// Copyright 2018 the Deno authors. All rights reserved. MIT license. import * as ts from "typescript"; import { MediaType } from "gen/msg_generated"; import { assetSourceCode } from "./assets"; // tslint:disable-next-line:no-circular-imports import * as deno from "./deno"; import { globalEval } from "./global_eval"; import { libdeno } from "./libdeno"; import { window } from "./globals"; import * as os from "./os"; import { RawSourceMap } from "./types"; import { assert, log, notImplemented } from "./util"; import * as sourceMaps from "./v8_source_maps"; const EOL = "\n"; const ASSETS = "$asset$"; const LIB_RUNTIME = "lib.deno_runtime.d.ts"; // tslint:disable:no-any type AmdCallback = (...args: any[]) => void; type AmdErrback = (err: any) => void; export type AmdFactory = (...args: any[]) => object | void; // tslint:enable:no-any export type AmdDefine = (deps: ModuleSpecifier[], factory: AmdFactory) => void; type AMDRequire = ( deps: ModuleSpecifier[], callback: AmdCallback, errback: AmdErrback ) => void; /** The location that a module is being loaded from. This could be a directory, * like `.`, or it could be a module specifier like * `http://gist.github.com/somefile.ts` */ type ContainingFile = string; /** The internal local filename of a compiled module. It will often be something * like `/home/ry/.deno/gen/f7b4605dfbc4d3bb356e98fda6ceb1481e4a8df5.js` */ type ModuleFileName = string; /** The original resolved resource name. * Path to cached module file or URL from which dependency was retrieved */ type ModuleId = string; /** The external name of a module - could be a URL or could be a relative path. * Examples `http://gist.github.com/somefile.ts` or `./somefile.ts` */ type ModuleSpecifier = string; /** The compiled source code which is cached in `.deno/gen/` */ type OutputCode = string; /** The original source code */ type SourceCode = string; /** The output source map */ type SourceMap = string; /** Abstraction of the APIs required from the `os` module so they can be * easily mocked. * @internal */ export interface Os { codeCache: typeof os.codeCache; codeFetch: typeof os.codeFetch; exit: typeof os.exit; } /** Abstraction of the APIs required from the `typescript` module so they can * be easily mocked. * @internal */ export interface Ts { createLanguageService: typeof ts.createLanguageService; /* tslint:disable-next-line:max-line-length */ formatDiagnosticsWithColorAndContext: typeof ts.formatDiagnosticsWithColorAndContext; } /** A simple object structure for caching resolved modules and their contents. * * Named `ModuleMetaData` to clarify it is just a representation of meta data of * the module, not the actual module instance. */ export class ModuleMetaData implements ts.IScriptSnapshot { public deps?: ModuleFileName[]; public exports = {}; public factory?: AmdFactory; public gatheringDeps = false; public hasRun = false; public scriptVersion = ""; constructor( public readonly moduleId: ModuleId, public readonly fileName: ModuleFileName, public readonly mediaType: MediaType, public readonly sourceCode: SourceCode = "", public outputCode: OutputCode = "", public sourceMap: SourceMap = "" ) { if (outputCode !== "" || fileName.endsWith(".d.ts")) { this.scriptVersion = "1"; } } public getText(start: number, end: number): string { return this.sourceCode.substring(start, end); } public getLength(): number { return this.sourceCode.length; } public getChangeRange(): undefined { // Required `IScriptSnapshot` API, but not implemented/needed in deno return undefined; } } function getExtension( fileName: ModuleFileName, mediaType: MediaType ): ts.Extension | undefined { switch (mediaType) { case MediaType.JavaScript: return ts.Extension.Js; case MediaType.TypeScript: return fileName.endsWith(".d.ts") ? ts.Extension.Dts : ts.Extension.Ts; case MediaType.Json: return ts.Extension.Json; case MediaType.Unknown: default: return undefined; } } /** Generate output code for a provided JSON string along with its source. */ export function jsonAmdTemplate( jsonString: string, sourceFileName: string ): OutputCode { // tslint:disable-next-line:max-line-length return `define([], function() { return JSON.parse(\`${jsonString}\`); });\n//# sourceURL=${sourceFileName}`; } /** A singleton class that combines the TypeScript Language Service host API * with Deno specific APIs to provide an interface for compiling and running * TypeScript and JavaScript modules. */ export class DenoCompiler implements ts.LanguageServiceHost, ts.FormatDiagnosticsHost { // Modules are usually referenced by their ModuleSpecifier and ContainingFile, // and keeping a map of the resolved module file name allows more efficient // future resolution private readonly _fileNamesMap = new Map< ContainingFile, Map >(); // A reference to global eval, so it can be monkey patched during testing private _globalEval = globalEval; // A reference to the log utility, so it can be monkey patched during testing private _log = log; // A map of module file names to module meta data private readonly _moduleMetaDataMap = new Map< ModuleFileName, ModuleMetaData >(); // TODO ideally this are not static and can be influenced by command line // arguments private readonly _options: ts.CompilerOptions = { allowJs: true, checkJs: true, module: ts.ModuleKind.AMD, outDir: "$deno$", resolveJsonModule: true, sourceMap: true, stripComments: true, target: ts.ScriptTarget.ESNext }; // A reference to the `./os.ts` module, so it can be monkey patched during // testing private _os: Os = os; // Contains a queue of modules that have been resolved, but not yet // run private _runQueue: ModuleMetaData[] = []; // Used to contain the script file we are currently running private _scriptFileNames: string[] = []; // A reference to the TypeScript LanguageService instance so it can be // monkey patched during testing private _service: ts.LanguageService; // A reference to `typescript` module so it can be monkey patched during // testing private _ts: Ts = ts; // A reference to the global scope so it can be monkey patched during // testing private _window = window; // Flags forcing recompilation of TS code public recompile = false; /** Drain the run queue, retrieving the arguments for the module * factory and calling the module's factory. */ private _drainRunQueue(): void { this._log( "compiler._drainRunQueue", this._runQueue.map(metaData => metaData.fileName) ); let moduleMetaData: ModuleMetaData | undefined; while ((moduleMetaData = this._runQueue.shift())) { assert( moduleMetaData.factory != null, "Cannot run module without factory." ); assert(moduleMetaData.hasRun === false, "Module has already been run."); // asserts not tracked by TypeScripts, so using not null operator const exports = moduleMetaData.factory!( ...this._getFactoryArguments(moduleMetaData) ); // For JSON module support and potential future features. // TypeScript always imports `exports` and mutates it directly, but the // AMD specification allows values to be returned from the factory. if (exports != null) { moduleMetaData.exports = exports; } moduleMetaData.hasRun = true; } } /** Get the dependencies for a given module, but don't run the module, * just add the module factory to the run queue. */ private _gatherDependencies(moduleMetaData: ModuleMetaData): void { this._log("compiler._resolveDependencies", moduleMetaData.fileName); // if the module has already run, we can short circuit. // it is intentional though that if we have already resolved dependencies, // we won't short circuit, as something may have changed, or we might have // only collected the dependencies to be able to able to obtain the graph of // dependencies if (moduleMetaData.hasRun) { return; } this._window.define = this._makeDefine(moduleMetaData); this._globalEval(this.compile(moduleMetaData)); this._window.define = undefined; } /** Retrieve the arguments to pass a module's factory function. */ // tslint:disable-next-line:no-any private _getFactoryArguments(moduleMetaData: ModuleMetaData): any[] { if (!moduleMetaData.deps) { throw new Error("Cannot get arguments until dependencies resolved."); } return moduleMetaData.deps.map(dep => { if (dep === "require") { return this._makeLocalRequire(moduleMetaData); } if (dep === "exports") { return moduleMetaData.exports; } if (dep in DenoCompiler._builtins) { return DenoCompiler._builtins[dep]; } const dependencyMetaData = this._getModuleMetaData(dep); assert(dependencyMetaData != null, `Missing dependency "${dep}".`); // TypeScript does not track assert, therefore using not null operator return dependencyMetaData!.exports; }); } /** The TypeScript language service often refers to the resolved fileName of * a module, this is a shortcut to avoid unnecessary module resolution logic * for modules that may have been initially resolved by a `moduleSpecifier` * and `containingFile`. Also, `resolveModule()` throws when the module * cannot be resolved, which isn't always valid when dealing with the * TypeScript compiler, but the TypeScript compiler shouldn't be asking about * external modules that we haven't told it about yet. */ private _getModuleMetaData( fileName: ModuleFileName ): ModuleMetaData | undefined { return this._moduleMetaDataMap.has(fileName) ? this._moduleMetaDataMap.get(fileName) : fileName.startsWith(ASSETS) ? this.resolveModule(fileName, "") : undefined; } /** Create a localized AMD `define` function and return it. */ private _makeDefine(moduleMetaData: ModuleMetaData): AmdDefine { return (deps: ModuleSpecifier[], factory: AmdFactory): void => { this._log("compiler.localDefine", moduleMetaData.fileName); moduleMetaData.factory = factory; // when there are circular dependencies, we need to skip recursing the // dependencies moduleMetaData.gatheringDeps = true; // we will recursively resolve the dependencies for any modules moduleMetaData.deps = deps.map(dep => { if ( dep === "require" || dep === "exports" || dep in DenoCompiler._builtins ) { return dep; } const dependencyMetaData = this.resolveModule( dep, moduleMetaData.fileName ); if (!dependencyMetaData.gatheringDeps) { this._gatherDependencies(dependencyMetaData); } return dependencyMetaData.fileName; }); moduleMetaData.gatheringDeps = false; if (!this._runQueue.includes(moduleMetaData)) { this._runQueue.push(moduleMetaData); } }; } /** Returns a require that specifically handles the resolution of a transpiled * emit of a dynamic ES `import()` from TypeScript. */ private _makeLocalRequire(moduleMetaData: ModuleMetaData): AMDRequire { return ( deps: ModuleSpecifier[], callback: AmdCallback, errback: AmdErrback ): void => { log("localRequire", deps); assert( deps.length === 1, "Local require requires exactly one dependency." ); const [moduleSpecifier] = deps; try { const requiredMetaData = this.run( moduleSpecifier, moduleMetaData.fileName ); callback(requiredMetaData.exports); } catch (e) { errback(e); } }; } /** Given a `moduleSpecifier` and `containingFile` retrieve the cached * `fileName` for a given module. If the module has yet to be resolved * this will return `undefined`. */ private _resolveFileName( moduleSpecifier: ModuleSpecifier, containingFile: ContainingFile ): ModuleFileName | undefined { this._log("compiler.resolveFileName", { moduleSpecifier, containingFile }); const innerMap = this._fileNamesMap.get(containingFile); if (innerMap) { return innerMap.get(moduleSpecifier); } return undefined; } /** Caches the resolved `fileName` in relationship to the `moduleSpecifier` * and `containingFile` in order to reduce calls to the privileged side * to retrieve the contents of a module. */ private _setFileName( moduleSpecifier: ModuleSpecifier, containingFile: ContainingFile, fileName: ModuleFileName ): void { this._log("compiler.setFileName", { moduleSpecifier, containingFile }); let innerMap = this._fileNamesMap.get(containingFile); if (!innerMap) { innerMap = new Map(); this._fileNamesMap.set(containingFile, innerMap); } innerMap.set(moduleSpecifier, fileName); } /** Setup being able to map back source references back to their source * * TODO is this the best place for this? It is tightly coupled to how the * compiler works, but it is also tightly coupled to how the whole runtime * environment is bootstrapped. It also needs efficient access to the * `outputCode` of the module information, which exists inside of the * compiler instance. */ private _setupSourceMaps(): void { let lastModule: ModuleMetaData | undefined; sourceMaps.install({ installPrepareStackTrace: true, getGeneratedContents: (fileName: string): string | RawSourceMap => { this._log("compiler.getGeneratedContents", fileName); if (fileName === "gen/bundle/main.js") { assert(libdeno.mainSource.length > 0); return libdeno.mainSource; } else if (fileName === "main.js.map") { return libdeno.mainSourceMap; } else if (fileName === "deno_main.js") { return ""; } else if (!fileName.endsWith(".map")) { const moduleMetaData = this._moduleMetaDataMap.get(fileName); if (!moduleMetaData) { lastModule = undefined; return ""; } lastModule = moduleMetaData; return moduleMetaData.outputCode; } else { if (lastModule && lastModule.sourceMap) { // Assuming the the map will always be asked for after the source // code. const { sourceMap } = lastModule; lastModule = undefined; return sourceMap; } else { // Errors thrown here are caught by source-map. throw new Error(`Unable to find source map: "${fileName}"`); } } } }); } private constructor() { if (DenoCompiler._instance) { throw new TypeError("Attempt to create an additional compiler."); } this._service = this._ts.createLanguageService(this); this._setupSourceMaps(); } // Deno specific compiler API /** Retrieve the output of the TypeScript compiler for a given module and * cache the result. Re-compilation can be forced using '--recompile' flag. */ compile(moduleMetaData: ModuleMetaData): OutputCode { const recompile = !!this.recompile; if (!recompile && moduleMetaData.outputCode) { return moduleMetaData.outputCode; } const { fileName, sourceCode, mediaType, moduleId } = moduleMetaData; console.warn("Compiling", moduleId); const service = this._service; // Instead of using TypeScript to transpile JSON modules, we will just do // it directly. if (mediaType === MediaType.Json) { moduleMetaData.outputCode = jsonAmdTemplate(sourceCode, fileName); } else { assert( mediaType === MediaType.TypeScript || mediaType === MediaType.JavaScript ); // TypeScript is overly opinionated that only CommonJS modules kinds can // support JSON imports. Allegedly this was fixed in // Microsoft/TypeScript#26825 but that doesn't seem to be working here, // so we will trick the TypeScript compiler. this._options.module = ts.ModuleKind.AMD; const output = service.getEmitOutput(fileName); this._options.module = ts.ModuleKind.CommonJS; // Get the relevant diagnostics - this is 3x faster than // `getPreEmitDiagnostics`. const diagnostics = [ ...service.getCompilerOptionsDiagnostics(), ...service.getSyntacticDiagnostics(fileName), ...service.getSemanticDiagnostics(fileName) ]; if (diagnostics.length > 0) { const errMsg = this._ts.formatDiagnosticsWithColorAndContext( diagnostics, this ); console.log(errMsg); // All TypeScript errors are terminal for deno this._os.exit(1); } assert( !output.emitSkipped, "The emit was skipped for an unknown reason." ); assert( output.outputFiles.length === 2, `Expected 2 files to be emitted, got ${output.outputFiles.length}.` ); const [sourceMapFile, outputFile] = output.outputFiles; assert( sourceMapFile.name.endsWith(".map"), "Expected first emitted file to be a source map" ); assert( outputFile.name.endsWith(".js"), "Expected second emitted file to be JavaScript" ); moduleMetaData.outputCode = `${ outputFile.text }\n//# sourceURL=${fileName}`; moduleMetaData.sourceMap = sourceMapFile.text; } moduleMetaData.scriptVersion = "1"; this._os.codeCache( fileName, sourceCode, moduleMetaData.outputCode, moduleMetaData.sourceMap ); return moduleMetaData.outputCode; } /** For a given module specifier and containing file, return a list of * absolute identifiers for dependent modules that are required by this * module. */ getModuleDependencies( moduleSpecifier: ModuleSpecifier, containingFile: ContainingFile ): ModuleFileName[] { assert( this._runQueue.length === 0, "Cannot get dependencies with modules queued to be run." ); const moduleMetaData = this.resolveModule(moduleSpecifier, containingFile); assert( !moduleMetaData.hasRun, "Cannot get dependencies for a module that has already been run." ); this._gatherDependencies(moduleMetaData); const dependencies = this._runQueue.map( moduleMetaData => moduleMetaData.moduleId ); // empty the run queue, to free up references to factories we have collected // and to ensure that if there is a further invocation of `.run()` the // factories don't get called this._runQueue = []; return dependencies; } /** Given a `moduleSpecifier` and `containingFile`, resolve the module and * return the `ModuleMetaData`. */ resolveModule( moduleSpecifier: ModuleSpecifier, containingFile: ContainingFile ): ModuleMetaData { this._log("compiler.resolveModule", { moduleSpecifier, containingFile }); assert(moduleSpecifier != null && moduleSpecifier.length > 0); let fileName = this._resolveFileName(moduleSpecifier, containingFile); if (fileName && this._moduleMetaDataMap.has(fileName)) { return this._moduleMetaDataMap.get(fileName)!; } let moduleId: ModuleId | undefined; let mediaType = MediaType.Unknown; let sourceCode: SourceCode | undefined; let outputCode: OutputCode | undefined; let sourceMap: SourceMap | undefined; if ( moduleSpecifier.startsWith(ASSETS) || containingFile.startsWith(ASSETS) ) { // Assets are compiled into the runtime javascript bundle. // we _know_ `.pop()` will return a string, but TypeScript doesn't so // not null assertion moduleId = moduleSpecifier.split("/").pop()!; const assetName = moduleId.includes(".") ? moduleId : `${moduleId}.d.ts`; assert(assetName in assetSourceCode, `No such asset "${assetName}"`); mediaType = MediaType.TypeScript; sourceCode = assetSourceCode[assetName]; fileName = `${ASSETS}/${assetName}`; outputCode = ""; sourceMap = ""; } else { // We query Rust with a CodeFetch message. It will load the sourceCode, // and if there is any outputCode cached, will return that as well. const fetchResponse = this._os.codeFetch(moduleSpecifier, containingFile); moduleId = fetchResponse.moduleName; fileName = fetchResponse.filename; mediaType = fetchResponse.mediaType; sourceCode = fetchResponse.sourceCode; outputCode = fetchResponse.outputCode; sourceMap = fetchResponse.sourceMap; } assert(moduleId != null, "No module ID."); assert(fileName != null, "No file name."); assert(sourceCode ? sourceCode.length > 0 : false, "No source code."); assert( mediaType !== MediaType.Unknown, `Unknown media type for: "${moduleSpecifier}" from "${containingFile}".` ); this._log( "resolveModule sourceCode length:", sourceCode && sourceCode.length ); this._log("resolveModule has outputCode:", outputCode != null); this._log("resolveModule has source map:", sourceMap != null); this._log("resolveModule has media type:", MediaType[mediaType]); // fileName is asserted above, but TypeScript does not track so not null this._setFileName(moduleSpecifier, containingFile, fileName!); if (fileName && this._moduleMetaDataMap.has(fileName)) { return this._moduleMetaDataMap.get(fileName)!; } const moduleMetaData = new ModuleMetaData( moduleId!, fileName!, mediaType, sourceCode, outputCode, sourceMap ); this._moduleMetaDataMap.set(fileName!, moduleMetaData); return moduleMetaData; } /** Load and run a module and all of its dependencies based on a module * specifier and a containing file */ run( moduleSpecifier: ModuleSpecifier, containingFile: ContainingFile ): ModuleMetaData { this._log("compiler.run", { moduleSpecifier, containingFile }); const moduleMetaData = this.resolveModule(moduleSpecifier, containingFile); this._scriptFileNames = [moduleMetaData.fileName]; if (!moduleMetaData.deps) { this._gatherDependencies(moduleMetaData); } this._drainRunQueue(); return moduleMetaData; } // TypeScript Language Service and Format Diagnostic Host API getCanonicalFileName(fileName: string): string { this._log("getCanonicalFileName", fileName); return fileName; } getCompilationSettings(): ts.CompilerOptions { this._log("getCompilationSettings()"); return this._options; } getNewLine(): string { return EOL; } getScriptFileNames(): string[] { // This is equal to `"files"` in the `tsconfig.json`, therefore we only need // to include the actual base source files we are evaluating at the moment, // which would be what is set during the `.run()` return this._scriptFileNames; } getScriptKind(fileName: ModuleFileName): ts.ScriptKind { this._log("getScriptKind()", fileName); const moduleMetaData = this._getModuleMetaData(fileName); if (moduleMetaData) { switch (moduleMetaData.mediaType) { case MediaType.TypeScript: return ts.ScriptKind.TS; case MediaType.JavaScript: return ts.ScriptKind.JS; case MediaType.Json: return ts.ScriptKind.JSON; default: return this._options.allowJs ? ts.ScriptKind.JS : ts.ScriptKind.TS; } } else { return this._options.allowJs ? ts.ScriptKind.JS : ts.ScriptKind.TS; } } getScriptVersion(fileName: ModuleFileName): string { this._log("getScriptVersion()", fileName); const moduleMetaData = this._getModuleMetaData(fileName); return (moduleMetaData && moduleMetaData.scriptVersion) || ""; } getScriptSnapshot(fileName: ModuleFileName): ts.IScriptSnapshot | undefined { this._log("getScriptSnapshot()", fileName); return this._getModuleMetaData(fileName); } getCurrentDirectory(): string { this._log("getCurrentDirectory()"); return ""; } getDefaultLibFileName(): string { this._log("getDefaultLibFileName()"); const moduleSpecifier = LIB_RUNTIME; const moduleMetaData = this.resolveModule(moduleSpecifier, ASSETS); return moduleMetaData.fileName; } useCaseSensitiveFileNames(): boolean { this._log("useCaseSensitiveFileNames()"); return true; } readFile(path: string): string | undefined { this._log("readFile()", path); return notImplemented(); } fileExists(fileName: string): boolean { const moduleMetaData = this._getModuleMetaData(fileName); const exists = moduleMetaData != null; this._log("fileExists()", fileName, exists); return exists; } resolveModuleNames( moduleNames: ModuleSpecifier[], containingFile: ContainingFile ): Array { this._log("resolveModuleNames()", { moduleNames, containingFile }); return moduleNames.map(name => { let moduleMetaData: ModuleMetaData; if (name === "deno") { // builtin modules are part of the runtime lib moduleMetaData = this.resolveModule(LIB_RUNTIME, ASSETS); } else if (name === "typescript") { moduleMetaData = this.resolveModule("typescript.d.ts", ASSETS); } else { moduleMetaData = this.resolveModule(name, containingFile); } // According to the interface we shouldn't return `undefined` but if we // fail to return the same length of modules to those we cannot resolve // then TypeScript fails on an assertion that the lengths can't be // different, so we have to return an "empty" resolved module // TODO: all this does is push the problem downstream, and TypeScript // will complain it can't identify the type of the file and throw // a runtime exception, so we need to handle missing modules better const resolvedFileName = moduleMetaData.fileName || ""; // This flags to the compiler to not go looking to transpile functional // code, anything that is in `/$asset$/` is just library code const isExternalLibraryImport = resolvedFileName.startsWith(ASSETS); return { resolvedFileName, isExternalLibraryImport, extension: getExtension(resolvedFileName, moduleMetaData.mediaType) }; }); } // Deno specific static properties and methods /** Built in modules which can be returned to external modules * * Placed as a private static otherwise we get use before * declared with the `DenoCompiler` */ // tslint:disable-next-line:no-any private static _builtins: { [mid: string]: any } = { typescript: ts, deno }; private static _instance: DenoCompiler | undefined; /** Returns the instance of `DenoCompiler` or creates a new instance. */ static instance(): DenoCompiler { return ( DenoCompiler._instance || (DenoCompiler._instance = new DenoCompiler()) ); } }