// Copyright 2018-2020 the Deno authors. All rights reserved. MIT license. // Think of Resources as File Descriptors. They are integers that are allocated by // the privileged side of Deno to refer to various rust objects that need to be // referenced between multiple ops. For example, network sockets are resources. // Resources may or may not correspond to a real operating system file // descriptor (hence the different name). use downcast_rs::Downcast; use std::any::Any; use std::collections::HashMap; /// ResourceId is Deno's version of a file descriptor. ResourceId is also referred /// to as rid in the code base. pub type ResourceId = u32; /// These store Deno's file descriptors. These are not necessarily the operating /// system ones. type ResourceMap = HashMap)>; #[derive(Default)] pub struct ResourceTable { map: ResourceMap, next_id: u32, } impl ResourceTable { pub fn has(&self, rid: ResourceId) -> bool { self.map.contains_key(&rid) } pub fn get(&self, rid: ResourceId) -> Option<&T> { if let Some((_name, resource)) = self.map.get(&rid) { return resource.downcast_ref::(); } None } pub fn get_mut(&mut self, rid: ResourceId) -> Option<&mut T> { if let Some((_name, resource)) = self.map.get_mut(&rid) { return resource.downcast_mut::(); } None } // TODO: resource id allocation should probably be randomized for security. fn next_rid(&mut self) -> ResourceId { let next_rid = self.next_id; self.next_id += 1; next_rid as ResourceId } pub fn add(&mut self, name: &str, resource: Box) -> ResourceId { let rid = self.next_rid(); let r = self.map.insert(rid, (name.to_string(), resource)); assert!(r.is_none()); rid } pub fn entries(&self) -> Vec<(ResourceId, String)> { self .map .iter() .map(|(key, (name, _resource))| (*key, name.clone())) .collect() } // close(2) is done by dropping the value. Therefore we just need to remove // the resource from the resource table. pub fn close(&mut self, rid: ResourceId) -> Option<()> { self.map.remove(&rid).map(|(_name, _resource)| ()) } } /// Abstract type representing resource in Deno. /// /// The only thing it does is implementing `Downcast` trait /// that allows to cast resource to concrete type in `TableResource::get` /// and `TableResource::get_mut` methods. pub trait Resource: Downcast + Any {} impl Resource for T where T: Downcast + Any {} impl_downcast!(Resource); #[cfg(test)] mod tests { use super::*; struct FakeResource { not_empty: u128, } impl FakeResource { fn new(value: u128) -> FakeResource { FakeResource { not_empty: value } } } #[test] fn test_create_resource_table_default() { let table = ResourceTable::default(); assert_eq!(table.map.len(), 0); } #[test] fn test_add_to_resource_table_not_empty() { let mut table = ResourceTable::default(); table.add("fake1", Box::new(FakeResource::new(1))); table.add("fake2", Box::new(FakeResource::new(2))); assert_eq!(table.map.len(), 2); } #[test] fn test_add_to_resource_table_are_contiguous() { let mut table = ResourceTable::default(); let rid1 = table.add("fake1", Box::new(FakeResource::new(1))); let rid2 = table.add("fake2", Box::new(FakeResource::new(2))); assert_eq!(rid1 + 1, rid2); } #[test] fn test_get_from_resource_table_is_what_was_given() { let mut table = ResourceTable::default(); let rid = table.add("fake", Box::new(FakeResource::new(7))); let resource = table.get::(rid); assert_eq!(resource.unwrap().not_empty, 7); } #[test] fn test_remove_from_resource_table() { let mut table = ResourceTable::default(); let rid1 = table.add("fake1", Box::new(FakeResource::new(1))); let rid2 = table.add("fake2", Box::new(FakeResource::new(2))); assert_eq!(table.map.len(), 2); table.close(rid1); assert_eq!(table.map.len(), 1); table.close(rid2); assert_eq!(table.map.len(), 0); } }