// Copyright 2018 the Deno authors. All rights reserved. MIT license. // Implementation note: one could imagine combining this module with Isolate to // provide a more intuitive high-level API. However, due to the complexity // inherent in asynchronous module loading, we would like the Isolate to remain // small and simple for users who do not use modules or if they do can load them // synchronously. The isolate.rs module should never depend on this module. use crate::any_error::ErrBox; use crate::isolate::ImportStream; use crate::isolate::Isolate; use crate::isolate::RecursiveLoadEvent as Event; use crate::isolate::SourceCodeInfo; use crate::libdeno::deno_dyn_import_id; use crate::libdeno::deno_mod; use crate::module_specifier::ModuleSpecifier; use futures::future::loop_fn; use futures::future::Loop; use futures::stream::FuturesUnordered; use futures::stream::Stream; use futures::Async::*; use futures::Future; use futures::Poll; use std::collections::HashMap; use std::collections::HashSet; use std::fmt; use std::sync::Arc; use std::sync::Mutex; pub type SourceCodeInfoFuture = dyn Future + Send; pub trait Loader: Send + Sync { /// Returns an absolute URL. /// When implementing an spec-complaint VM, this should be exactly the /// algorithm described here: /// https://html.spec.whatwg.org/multipage/webappapis.html#resolve-a-module-specifier fn resolve( &self, specifier: &str, referrer: &str, is_main: bool, is_dyn_import: bool, ) -> Result; /// Given ModuleSpecifier, load its source code. fn load( &self, module_specifier: &ModuleSpecifier, ) -> Box; } #[derive(Debug, Eq, PartialEq)] enum Kind { Main, DynamicImport(deno_dyn_import_id), } #[derive(Debug, Eq, PartialEq)] enum State { ResolveMain(String, Option), // specifier, maybe code ResolveImport(String, String), // specifier, referrer LoadingRoot, LoadingImports(deno_mod), Instantiated(deno_mod), } /// This future is used to implement parallel async module loading without /// complicating the Isolate API. /// TODO: RecursiveLoad desperately needs to be merged with Modules. pub struct RecursiveLoad { kind: Kind, state: State, loader: L, modules: Arc>, pending: FuturesUnordered>, is_pending: HashSet, } impl RecursiveLoad { /// Starts a new parallel load of the given URL of the main module. pub fn main( specifier: &str, code: Option, loader: L, modules: Arc>, ) -> Self { let kind = Kind::Main; let state = State::ResolveMain(specifier.to_owned(), code); Self::new(kind, state, loader, modules) } pub fn dynamic_import( id: deno_dyn_import_id, specifier: &str, referrer: &str, loader: L, modules: Arc>, ) -> Self { let kind = Kind::DynamicImport(id); let state = State::ResolveImport(specifier.to_owned(), referrer.to_owned()); Self::new(kind, state, loader, modules) } pub fn dyn_import_id(&self) -> Option { match self.kind { Kind::Main => None, Kind::DynamicImport(id) => Some(id), } } fn new( kind: Kind, state: State, loader: L, modules: Arc>, ) -> Self { Self { kind, state, loader, modules, pending: FuturesUnordered::new(), is_pending: HashSet::new(), } } fn add_root(&mut self) -> Result<(), ErrBox> { let module_specifier = match self.state { State::ResolveMain(ref specifier, _) => self.loader.resolve( specifier, ".", true, self.dyn_import_id().is_some(), )?, State::ResolveImport(ref specifier, ref referrer) => self .loader .resolve(specifier, referrer, false, self.dyn_import_id().is_some())?, _ => unreachable!(), }; // We deliberately do not check if this module is already present in the // module map. That's because the module map doesn't track whether a // a module's dependencies have been loaded and whether it's been // instantiated, so if we did find this module in the module map and used // its id, this could lead to a crash. // // For the time being code and metadata for a module specifier is fetched // multiple times, register() uses only the first result, and assigns the // same module id to all instances. // // TODO: this is very ugly. The module map and recursive loader should be // integrated into one thing. self .pending .push(Box::new(self.loader.load(&module_specifier))); self.state = State::LoadingRoot; Ok(()) } fn add_import( &mut self, specifier: &str, referrer: &str, parent_id: deno_mod, ) -> Result<(), ErrBox> { let module_specifier = self.loader.resolve( specifier, referrer, false, self.dyn_import_id().is_some(), )?; let module_name = module_specifier.as_str(); let mut modules = self.modules.lock().unwrap(); modules.add_child(parent_id, module_name); if !modules.is_registered(module_name) && !self.is_pending.contains(&module_specifier) { self .pending .push(Box::new(self.loader.load(&module_specifier))); self.is_pending.insert(module_specifier); } Ok(()) } /// Returns a future that resolves to the final module id of the root module. /// This future needs to take ownership of the isolate. pub fn get_future( self, isolate: Arc>, ) -> impl Future { loop_fn(self, move |load| { let isolate = isolate.clone(); load.into_future().map_err(|(e, _)| e).and_then( move |(event, mut load)| { Ok(match event.unwrap() { Event::Fetch(info) => { let mut isolate = isolate.lock().unwrap(); load.register(info, &mut isolate)?; Loop::Continue(load) } Event::Instantiate(id) => Loop::Break(id), }) }, ) }) } } impl ImportStream for RecursiveLoad { // TODO: this should not be part of RecursiveLoad. fn register( &mut self, source_code_info: SourceCodeInfo, isolate: &mut Isolate, ) -> Result<(), ErrBox> { // #A There are 3 cases to handle at this moment: // 1. Source code resolved result have the same module name as requested // and is not yet registered // -> register // 2. Source code resolved result have a different name as requested: // 2a. The module with resolved module name has been registered // -> alias // 2b. The module with resolved module name has not yet been registerd // -> register & alias let SourceCodeInfo { code, module_url_specified, module_url_found, } = source_code_info; let is_main = self.kind == Kind::Main && self.state == State::LoadingRoot; let module_id = { let mut modules = self.modules.lock().unwrap(); // If necessary, register an alias. if module_url_specified != module_url_found { modules.alias(&module_url_specified, &module_url_found); } match modules.get_id(&module_url_found) { // Module has already been registered. Some(id) => { debug!( "Already-registered module fetched again: {}", module_url_found ); id } // Module not registered yet, do it now. None => { let id = isolate.mod_new(is_main, &module_url_found, &code)?; modules.register(id, &module_url_found); id } } }; // Now we must iterate over all imports of the module and load them. let imports = isolate.mod_get_imports(module_id); for import in imports { self.add_import(&import, &module_url_found, module_id)?; } // If we just finished loading the root module, store the root module id. match self.state { State::LoadingRoot => self.state = State::LoadingImports(module_id), State::LoadingImports(..) => {} _ => unreachable!(), }; // If all imports have been loaded, instantiate the root module. if self.pending.is_empty() { let root_id = match self.state { State::LoadingImports(mod_id) => mod_id, _ => unreachable!(), }; let mut resolve_cb = |specifier: &str, referrer_id: deno_mod| -> deno_mod { let modules = self.modules.lock().unwrap(); let referrer = modules.get_name(referrer_id).unwrap(); match self.loader.resolve( specifier, &referrer, is_main, self.dyn_import_id().is_some(), ) { Ok(specifier) => modules.get_id(specifier.as_str()).unwrap_or(0), // We should have already resolved and Ready this module, so // resolve() will not fail this time. Err(..) => unreachable!(), } }; isolate.mod_instantiate(root_id, &mut resolve_cb)?; self.state = State::Instantiated(root_id); } Ok(()) } } impl Stream for RecursiveLoad { type Item = Event; type Error = ErrBox; fn poll(&mut self) -> Poll, Self::Error> { Ok(match self.state { State::ResolveMain(ref specifier, Some(ref code)) => { let module_specifier = self.loader.resolve( specifier, ".", true, self.dyn_import_id().is_some(), )?; let info = SourceCodeInfo { code: code.to_owned(), module_url_specified: module_specifier.to_string(), module_url_found: module_specifier.to_string(), }; self.state = State::LoadingRoot; Ready(Some(Event::Fetch(info))) } State::ResolveMain(..) | State::ResolveImport(..) => { self.add_root()?; self.poll()? } State::LoadingRoot | State::LoadingImports(..) => { match self.pending.poll()? { Ready(None) => unreachable!(), Ready(Some(info)) => Ready(Some(Event::Fetch(info))), NotReady => NotReady, } } State::Instantiated(id) => Ready(Some(Event::Instantiate(id))), }) } } struct ModuleInfo { name: String, children: Vec, } impl ModuleInfo { fn has_child(&self, child_name: &str) -> bool { for c in self.children.iter() { if c == child_name { return true; } } false } } /// A symbolic module entity. enum SymbolicModule { /// This module is an alias to another module. /// This is useful such that multiple names could point to /// the same underlying module (particularly due to redirects). Alias(String), /// This module associates with a V8 module by id. Mod(deno_mod), } #[derive(Default)] /// Alias-able module name map struct ModuleNameMap { inner: HashMap, } impl ModuleNameMap { pub fn new() -> Self { ModuleNameMap { inner: HashMap::new(), } } /// Get the id of a module. /// If this module is internally represented as an alias, /// follow the alias chain to get the final module id. pub fn get(&self, name: &str) -> Option { let mut mod_name = name; loop { let cond = self.inner.get(mod_name); match cond { Some(SymbolicModule::Alias(target)) => { mod_name = target; } Some(SymbolicModule::Mod(mod_id)) => { return Some(*mod_id); } _ => { return None; } } } } /// Insert a name assocated module id. pub fn insert(&mut self, name: String, id: deno_mod) { self.inner.insert(name, SymbolicModule::Mod(id)); } /// Create an alias to another module. pub fn alias(&mut self, name: String, target: String) { self.inner.insert(name, SymbolicModule::Alias(target)); } /// Check if a name is an alias to another module. pub fn is_alias(&self, name: &str) -> bool { let cond = self.inner.get(name); match cond { Some(SymbolicModule::Alias(_)) => true, _ => false, } } } /// A collection of JS modules. #[derive(Default)] pub struct Modules { info: HashMap, by_name: ModuleNameMap, } impl Modules { pub fn new() -> Modules { Self { info: HashMap::new(), by_name: ModuleNameMap::new(), } } pub fn get_id(&self, name: &str) -> Option { self.by_name.get(name) } pub fn get_children(&self, id: deno_mod) -> Option<&Vec> { self.info.get(&id).map(|i| &i.children) } pub fn get_children2(&self, name: &str) -> Option<&Vec> { self.get_id(name).and_then(|id| self.get_children(id)) } pub fn get_name(&self, id: deno_mod) -> Option<&String> { self.info.get(&id).map(|i| &i.name) } pub fn is_registered(&self, name: &str) -> bool { self.by_name.get(name).is_some() } pub fn add_child(&mut self, parent_id: deno_mod, child_name: &str) -> bool { self .info .get_mut(&parent_id) .map(move |i| { if !i.has_child(&child_name) { i.children.push(child_name.to_string()); } }) .is_some() } pub fn register(&mut self, id: deno_mod, name: &str) { let name = String::from(name); debug!("register_complete {}", name); self.by_name.insert(name.clone(), id); self.info.insert( id, ModuleInfo { name, children: Vec::new(), }, ); } pub fn alias(&mut self, name: &str, target: &str) { self.by_name.alias(name.to_owned(), target.to_owned()); } pub fn is_alias(&self, name: &str) -> bool { self.by_name.is_alias(name) } pub fn deps(&self, url: &str) -> Option { Deps::new(self, url) } } /// This is a tree structure representing the dependencies of a given module. /// Use Modules::deps to construct it. The 'deps' member is None if this module /// was already seen elsewher in the tree. #[derive(Debug, PartialEq)] pub struct Deps { pub name: String, pub deps: Option>, prefix: String, is_last: bool, } impl Deps { fn new(modules: &Modules, module_name: &str) -> Option { let mut seen = HashSet::new(); Self::helper(&mut seen, "".to_string(), true, modules, module_name) } fn helper( seen: &mut HashSet, prefix: String, is_last: bool, modules: &Modules, name: &str, // TODO(ry) rename url ) -> Option { if seen.contains(name) { Some(Deps { name: name.to_string(), prefix, deps: None, is_last, }) } else { let children = modules.get_children2(name)?; seen.insert(name.to_string()); let child_count = children.len(); let deps: Vec = children .iter() .enumerate() .map(|(index, dep_name)| { let new_is_last = index == child_count - 1; let mut new_prefix = prefix.clone(); new_prefix.push(if is_last { ' ' } else { '│' }); new_prefix.push(' '); Self::helper(seen, new_prefix, new_is_last, modules, dep_name) }) // If any of the children are missing, return None. .collect::>()?; Some(Deps { name: name.to_string(), prefix, deps: Some(deps), is_last, }) } } pub fn to_json(&self) -> String { let mut children = "[".to_string(); if let Some(ref deps) = self.deps { for d in deps { children.push_str(&d.to_json()); if !d.is_last { children.push_str(","); } } } children.push_str("]"); format!("[\"{}\",{}]", self.name, children) } } impl fmt::Display for Deps { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut has_children = false; if let Some(ref deps) = self.deps { has_children = !deps.is_empty(); } write!( f, "{}{}─{} {}", self.prefix, if self.is_last { "└" } else { "├" }, if has_children { "┬" } else { "─" }, self.name )?; if let Some(ref deps) = self.deps { for d in deps { write!(f, "\n{}", d)?; } } Ok(()) } } #[cfg(test)] mod tests { use super::*; use crate::isolate::js_check; use crate::isolate::tests::*; use futures::Async; use std::error::Error; use std::fmt; struct MockLoader { pub loads: Arc>>, pub isolate: Arc>, pub modules: Arc>, } impl MockLoader { fn new() -> Self { let modules = Modules::new(); let (isolate, _dispatch_count) = setup(Mode::AsyncImmediate); Self { loads: Arc::new(Mutex::new(Vec::new())), isolate: Arc::new(Mutex::new(isolate)), modules: Arc::new(Mutex::new(modules)), } } } fn mock_source_code(url: &str) -> Option<(&'static str, &'static str)> { // (code, real_module_name) let spec: Vec<&str> = url.split("file://").collect(); match spec[1] { "/a.js" => Some((A_SRC, "file:///a.js")), "/b.js" => Some((B_SRC, "file:///b.js")), "/c.js" => Some((C_SRC, "file:///c.js")), "/d.js" => Some((D_SRC, "file:///d.js")), "/circular1.js" => Some((CIRCULAR1_SRC, "file:///circular1.js")), "/circular2.js" => Some((CIRCULAR2_SRC, "file:///circular2.js")), "/circular3.js" => Some((CIRCULAR3_SRC, "file:///circular3.js")), "/redirect1.js" => Some((REDIRECT1_SRC, "file:///redirect1.js")), // pretend redirect - real module name is different than one requested "/redirect2.js" => Some((REDIRECT2_SRC, "file:///dir/redirect2.js")), "/dir/redirect3.js" => Some((REDIRECT3_SRC, "file:///redirect3.js")), "/slow.js" => Some((SLOW_SRC, "file:///slow.js")), "/never_ready.js" => { Some(("should never be Ready", "file:///never_ready.js")) } "/main.js" => Some((MAIN_SRC, "file:///main.js")), "/bad_import.js" => Some((BAD_IMPORT_SRC, "file:///bad_import.js")), // deliberately empty code. "/main_with_code.js" => Some(("", "file:///main_with_code.js")), _ => None, } } #[derive(Debug, PartialEq)] enum MockError { ResolveErr, LoadErr, } impl fmt::Display for MockError { fn fmt(&self, _f: &mut fmt::Formatter) -> fmt::Result { unimplemented!() } } impl Error for MockError { fn cause(&self) -> Option<&dyn Error> { unimplemented!() } } struct DelayedSourceCodeFuture { url: String, counter: u32, } impl Future for DelayedSourceCodeFuture { type Item = SourceCodeInfo; type Error = ErrBox; fn poll(&mut self) -> Poll { self.counter += 1; if self.url == "file:///never_ready.js" { return Ok(Async::NotReady); } if self.url == "file:///slow.js" && self.counter < 2 { // TODO(ry) Hopefully in the future we can remove current task // notification. See comment above run_in_task. futures::task::current().notify(); return Ok(Async::NotReady); } match mock_source_code(&self.url) { Some(src) => Ok(Async::Ready(SourceCodeInfo { code: src.0.to_owned(), module_url_specified: self.url.clone(), module_url_found: src.1.to_owned(), })), None => Err(MockError::LoadErr.into()), } } } impl Loader for MockLoader { fn resolve( &self, specifier: &str, referrer: &str, _is_root: bool, _is_dyn_import: bool, ) -> Result { let referrer = if referrer == "." { "file:///" } else { referrer }; eprintln!(">> RESOLVING, S: {}, R: {}", specifier, referrer); let output_specifier = match ModuleSpecifier::resolve_import(specifier, referrer) { Ok(specifier) => specifier, Err(..) => return Err(MockError::ResolveErr.into()), }; if mock_source_code(&output_specifier.to_string()).is_some() { Ok(output_specifier) } else { Err(MockError::ResolveErr.into()) } } fn load( &self, module_specifier: &ModuleSpecifier, ) -> Box { let mut loads = self.loads.lock().unwrap(); loads.push(module_specifier.to_string()); let url = module_specifier.to_string(); Box::new(DelayedSourceCodeFuture { url, counter: 0 }) } } const A_SRC: &str = r#" import { b } from "/b.js"; import { c } from "/c.js"; if (b() != 'b') throw Error(); if (c() != 'c') throw Error(); if (!import.meta.main) throw Error(); if (import.meta.url != 'file:///a.js') throw Error(); "#; const B_SRC: &str = r#" import { c } from "/c.js"; if (c() != 'c') throw Error(); export function b() { return 'b'; } if (import.meta.main) throw Error(); if (import.meta.url != 'file:///b.js') throw Error(); "#; const C_SRC: &str = r#" import { d } from "/d.js"; export function c() { return 'c'; } if (d() != 'd') throw Error(); if (import.meta.main) throw Error(); if (import.meta.url != 'file:///c.js') throw Error(); "#; const D_SRC: &str = r#" export function d() { return 'd'; } if (import.meta.main) throw Error(); if (import.meta.url != 'file:///d.js') throw Error(); "#; // TODO(ry) Sadly FuturesUnordered requires the current task to be set. So // even though we are only using poll() in these tests and not Tokio, we must // nevertheless run it in the tokio executor. Ideally run_in_task can be // removed in the future. use crate::isolate::tests::run_in_task; #[test] fn test_recursive_load() { run_in_task(|| { let loader = MockLoader::new(); let modules = loader.modules.clone(); let modules_ = modules.clone(); let isolate = loader.isolate.clone(); let isolate_ = isolate.clone(); let loads = loader.loads.clone(); let mut recursive_load = RecursiveLoad::main("/a.js", None, loader, modules); let a_id = loop { match recursive_load.poll() { Ok(Ready(Some(Event::Fetch(info)))) => { let mut isolate = isolate.lock().unwrap(); recursive_load.register(info, &mut isolate).unwrap(); } Ok(Ready(Some(Event::Instantiate(id)))) => break id, _ => panic!("unexpected result"), }; }; let mut isolate = isolate_.lock().unwrap(); js_check(isolate.mod_evaluate(a_id)); let l = loads.lock().unwrap(); assert_eq!( l.to_vec(), vec![ "file:///a.js", "file:///b.js", "file:///c.js", "file:///d.js" ] ); let modules = modules_.lock().unwrap(); assert_eq!(modules.get_id("file:///a.js"), Some(a_id)); let b_id = modules.get_id("file:///b.js").unwrap(); let c_id = modules.get_id("file:///c.js").unwrap(); let d_id = modules.get_id("file:///d.js").unwrap(); assert_eq!( modules.get_children(a_id), Some(&vec![ "file:///b.js".to_string(), "file:///c.js".to_string() ]) ); assert_eq!( modules.get_children(b_id), Some(&vec!["file:///c.js".to_string()]) ); assert_eq!( modules.get_children(c_id), Some(&vec!["file:///d.js".to_string()]) ); assert_eq!(modules.get_children(d_id), Some(&vec![])); }) } const CIRCULAR1_SRC: &str = r#" import "/circular2.js"; Deno.core.print("circular1"); "#; const CIRCULAR2_SRC: &str = r#" import "/circular3.js"; Deno.core.print("circular2"); "#; const CIRCULAR3_SRC: &str = r#" import "/circular1.js"; import "/circular2.js"; Deno.core.print("circular3"); "#; #[test] fn test_circular_load() { run_in_task(|| { let loader = MockLoader::new(); let isolate = loader.isolate.clone(); let isolate_ = isolate.clone(); let modules = loader.modules.clone(); let modules_ = modules.clone(); let loads = loader.loads.clone(); let recursive_load = RecursiveLoad::main("/circular1.js", None, loader, modules); let result = recursive_load.get_future(isolate.clone()).poll(); assert!(result.is_ok()); if let Async::Ready(circular1_id) = result.ok().unwrap() { let mut isolate = isolate_.lock().unwrap(); js_check(isolate.mod_evaluate(circular1_id)); let l = loads.lock().unwrap(); assert_eq!( l.to_vec(), vec![ "file:///circular1.js", "file:///circular2.js", "file:///circular3.js" ] ); let modules = modules_.lock().unwrap(); assert_eq!(modules.get_id("file:///circular1.js"), Some(circular1_id)); let circular2_id = modules.get_id("file:///circular2.js").unwrap(); assert_eq!( modules.get_children(circular1_id), Some(&vec!["file:///circular2.js".to_string()]) ); assert_eq!( modules.get_children(circular2_id), Some(&vec!["file:///circular3.js".to_string()]) ); assert!(modules.get_id("file:///circular3.js").is_some()); let circular3_id = modules.get_id("file:///circular3.js").unwrap(); assert_eq!( modules.get_children(circular3_id), Some(&vec![ "file:///circular1.js".to_string(), "file:///circular2.js".to_string() ]) ); } else { unreachable!(); } }) } const REDIRECT1_SRC: &str = r#" import "./redirect2.js"; Deno.core.print("redirect1"); "#; const REDIRECT2_SRC: &str = r#" import "./redirect3.js"; Deno.core.print("redirect2"); "#; const REDIRECT3_SRC: &str = r#" Deno.core.print("redirect3"); "#; #[test] fn test_redirect_load() { run_in_task(|| { let loader = MockLoader::new(); let isolate = loader.isolate.clone(); let isolate_ = isolate.clone(); let modules = loader.modules.clone(); let modules_ = modules.clone(); let loads = loader.loads.clone(); let recursive_load = RecursiveLoad::main("/redirect1.js", None, loader, modules); let result = recursive_load.get_future(isolate.clone()).poll(); println!(">> result {:?}", result); assert!(result.is_ok()); if let Async::Ready(redirect1_id) = result.ok().unwrap() { let mut isolate = isolate_.lock().unwrap(); js_check(isolate.mod_evaluate(redirect1_id)); let l = loads.lock().unwrap(); assert_eq!( l.to_vec(), vec![ "file:///redirect1.js", "file:///redirect2.js", "file:///dir/redirect3.js" ] ); let modules = modules_.lock().unwrap(); assert_eq!(modules.get_id("file:///redirect1.js"), Some(redirect1_id)); let redirect2_id = modules.get_id("file:///dir/redirect2.js").unwrap(); assert!(modules.is_alias("file:///redirect2.js")); assert!(!modules.is_alias("file:///dir/redirect2.js")); assert_eq!(modules.get_id("file:///redirect2.js"), Some(redirect2_id)); let redirect3_id = modules.get_id("file:///redirect3.js").unwrap(); assert!(modules.is_alias("file:///dir/redirect3.js")); assert!(!modules.is_alias("file:///redirect3.js")); assert_eq!( modules.get_id("file:///dir/redirect3.js"), Some(redirect3_id) ); } else { unreachable!(); } }) } // main.js const MAIN_SRC: &str = r#" // never_ready.js never loads. import "/never_ready.js"; // slow.js resolves after one tick. import "/slow.js"; "#; // slow.js const SLOW_SRC: &str = r#" // Circular import of never_ready.js // Does this trigger two Loader calls? It shouldn't. import "/never_ready.js"; import "/a.js"; "#; #[test] fn slow_never_ready_modules() { run_in_task(|| { let loader = MockLoader::new(); let isolate = loader.isolate.clone(); let modules = loader.modules.clone(); let loads = loader.loads.clone(); let mut recursive_load = RecursiveLoad::main("/main.js", None, loader, modules) .get_future(isolate); let result = recursive_load.poll(); assert!(result.is_ok()); assert!(result.ok().unwrap().is_not_ready()); // TODO(ry) Arguably the first time we poll only the following modules // should be loaded: // "file:///main.js", // "file:///never_ready.js", // "file:///slow.js" // But due to current task notification in DelayedSourceCodeFuture they // all get loaded in a single poll. Also see the comment above // run_in_task. for _ in 0..10 { let result = recursive_load.poll(); assert!(result.is_ok()); assert!(result.ok().unwrap().is_not_ready()); let l = loads.lock().unwrap(); assert_eq!( l.to_vec(), vec![ "file:///main.js", "file:///never_ready.js", "file:///slow.js", "file:///a.js", "file:///b.js", "file:///c.js", "file:///d.js" ] ); } }) } // bad_import.js const BAD_IMPORT_SRC: &str = r#" import "foo"; "#; #[test] fn loader_disappears_after_error() { run_in_task(|| { let loader = MockLoader::new(); let isolate = loader.isolate.clone(); let modules = loader.modules.clone(); let recursive_load = RecursiveLoad::main("/bad_import.js", None, loader, modules); let result = recursive_load.get_future(isolate).poll(); assert!(result.is_err()); let err = result.err().unwrap(); assert_eq!( err.downcast_ref::().unwrap(), &MockError::ResolveErr ); }) } const MAIN_WITH_CODE_SRC: &str = r#" import { b } from "/b.js"; import { c } from "/c.js"; if (b() != 'b') throw Error(); if (c() != 'c') throw Error(); if (!import.meta.main) throw Error(); if (import.meta.url != 'file:///main_with_code.js') throw Error(); "#; #[test] fn recursive_load_main_with_code() { run_in_task(|| { let loader = MockLoader::new(); let modules = loader.modules.clone(); let modules_ = modules.clone(); let isolate = loader.isolate.clone(); let isolate_ = isolate.clone(); let loads = loader.loads.clone(); // In default resolution code should be empty. // Instead we explicitly pass in our own code. // The behavior should be very similar to /a.js. let mut recursive_load = RecursiveLoad::main( "/main_with_code.js", Some(MAIN_WITH_CODE_SRC.to_owned()), loader, modules, ); let main_id = loop { match recursive_load.poll() { Ok(Ready(Some(Event::Fetch(info)))) => { let mut isolate = isolate.lock().unwrap(); recursive_load.register(info, &mut isolate).unwrap(); } Ok(Ready(Some(Event::Instantiate(id)))) => break id, _ => panic!("unexpected result"), }; }; let mut isolate = isolate_.lock().unwrap(); js_check(isolate.mod_evaluate(main_id)); let l = loads.lock().unwrap(); assert_eq!( l.to_vec(), vec!["file:///b.js", "file:///c.js", "file:///d.js"] ); let modules = modules_.lock().unwrap(); assert_eq!(modules.get_id("file:///main_with_code.js"), Some(main_id)); let b_id = modules.get_id("file:///b.js").unwrap(); let c_id = modules.get_id("file:///c.js").unwrap(); let d_id = modules.get_id("file:///d.js").unwrap(); assert_eq!( modules.get_children(main_id), Some(&vec![ "file:///b.js".to_string(), "file:///c.js".to_string() ]) ); assert_eq!( modules.get_children(b_id), Some(&vec!["file:///c.js".to_string()]) ); assert_eq!( modules.get_children(c_id), Some(&vec!["file:///d.js".to_string()]) ); assert_eq!(modules.get_children(d_id), Some(&vec![])); }) } #[test] fn empty_deps() { let modules = Modules::new(); assert!(modules.deps("foo").is_none()); } #[test] fn deps() { // "foo" -> "bar" let mut modules = Modules::new(); modules.register(1, "foo"); modules.register(2, "bar"); modules.add_child(1, "bar"); let maybe_deps = modules.deps("foo"); assert!(maybe_deps.is_some()); let mut foo_deps = maybe_deps.unwrap(); assert_eq!(foo_deps.name, "foo"); assert!(foo_deps.deps.is_some()); let foo_children = foo_deps.deps.take().unwrap(); assert_eq!(foo_children.len(), 1); let bar_deps = &foo_children[0]; assert_eq!(bar_deps.name, "bar"); assert_eq!(bar_deps.deps, Some(vec![])); } #[test] fn test_deps_to_json() { let mut modules = Modules::new(); modules.register(1, "foo"); modules.register(2, "bar"); modules.register(3, "baz"); modules.register(4, "zuh"); modules.add_child(1, "bar"); modules.add_child(1, "baz"); modules.add_child(3, "zuh"); let maybe_deps = modules.deps("foo"); assert!(maybe_deps.is_some()); assert_eq!( "[\"foo\",[[\"bar\",[]],[\"baz\",[[\"zuh\",[]]]]]]", maybe_deps.unwrap().to_json() ); } }