// Copyright 2018-2019 the Deno authors. All rights reserved. MIT license. use crate::resources::Resource; use deno::ErrBox; use futures; use futures::Future; use futures::Poll; use std::io; use std::mem; use std::net::SocketAddr; use tokio; use tokio::net::TcpStream; use tokio::runtime; pub fn create_threadpool_runtime( ) -> Result { runtime::Builder::new() .panic_handler(|err| std::panic::resume_unwind(err)) .build() } pub fn run(future: F) where F: Future + Send + 'static, { // tokio::runtime::current_thread::run(future) let rt = create_threadpool_runtime().expect("Unable to create Tokio runtime"); rt.block_on_all(future).unwrap(); } pub fn run_on_current_thread(future: F) where F: Future + Send + 'static, { tokio::runtime::current_thread::run(future); } /// THIS IS A HACK AND SHOULD BE AVOIDED. /// /// This creates a new tokio runtime, with many new threads, to execute the /// given future. This is useful when we want to block the main runtime to /// resolve a future without worrying that we'll use up all the threads in the /// main runtime. pub fn block_on(future: F) -> Result where F: Send + 'static + Future, R: Send + 'static, { use std::sync::mpsc::channel; use std::thread; let (sender, receiver) = channel(); // Create a new runtime to evaluate the future asynchronously. thread::spawn(move || { let r = match create_threadpool_runtime() { Ok(mut rt) => rt.block_on(future), Err(e) => Err(ErrBox::from(e)), }; sender .send(r) .expect("Unable to send blocking future result") }); receiver .recv() .expect("Unable to receive blocking future result") } // Set the default executor so we can use tokio::spawn(). It's difficult to // pass around mut references to the runtime, so using with_default is // preferable. Ideally Tokio would provide this function. #[cfg(test)] pub fn init(f: F) where F: FnOnce(), { let rt = create_threadpool_runtime().expect("Unable to create Tokio runtime"); let mut executor = rt.executor(); let mut enter = tokio_executor::enter().expect("Multiple executors at once"); tokio_executor::with_default(&mut executor, &mut enter, move |_enter| f()); } #[derive(Debug)] enum AcceptState { Pending(Resource), Empty, } /// Simply accepts a connection. pub fn accept(r: Resource) -> Accept { Accept { state: AcceptState::Pending(r), } } /// A future which can be used to easily read available number of bytes to fill /// a buffer. /// /// Created by the [`read`] function. #[derive(Debug)] pub struct Accept { state: AcceptState, } impl Future for Accept { type Item = (TcpStream, SocketAddr); type Error = io::Error; fn poll(&mut self) -> Poll { let (stream, addr) = match self.state { // Similar to try_ready!, but also track/untrack accept task // in TcpListener resource. // In this way, when the listener is closed, the task can be // notified to error out (instead of stuck forever). AcceptState::Pending(ref mut r) => match r.poll_accept() { Ok(futures::prelude::Async::Ready(t)) => { r.untrack_task(); t } Ok(futures::prelude::Async::NotReady) => { // Would error out if another accept task is being tracked. r.track_task()?; return Ok(futures::prelude::Async::NotReady); } Err(e) => { r.untrack_task(); return Err(e); } }, AcceptState::Empty => panic!("poll Accept after it's done"), }; match mem::replace(&mut self.state, AcceptState::Empty) { AcceptState::Pending(_) => Ok((stream, addr).into()), AcceptState::Empty => panic!("invalid internal state"), } } } /// `futures::future::poll_fn` only support `F: FnMut()->Poll` /// However, we require that `F: FnOnce()->Poll`. /// Therefore, we created our version of `poll_fn`. pub fn poll_fn(f: F) -> PollFn where F: FnOnce() -> Poll, { PollFn { inner: Some(f) } } pub struct PollFn { inner: Option, } impl Future for PollFn where F: FnOnce() -> Poll, { type Item = T; type Error = E; fn poll(&mut self) -> Poll { let f = self.inner.take().expect("Inner fn has been taken."); f() } } pub fn panic_on_error(f: F) -> impl Future where F: Future, E: std::fmt::Debug, { f.map_err(|err| panic!("Future got unexpected error: {:?}", err)) }