some(11)); } #[test] fn test_encode_decode() { run_in_task(|mut cx| { let (mut isolate, _dispatch_count) = setup(Mode::Async); js_check(isolate.execute( "encode_decode_test.js", include_str!("encode_decode_test.js"), )); if let Poll::Ready(Err(_)) = isolate.poll_unpin(&mut cx) { unreachable!(); } }); } #[test] fn will_snapshot() { let snapshot = { let mut isolate = CoreIsolate::new(StartupData::None, true); js_check(isolate.execute("a.js", "a = 1 + 2")); isolate.snapshot() }; let startup_data = StartupData::Snapshot(Snapshot::JustCreated(snapshot)); let mut isolate2 = CoreIsolate::new(startup_data, false); js_check(isolate2.execute("check.js", "if (a != 3) throw Error('x')")); } #[test] fn test_from_boxed_snapshot() { let snapshot = { let mut isolate = CoreIsolate::new(StartupData::None, true); js_check(isolate.execute("a.js", "a = 1 + 2")); let snap: &[u8] = &*isolate.snapshot(); Vec::from(snap).into_boxed_slice() }; let startup_data = StartupData::Snapshot(Snapshot::Boxed(snapshot)); let mut isolate2 = CoreIsolate::new(startup_data, false); js_check(isolate2.execute("check.js", "if (a != 3) throw Error('x')")); } #[test] fn test_heap_limits() { let heap_limits = HeapLimits { initial: 0, max: 20 * 1024, // 20 kB }; let mut isolate = CoreIsolate::with_heap_limits(StartupData::None, heap_limits); let cb_handle = isolate.thread_safe_handle(); let callback_invoke_count = Rc::new(AtomicUsize::default()); let inner_invoke_count = Rc::clone(&callback_invoke_count); isolate.add_near_heap_limit_callback( move |current_limit, _initial_limit| { inner_invoke_count.fetch_add(1, Ordering::SeqCst); cb_handle.terminate_execution(); current_limit * 2 }, ); let err = isolate .execute( "script name", r#"let s = ""; while(true) { s += "Hello"; }"#, ) .expect_err("script should fail"); assert_eq!( "Uncaught Error: execution terminated", err.downcast::().unwrap().message ); assert!(callback_invoke_count.load(Ordering::SeqCst) > 0) } #[test] fn test_heap_limit_cb_remove() { let mut isolate = CoreIsolate::new(StartupData::None, false); isolate.add_near_heap_limit_callback(|current_limit, _initial_limit| { current_limit * 2 }); isolate.remove_near_heap_limit_callback(20 * 1024); assert!(isolate.allocations.near_heap_limit_callback_data.is_none()); } #[test] fn test_heap_limit_cb_multiple() { let heap_limits = HeapLimits { initial: 0, max: 20 * 1024, // 20 kB }; let mut isolate = CoreIsolate::with_heap_limits(StartupData::None, heap_limits); let cb_handle = isolate.thread_safe_handle(); let callback_invoke_count_first = Rc::new(AtomicUsize::default()); let inner_invoke_count_first = Rc::clone(&callback_invoke_count_first); isolate.add_near_heap_limit_callback( move |current_limit, _initial_limit| { inner_invoke_count_first.fetch_add(1, Ordering::SeqCst); current_limit * 2 }, ); let callback_invoke_count_second = Rc::new(AtomicUsize::default()); let inner_invoke_count_second = Rc::clone(&callback_invoke_count_second); isolate.add_near_heap_limit_callback( move |current_limit, _initial_limit| { inner_invoke_count_second.fetch_add(1, Ordering::SeqCst); cb_handle.terminate_execution(); current_limit * 2 }, ); let err = isolate .execute( "script name", r#"let s = ""; while(true) { s += "Hello"; }"#, ) .expect_err("script should fail"); assert_eq!( "Uncaught Error: execution terminated", err.downcast::().unwrap().message ); assert_eq!(0, callback_invoke_count_first.load(Ordering::SeqCst)); assert!(callback_invoke_count_second.load(Ordering::SeqCst) > 0); } }