// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license. // This code has been ported almost directly from Go's src/bytes/buffer.go // Copyright 2009 The Go Authors. All rights reserved. BSD license. // https://github.com/golang/go/blob/master/LICENSE import { assert } from "ext:deno_web/00_infra.js"; const primordials = globalThis.__bootstrap.primordials; const { TypedArrayPrototypeSubarray, TypedArrayPrototypeSlice, TypedArrayPrototypeSet, MathFloor, MathMin, PromiseResolve, Uint8Array, Error, } = primordials; // MIN_READ is the minimum ArrayBuffer size passed to a read call by // buffer.ReadFrom. As long as the Buffer has at least MIN_READ bytes beyond // what is required to hold the contents of r, readFrom() will not grow the // underlying buffer. const MIN_READ = 32 * 1024; const MAX_SIZE = 2 ** 32 - 2; // `off` is the offset into `dst` where it will at which to begin writing values // from `src`. // Returns the number of bytes copied. function copyBytes(src, dst, off = 0) { const r = dst.byteLength - off; if (src.byteLength > r) { src = TypedArrayPrototypeSubarray(src, 0, r); } TypedArrayPrototypeSet(dst, src, off); return src.byteLength; } class Buffer { #buf = null; // contents are the bytes buf[off : len(buf)] #off = 0; // read at buf[off], write at buf[buf.byteLength] constructor(ab) { if (ab == null) { this.#buf = new Uint8Array(0); return; } this.#buf = new Uint8Array(ab); } bytes(options = { copy: true }) { if (options.copy === false) { return TypedArrayPrototypeSubarray(this.#buf, this.#off); } return TypedArrayPrototypeSlice(this.#buf, this.#off); } empty() { return this.#buf.byteLength <= this.#off; } get length() { return this.#buf.byteLength - this.#off; } get capacity() { return this.#buf.buffer.byteLength; } truncate(n) { if (n === 0) { this.reset(); return; } if (n < 0 || n > this.length) { throw Error("bytes.Buffer: truncation out of range"); } this.#reslice(this.#off + n); } reset() { this.#reslice(0); this.#off = 0; } #tryGrowByReslice(n) { const l = this.#buf.byteLength; if (n <= this.capacity - l) { this.#reslice(l + n); return l; } return -1; } #reslice(len) { assert(len <= this.#buf.buffer.byteLength); this.#buf = new Uint8Array(this.#buf.buffer, 0, len); } readSync(p) { if (this.empty()) { // Buffer is empty, reset to recover space. this.reset(); if (p.byteLength === 0) { // this edge case is tested in 'bufferReadEmptyAtEOF' test return 0; } return null; } const nread = copyBytes( TypedArrayPrototypeSubarray(this.#buf, this.#off), p, ); this.#off += nread; return nread; } read(p) { const rr = this.readSync(p); return PromiseResolve(rr); } writeSync(p) { const m = this.#grow(p.byteLength); return copyBytes(p, this.#buf, m); } write(p) { const n = this.writeSync(p); return PromiseResolve(n); } #grow(n) { const m = this.length; // If buffer is empty, reset to recover space. if (m === 0 && this.#off !== 0) { this.reset(); } // Fast: Try to grow by means of a reslice. const i = this.#tryGrowByReslice(n); if (i >= 0) { return i; } const c = this.capacity; if (n <= MathFloor(c / 2) - m) { // We can slide things down instead of allocating a new // ArrayBuffer. We only need m+n <= c to slide, but // we instead let capacity get twice as large so we // don't spend all our time copying. copyBytes(TypedArrayPrototypeSubarray(this.#buf, this.#off), this.#buf); } else if (c + n > MAX_SIZE) { throw new Error("The buffer cannot be grown beyond the maximum size."); } else { // Not enough space anywhere, we need to allocate. const buf = new Uint8Array(MathMin(2 * c + n, MAX_SIZE)); copyBytes(TypedArrayPrototypeSubarray(this.#buf, this.#off), buf); this.#buf = buf; } // Restore this.#off and len(this.#buf). this.#off = 0; this.#reslice(MathMin(m + n, MAX_SIZE)); return m; } grow(n) { if (n < 0) { throw Error("Buffer.grow: negative count"); } const m = this.#grow(n); this.#reslice(m); } async readFrom(r) { let n = 0; const tmp = new Uint8Array(MIN_READ); while (true) { const shouldGrow = this.capacity - this.length < MIN_READ; // read into tmp buffer if there's not enough room // otherwise read directly into the internal buffer const buf = shouldGrow ? tmp : new Uint8Array(this.#buf.buffer, this.length); const nread = await r.read(buf); if (nread === null) { return n; } // write will grow if needed if (shouldGrow) { this.writeSync(TypedArrayPrototypeSubarray(buf, 0, nread)); } else this.#reslice(this.length + nread); n += nread; } } readFromSync(r) { let n = 0; const tmp = new Uint8Array(MIN_READ); while (true) { const shouldGrow = this.capacity - this.length < MIN_READ; // read into tmp buffer if there's not enough room // otherwise read directly into the internal buffer const buf = shouldGrow ? tmp : new Uint8Array(this.#buf.buffer, this.length); const nread = r.readSync(buf); if (nread === null) { return n; } // write will grow if needed if (shouldGrow) { this.writeSync(TypedArrayPrototypeSubarray(buf, 0, nread)); } else this.#reslice(this.length + nread); n += nread; } } } async function readAll(r) { const buf = new Buffer(); await buf.readFrom(r); return buf.bytes(); } function readAllSync(r) { const buf = new Buffer(); buf.readFromSync(r); return buf.bytes(); } async function writeAll(w, arr) { let nwritten = 0; while (nwritten < arr.length) { nwritten += await w.write(TypedArrayPrototypeSubarray(arr, nwritten)); } } function writeAllSync(w, arr) { let nwritten = 0; while (nwritten < arr.length) { nwritten += w.writeSync(TypedArrayPrototypeSubarray(arr, nwritten)); } } export { Buffer, readAll, readAllSync, writeAll, writeAllSync };