// Copyright 2018 the Deno authors. All rights reserved. MIT license. // Do not add any dependency to modules.rs! // modules.rs is complex and should remain decoupled from isolate.rs to keep the // Isolate struct from becoming too bloating for users who do not need // asynchronous module loading. use crate::any_error::ErrBox; use crate::js_errors::CoreJSError; use crate::js_errors::V8Exception; use crate::libdeno; use crate::libdeno::deno_buf; use crate::libdeno::deno_dyn_import_id; use crate::libdeno::deno_mod; use crate::libdeno::deno_pinned_buf; use crate::libdeno::OpId; use crate::libdeno::PinnedBuf; use crate::libdeno::Snapshot1; use crate::libdeno::Snapshot2; use crate::shared_queue::SharedQueue; use crate::shared_queue::RECOMMENDED_SIZE; use futures::stream::FuturesUnordered; use futures::stream::Stream; use futures::stream::StreamFuture; use futures::task; use futures::Async::*; use futures::Future; use futures::Poll; use libc::c_char; use libc::c_void; use std::ffi::CStr; use std::ffi::CString; use std::fmt; use std::ptr::null; use std::sync::{Arc, Mutex, Once}; pub type Buf = Box<[u8]>; pub type OpAsyncFuture = Box + Send>; type PendingOpFuture = Box + Send>; pub enum Op { Sync(Buf), Async(OpAsyncFuture), } pub type CoreError = (); pub type CoreOp = Op; pub type OpResult = Result, E>; /// Args: op_id, control_buf, zero_copy_buf type CoreDispatchFn = dyn Fn(OpId, &[u8], Option) -> CoreOp; /// Stores a script used to initalize a Isolate pub struct Script<'a> { pub source: &'a str, pub filename: &'a str, } /// Represent result of fetching the source code of a module. Found module URL /// might be different from specified URL used for loading due to redirections /// (like HTTP 303). E.G. Both https://example.com/a.ts and /// https://example.com/b.ts may point to https://example.com/c.ts /// By keeping track of specified and found URL we can alias modules and avoid /// recompiling the same code 3 times. #[derive(Debug, Eq, PartialEq)] pub struct SourceCodeInfo { pub code: String, pub module_url_specified: String, pub module_url_found: String, } #[derive(Debug, Eq, PartialEq)] pub enum RecursiveLoadEvent { Fetch(SourceCodeInfo), Instantiate(deno_mod), } pub trait ImportStream: Stream { fn register( &mut self, source_code_info: SourceCodeInfo, isolate: &mut Isolate, ) -> Result<(), ErrBox>; } type DynImportStream = Box + Send>; type DynImportFn = dyn Fn(deno_dyn_import_id, &str, &str) -> DynImportStream; /// Wraps DynImportStream to include the deno_dyn_import_id, so that it doesn't /// need to be exposed. #[derive(Debug)] struct DynImport { pub id: deno_dyn_import_id, pub inner: DynImportStream, } impl fmt::Debug for DynImportStream { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "DynImportStream(..)") } } impl Stream for DynImport { type Item = (deno_dyn_import_id, RecursiveLoadEvent); type Error = (deno_dyn_import_id, ErrBox); fn poll(&mut self) -> Poll, Self::Error> { match self.inner.poll() { Ok(Ready(Some(event))) => Ok(Ready(Some((self.id, event)))), Ok(Ready(None)) => unreachable!(), Err(e) => Err((self.id, e)), Ok(NotReady) => Ok(NotReady), } } } impl ImportStream for DynImport { fn register( &mut self, source_code_info: SourceCodeInfo, isolate: &mut Isolate, ) -> Result<(), ErrBox> { self.inner.register(source_code_info, isolate) } } // TODO(ry) It's ugly that we have both Script and OwnedScript. Ideally we // wouldn't expose such twiddly complexity. struct OwnedScript { pub source: String, pub filename: String, } impl From> for OwnedScript { fn from(s: Script) -> OwnedScript { OwnedScript { source: s.source.to_string(), filename: s.filename.to_string(), } } } /// Represents data used to initialize isolate at startup /// either a binary snapshot or a javascript source file /// in the form of the StartupScript struct. pub enum StartupData<'a> { Script(Script<'a>), Snapshot(&'a [u8]), LibdenoSnapshot(Snapshot1<'a>), None, } type JSErrorCreateFn = dyn Fn(V8Exception) -> ErrBox; /// A single execution context of JavaScript. Corresponds roughly to the "Web /// Worker" concept in the DOM. An Isolate is a Future that can be used with /// Tokio. The Isolate future complete when there is an error or when all /// pending ops have completed. /// /// Ops are created in JavaScript by calling Deno.core.dispatch(), and in Rust /// by implementing deno::Dispatch::dispatch. An async Op corresponds exactly to /// a Promise in JavaScript. pub struct Isolate { libdeno_isolate: *const libdeno::isolate, shared_libdeno_isolate: Arc>>, dispatch: Option>, dyn_import: Option>, js_error_create: Arc, needs_init: bool, shared: SharedQueue, pending_ops: FuturesUnordered, pending_dyn_imports: FuturesUnordered>, have_unpolled_ops: bool, startup_script: Option, } unsafe impl Send for Isolate {} impl Drop for Isolate { fn drop(&mut self) { // remove shared_libdeno_isolate reference *self.shared_libdeno_isolate.lock().unwrap() = None; unsafe { libdeno::deno_delete(self.libdeno_isolate) } } } static DENO_INIT: Once = Once::new(); impl Isolate { /// startup_data defines the snapshot or script used at startup to initialize /// the isolate. pub fn new(startup_data: StartupData, will_snapshot: bool) -> Self { DENO_INIT.call_once(|| { unsafe { libdeno::deno_init() }; }); let shared = SharedQueue::new(RECOMMENDED_SIZE); let needs_init = true; let mut libdeno_config = libdeno::deno_config { will_snapshot: will_snapshot.into(), load_snapshot: Snapshot2::empty(), shared: shared.as_deno_buf(), recv_cb: Self::pre_dispatch, dyn_import_cb: Self::dyn_import, }; let mut startup_script: Option = None; // Separate into Option values for each startup type match startup_data { StartupData::Script(d) => { startup_script = Some(d.into()); } StartupData::Snapshot(d) => { libdeno_config.load_snapshot = d.into(); } StartupData::LibdenoSnapshot(d) => { libdeno_config.load_snapshot = d; } StartupData::None => {} }; let libdeno_isolate = unsafe { libdeno::deno_new(libdeno_config) }; Self { libdeno_isolate, shared_libdeno_isolate: Arc::new(Mutex::new(Some(libdeno_isolate))), dispatch: None, dyn_import: None, js_error_create: Arc::new(CoreJSError::from_v8_exception), shared, needs_init, pending_ops: FuturesUnordered::new(), have_unpolled_ops: false, pending_dyn_imports: FuturesUnordered::new(), startup_script, } } /// Defines the how Deno.core.dispatch() acts. /// Called whenever Deno.core.dispatch() is called in JavaScript. zero_copy_buf /// corresponds to the second argument of Deno.core.dispatch(). pub fn set_dispatch(&mut self, f: F) where F: Fn(OpId, &[u8], Option) -> CoreOp + Send + Sync + 'static, { self.dispatch = Some(Arc::new(f)); } pub fn set_dyn_import(&mut self, f: F) where F: Fn(deno_dyn_import_id, &str, &str) -> DynImportStream + Send + Sync + 'static, { self.dyn_import = Some(Arc::new(f)); } /// Allows a callback to be set whenever a V8 exception is made. This allows /// the caller to wrap the V8Exception into an error. By default this callback /// is set to CoreJSError::from_v8_exception. pub fn set_js_error_create(&mut self, f: F) where F: Fn(V8Exception) -> ErrBox + 'static, { self.js_error_create = Arc::new(f); } /// Get a thread safe handle on the isolate. pub fn shared_isolate_handle(&mut self) -> IsolateHandle { IsolateHandle { shared_libdeno_isolate: self.shared_libdeno_isolate.clone(), } } /// Executes a bit of built-in JavaScript to provide Deno.sharedQueue. fn shared_init(&mut self) { if self.needs_init { self.needs_init = false; js_check( self.execute("shared_queue.js", include_str!("shared_queue.js")), ); // Maybe execute the startup script. if let Some(s) = self.startup_script.take() { self.execute(&s.filename, &s.source).unwrap() } } } extern "C" fn dyn_import( user_data: *mut c_void, specifier: *const c_char, referrer: *const c_char, id: deno_dyn_import_id, ) { assert_ne!(user_data, std::ptr::null_mut()); let isolate = unsafe { Isolate::from_raw_ptr(user_data) }; let specifier = unsafe { CStr::from_ptr(specifier).to_str().unwrap() }; let referrer = unsafe { CStr::from_ptr(referrer).to_str().unwrap() }; debug!("dyn_import specifier {} referrer {} ", specifier, referrer); if let Some(ref f) = isolate.dyn_import { let inner = f(id, specifier, referrer); let stream = DynImport { inner, id }; task::current().notify(); isolate.pending_dyn_imports.push(stream.into_future()); } else { panic!("dyn_import callback not set") } } extern "C" fn pre_dispatch( user_data: *mut c_void, op_id: OpId, control_buf: deno_buf, zero_copy_buf: deno_pinned_buf, ) { let isolate = unsafe { Isolate::from_raw_ptr(user_data) }; let op = if let Some(ref f) = isolate.dispatch { f(op_id, control_buf.as_ref(), PinnedBuf::new(zero_copy_buf)) } else { panic!("isolate.dispatch not set") }; debug_assert_eq!(isolate.shared.size(), 0); match op { Op::Sync(buf) => { // For sync messages, we always return the response via Deno.core.send's // return value. Sync messages ignore the op_id. let op_id = 0; isolate .respond(Some((op_id, &buf))) // Because this is a sync op, deno_respond() does not actually call // into JavaScript. We should not get an error here. .expect("unexpected error"); } Op::Async(fut) => { let fut2 = fut.map(move |buf| (op_id, buf)); isolate.pending_ops.push(Box::new(fut2)); isolate.have_unpolled_ops = true; } } } #[inline] unsafe fn from_raw_ptr<'a>(ptr: *const c_void) -> &'a mut Self { let ptr = ptr as *mut _; &mut *ptr } #[inline] fn as_raw_ptr(&self) -> *const c_void { self as *const _ as *const c_void } /// Executes traditional JavaScript code (traditional = not ES modules) /// /// ErrBox can be downcast to a type that exposes additional information about /// the V8 exception. By default this type is CoreJSError, however it may be a /// different type if Isolate::set_js_error_create() has been used. pub fn execute( &mut self, js_filename: &str, js_source: &str, ) -> Result<(), ErrBox> { self.shared_init(); let filename = CString::new(js_filename).unwrap(); let source = CString::new(js_source).unwrap(); unsafe { libdeno::deno_execute( self.libdeno_isolate, self.as_raw_ptr(), filename.as_ptr(), source.as_ptr(), ) }; self.check_last_exception() } fn check_last_exception(&self) -> Result<(), ErrBox> { let ptr = unsafe { libdeno::deno_last_exception(self.libdeno_isolate) }; if ptr.is_null() { Ok(()) } else { let js_error_create = &*self.js_error_create; let cstr = unsafe { CStr::from_ptr(ptr) }; let json_str = cstr.to_str().unwrap(); let v8_exception = V8Exception::from_json(json_str).unwrap(); let js_error = js_error_create(v8_exception); Err(js_error) } } fn check_promise_errors(&self) { unsafe { libdeno::deno_check_promise_errors(self.libdeno_isolate); } } fn respond( &mut self, maybe_buf: Option<(OpId, &[u8])>, ) -> Result<(), ErrBox> { let (op_id, buf) = match maybe_buf { None => (0, deno_buf::empty()), Some((op_id, r)) => (op_id, deno_buf::from(r)), }; unsafe { libdeno::deno_respond(self.libdeno_isolate, self.as_raw_ptr(), op_id, buf) } self.check_last_exception() } /// Low-level module creation. pub fn mod_new( &self, main: bool, name: &str, source: &str, ) -> Result { let name_ = CString::new(name.to_string()).unwrap(); let name_ptr = name_.as_ptr() as *const libc::c_char; let source_ = CString::new(source.to_string()).unwrap(); let source_ptr = source_.as_ptr() as *const libc::c_char; let id = unsafe { libdeno::deno_mod_new(self.libdeno_isolate, main, name_ptr, source_ptr) }; self.check_last_exception().map(|_| id) } pub fn mod_get_imports(&self, id: deno_mod) -> Vec { let len = unsafe { libdeno::deno_mod_imports_len(self.libdeno_isolate, id) }; let mut out = Vec::new(); for i in 0..len { let specifier_ptr = unsafe { libdeno::deno_mod_imports_get(self.libdeno_isolate, id, i) }; let specifier_c: &CStr = unsafe { CStr::from_ptr(specifier_ptr) }; let specifier: &str = specifier_c.to_str().unwrap(); out.push(specifier.to_string()); } out } /// Takes a snapshot. The isolate should have been created with will_snapshot /// set to true. /// /// ErrBox can be downcast to a type that exposes additional information about /// the V8 exception. By default this type is CoreJSError, however it may be a /// different type if Isolate::set_js_error_create() has been used. pub fn snapshot(&self) -> Result, ErrBox> { let snapshot = unsafe { libdeno::deno_snapshot_new(self.libdeno_isolate) }; match self.check_last_exception() { Ok(..) => Ok(snapshot), Err(err) => { assert_eq!(snapshot.data_ptr, null()); assert_eq!(snapshot.data_len, 0); Err(err) } } } fn dyn_import_done( &self, id: libdeno::deno_dyn_import_id, result: Result>, ) -> Result<(), ErrBox> { debug!("dyn_import_done {} {:?}", id, result); let (mod_id, maybe_err_str) = match result { Ok(mod_id) => (mod_id, None), Err(None) => (0, None), Err(Some(err_str)) => (0, Some(CString::new(err_str).unwrap())), }; let err_str_ptr = match maybe_err_str { Some(ref err_str) => err_str.as_ptr(), None => std::ptr::null(), }; unsafe { libdeno::deno_dyn_import_done( self.libdeno_isolate, self.as_raw_ptr(), id, mod_id, err_str_ptr, ) }; self.check_last_exception() } fn poll_dyn_imports(&mut self) -> Poll<(), ErrBox> { use RecursiveLoadEvent::*; loop { match self.pending_dyn_imports.poll() { Ok(NotReady) | Ok(Ready(None)) => { // There are no active dynamic import loaders, or none are ready. return Ok(futures::Async::Ready(())); } Ok(Ready(Some(( Some((dyn_import_id, Fetch(source_code_info))), mut stream, )))) => { // A module (not necessarily the one dynamically imported) has been // fetched. Create and register it, and if successful, poll for the // next recursive-load event related to this dynamic import. match stream.register(source_code_info, self) { Ok(()) => self.pending_dyn_imports.push(stream.into_future()), Err(err) => { self.dyn_import_done(dyn_import_id, Err(Some(err.to_string())))? } } } Ok(Ready(Some((Some((dyn_import_id, Instantiate(module_id))), _)))) => { // The top-level module from a dynamic import has been instantiated. match self.mod_evaluate(module_id) { Ok(()) => self.dyn_import_done(dyn_import_id, Ok(module_id))?, Err(..) => self.dyn_import_done(dyn_import_id, Err(None))?, } } Err(((dyn_import_id, err), _)) => { // A non-javascript error occurred; this could be due to a an invalid // module specifier, or a problem with the source map, or a failure // to fetch the module source code. self.dyn_import_done(dyn_import_id, Err(Some(err.to_string())))? } Ok(Ready(Some((None, _)))) => unreachable!(), } } } } /// Called during mod_instantiate() to resolve imports. type ResolveFn<'a> = dyn FnMut(&str, deno_mod) -> deno_mod + 'a; /// Used internally by Isolate::mod_instantiate to wrap ResolveFn and /// encapsulate pointer casts. struct ResolveContext<'a> { resolve_fn: &'a mut ResolveFn<'a>, } impl<'a> ResolveContext<'a> { #[inline] fn as_raw_ptr(&mut self) -> *mut c_void { self as *mut _ as *mut c_void } #[inline] unsafe fn from_raw_ptr(ptr: *mut c_void) -> &'a mut Self { &mut *(ptr as *mut _) } } impl Isolate { /// Instanciates a ES module /// /// ErrBox can be downcast to a type that exposes additional information about /// the V8 exception. By default this type is CoreJSError, however it may be a /// different type if Isolate::set_js_error_create() has been used. pub fn mod_instantiate( &mut self, id: deno_mod, resolve_fn: &mut ResolveFn, ) -> Result<(), ErrBox> { let libdeno_isolate = self.libdeno_isolate; let mut ctx = ResolveContext { resolve_fn }; unsafe { libdeno::deno_mod_instantiate( libdeno_isolate, ctx.as_raw_ptr(), id, Self::resolve_cb, ) }; self.check_last_exception() } /// Called during mod_instantiate() only. extern "C" fn resolve_cb( user_data: *mut libc::c_void, specifier_ptr: *const libc::c_char, referrer: deno_mod, ) -> deno_mod { let ResolveContext { resolve_fn } = unsafe { ResolveContext::from_raw_ptr(user_data) }; let specifier_c: &CStr = unsafe { CStr::from_ptr(specifier_ptr) }; let specifier: &str = specifier_c.to_str().unwrap(); resolve_fn(specifier, referrer) } /// Evaluates an already instantiated ES module. /// /// ErrBox can be downcast to a type that exposes additional information about /// the V8 exception. By default this type is CoreJSError, however it may be a /// different type if Isolate::set_js_error_create() has been used. pub fn mod_evaluate(&mut self, id: deno_mod) -> Result<(), ErrBox> { self.shared_init(); unsafe { libdeno::deno_mod_evaluate(self.libdeno_isolate, self.as_raw_ptr(), id) }; self.check_last_exception() } } struct LockerScope { libdeno_isolate: *const libdeno::isolate, } impl LockerScope { fn new(libdeno_isolate: *const libdeno::isolate) -> LockerScope { unsafe { libdeno::deno_lock(libdeno_isolate) } LockerScope { libdeno_isolate } } } impl Drop for LockerScope { fn drop(&mut self) { unsafe { libdeno::deno_unlock(self.libdeno_isolate) } } } impl Future for Isolate { type Item = (); type Error = ErrBox; fn poll(&mut self) -> Poll<(), ErrBox> { self.shared_init(); let mut overflow_response: Option<(OpId, Buf)> = None; loop { // If there are any pending dyn_import futures, do those first. if !self.pending_dyn_imports.is_empty() { self.poll_dyn_imports()?; } // Now handle actual ops. self.have_unpolled_ops = false; #[allow(clippy::match_wild_err_arm)] match self.pending_ops.poll() { Err(_) => panic!("unexpected op error"), Ok(Ready(None)) => break, Ok(NotReady) => break, Ok(Ready(Some((op_id, buf)))) => { let successful_push = self.shared.push(op_id, &buf); if !successful_push { // If we couldn't push the response to the shared queue, because // there wasn't enough size, we will return the buffer via the // legacy route, using the argument of deno_respond. overflow_response = Some((op_id, buf)); break; } } } } if self.shared.size() > 0 { // Lock the current thread for V8. let locker = LockerScope::new(self.libdeno_isolate); self.respond(None)?; // The other side should have shifted off all the messages. assert_eq!(self.shared.size(), 0); drop(locker); } if overflow_response.is_some() { // Lock the current thread for V8. let locker = LockerScope::new(self.libdeno_isolate); let (op_id, buf) = overflow_response.take().unwrap(); self.respond(Some((op_id, &buf)))?; drop(locker); } self.check_promise_errors(); self.check_last_exception()?; // We're idle if pending_ops is empty. if self.pending_ops.is_empty() && self.pending_dyn_imports.is_empty() { Ok(futures::Async::Ready(())) } else { if self.have_unpolled_ops { task::current().notify(); } Ok(futures::Async::NotReady) } } } /// IsolateHandle is a thread safe handle on an Isolate. It exposed thread safe V8 functions. #[derive(Clone)] pub struct IsolateHandle { shared_libdeno_isolate: Arc>>, } unsafe impl Send for IsolateHandle {} impl IsolateHandle { /// Terminate the execution of any currently running javascript. /// After terminating execution it is probably not wise to continue using /// the isolate. pub fn terminate_execution(&self) { unsafe { if let Some(isolate) = *self.shared_libdeno_isolate.lock().unwrap() { libdeno::deno_terminate_execution(isolate) } } } } pub fn js_check(r: Result) -> T { if let Err(e) = r { panic!(e.to_string()); } r.unwrap() } #[cfg(test)] pub mod tests { use super::*; use futures::executor::spawn; use futures::future::lazy; use futures::future::ok; use futures::Async; use std::io; use std::ops::FnOnce; use std::sync::atomic::{AtomicUsize, Ordering}; pub fn run_in_task(f: F) -> R where F: FnOnce() -> R, { spawn(lazy(move || ok::(f()))).wait_future().unwrap() } fn poll_until_ready( future: &mut F, max_poll_count: usize, ) -> Result where F: Future, { for _ in 0..max_poll_count { match future.poll() { Ok(NotReady) => continue, Ok(Ready(val)) => return Ok(val), Err(err) => return Err(err), } } panic!( "Isolate still not ready after polling {} times.", max_poll_count ) } pub enum Mode { AsyncImmediate, OverflowReqSync, OverflowResSync, OverflowReqAsync, OverflowResAsync, } pub fn setup(mode: Mode) -> (Isolate, Arc) { let dispatch_count = Arc::new(AtomicUsize::new(0)); let dispatch_count_ = dispatch_count.clone(); let mut isolate = Isolate::new(StartupData::None, false); isolate.set_dispatch(move |op_id, control, _| -> CoreOp { println!("op_id {}", op_id); dispatch_count_.fetch_add(1, Ordering::Relaxed); match mode { Mode::AsyncImmediate => { assert_eq!(control.len(), 1); assert_eq!(control[0], 42); let buf = vec![43u8, 0, 0, 0].into_boxed_slice(); Op::Async(Box::new(futures::future::ok(buf))) } Mode::OverflowReqSync => { assert_eq!(control.len(), 100 * 1024 * 1024); let buf = vec![43u8, 0, 0, 0].into_boxed_slice(); Op::Sync(buf) } Mode::OverflowResSync => { assert_eq!(control.len(), 1); assert_eq!(control[0], 42); let mut vec = Vec::::new(); vec.resize(100 * 1024 * 1024, 0); vec[0] = 99; let buf = vec.into_boxed_slice(); Op::Sync(buf) } Mode::OverflowReqAsync => { assert_eq!(control.len(), 100 * 1024 * 1024); let buf = vec![43u8, 0, 0, 0].into_boxed_slice(); Op::Async(Box::new(futures::future::ok(buf))) } Mode::OverflowResAsync => { assert_eq!(control.len(), 1); assert_eq!(control[0], 42); let mut vec = Vec::::new(); vec.resize(100 * 1024 * 1024, 0); vec[0] = 4; let buf = vec.into_boxed_slice(); Op::Async(Box::new(futures::future::ok(buf))) } } }); js_check(isolate.execute( "setup.js", r#" function assert(cond) { if (!cond) { throw Error("assert"); } } "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); (isolate, dispatch_count) } #[test] fn test_dispatch() { let (mut isolate, dispatch_count) = setup(Mode::AsyncImmediate); js_check(isolate.execute( "filename.js", r#" let control = new Uint8Array([42]); Deno.core.send(42, control); async function main() { Deno.core.send(42, control); } main(); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); } #[test] fn test_mods() { let (mut isolate, dispatch_count) = setup(Mode::AsyncImmediate); let mod_a = isolate .mod_new( true, "a.js", r#" import { b } from 'b.js' if (b() != 'b') throw Error(); let control = new Uint8Array([42]); Deno.core.send(42, control); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); let imports = isolate.mod_get_imports(mod_a); assert_eq!(imports, vec!["b.js".to_string()]); let mod_b = isolate .mod_new(false, "b.js", "export function b() { return 'b' }") .unwrap(); let imports = isolate.mod_get_imports(mod_b); assert_eq!(imports.len(), 0); let resolve_count = Arc::new(AtomicUsize::new(0)); let resolve_count_ = resolve_count.clone(); let mut resolve = move |specifier: &str, _referrer: deno_mod| -> deno_mod { resolve_count_.fetch_add(1, Ordering::SeqCst); assert_eq!(specifier, "b.js"); mod_b }; js_check(isolate.mod_instantiate(mod_b, &mut resolve)); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); assert_eq!(resolve_count.load(Ordering::SeqCst), 0); js_check(isolate.mod_instantiate(mod_a, &mut resolve)); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); assert_eq!(resolve_count.load(Ordering::SeqCst), 1); js_check(isolate.mod_evaluate(mod_a)); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); assert_eq!(resolve_count.load(Ordering::SeqCst), 1); } #[test] fn test_poll_async_immediate_ops() { run_in_task(|| { let (mut isolate, dispatch_count) = setup(Mode::AsyncImmediate); js_check(isolate.execute( "setup2.js", r#" let nrecv = 0; Deno.core.setAsyncHandler((opId, buf) => { nrecv++; }); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); js_check(isolate.execute( "check1.js", r#" assert(nrecv == 0); let control = new Uint8Array([42]); Deno.core.send(42, control); assert(nrecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); assert_eq!(Async::Ready(()), isolate.poll().unwrap()); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); js_check(isolate.execute( "check2.js", r#" assert(nrecv == 1); Deno.core.send(42, control); assert(nrecv == 1); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); assert_eq!(Async::Ready(()), isolate.poll().unwrap()); js_check(isolate.execute("check3.js", "assert(nrecv == 2)")); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); // We are idle, so the next poll should be the last. assert_eq!(Async::Ready(()), isolate.poll().unwrap()); }); } struct MockImportStream(Vec>); impl Stream for MockImportStream { type Item = RecursiveLoadEvent; type Error = ErrBox; fn poll(&mut self) -> Poll, Self::Error> { let event = if self.0.is_empty() { None } else { Some(self.0.remove(0)?) }; Ok(Ready(event)) } } impl ImportStream for MockImportStream { fn register( &mut self, module_data: SourceCodeInfo, isolate: &mut Isolate, ) -> Result<(), ErrBox> { let id = isolate.mod_new( false, &module_data.module_url_found, &module_data.code, )?; println!( "MockImportStream register {} {}", id, module_data.module_url_found ); Ok(()) } } #[test] fn dyn_import_err() { // Test an erroneous dynamic import where the specified module isn't found. run_in_task(|| { let count = Arc::new(AtomicUsize::new(0)); let count_ = count.clone(); let mut isolate = Isolate::new(StartupData::None, false); isolate.set_dyn_import(move |_, specifier, referrer| { count_.fetch_add(1, Ordering::Relaxed); assert_eq!(specifier, "foo.js"); assert_eq!(referrer, "dyn_import2.js"); let err = io::Error::from(io::ErrorKind::NotFound); let stream = MockImportStream(vec![Err(err.into())]); Box::new(stream) }); js_check(isolate.execute( "dyn_import2.js", r#" (async () => { await import("foo.js"); })(); "#, )); assert_eq!(count.load(Ordering::Relaxed), 1); // We should get an error here. let result = isolate.poll(); assert!(result.is_err()); }) } #[test] fn dyn_import_err2() { use std::convert::TryInto; // Import multiple modules to demonstrate that after failed dynamic import // another dynamic import can still be run run_in_task(|| { let count = Arc::new(AtomicUsize::new(0)); let count_ = count.clone(); let mut isolate = Isolate::new(StartupData::None, false); isolate.set_dyn_import(move |_, specifier, referrer| { let c = count_.fetch_add(1, Ordering::Relaxed); match c { 0 => assert_eq!(specifier, "foo1.js"), 1 => assert_eq!(specifier, "foo2.js"), 2 => assert_eq!(specifier, "foo3.js"), _ => unreachable!(), } assert_eq!(referrer, "dyn_import_error.js"); let source_code_info = SourceCodeInfo { module_url_specified: specifier.to_owned(), module_url_found: specifier.to_owned(), code: "# not valid JS".to_owned(), }; let stream = MockImportStream(vec![ Ok(RecursiveLoadEvent::Fetch(source_code_info)), Ok(RecursiveLoadEvent::Instantiate(c.try_into().unwrap())), ]); Box::new(stream) }); js_check(isolate.execute( "dyn_import_error.js", r#" (async () => { await import("foo1.js"); })(); (async () => { await import("foo2.js"); })(); (async () => { await import("foo3.js"); })(); "#, )); assert_eq!(count.load(Ordering::Relaxed), 3); // Now each poll should return error assert!(isolate.poll().is_err()); assert!(isolate.poll().is_err()); assert!(isolate.poll().is_err()); }) } #[test] fn dyn_import_ok() { run_in_task(|| { let count = Arc::new(AtomicUsize::new(0)); let count_ = count.clone(); // Sometimes Rust is really annoying. let mod_b = Arc::new(Mutex::new(0)); let mod_b2 = mod_b.clone(); let mut isolate = Isolate::new(StartupData::None, false); isolate.set_dyn_import(move |_id, specifier, referrer| { let c = count_.fetch_add(1, Ordering::Relaxed); match c { 0 => assert_eq!(specifier, "foo1.js"), 1 => assert_eq!(specifier, "foo2.js"), _ => unreachable!(), } assert_eq!(referrer, "dyn_import3.js"); let mod_id = *mod_b2.lock().unwrap(); let source_code_info = SourceCodeInfo { module_url_specified: "foo.js".to_owned(), module_url_found: "foo.js".to_owned(), code: "".to_owned(), }; let stream = MockImportStream(vec![ Ok(RecursiveLoadEvent::Fetch(source_code_info)), Ok(RecursiveLoadEvent::Instantiate(mod_id)), ]); Box::new(stream) }); // Instantiate mod_b { let mut mod_id = mod_b.lock().unwrap(); *mod_id = isolate .mod_new(false, "b.js", "export function b() { return 'b' }") .unwrap(); let mut resolve = move |_specifier: &str, _referrer: deno_mod| -> deno_mod { unreachable!() }; js_check(isolate.mod_instantiate(*mod_id, &mut resolve)); } // Dynamically import mod_b js_check(isolate.execute( "dyn_import3.js", r#" (async () => { let mod = await import("foo1.js"); if (mod.b() !== 'b') { throw Error("bad1"); } // And again! mod = await import("foo2.js"); if (mod.b() !== 'b') { throw Error("bad2"); } })(); "#, )); assert_eq!(count.load(Ordering::Relaxed), 1); assert_eq!(Ready(()), isolate.poll().unwrap()); assert_eq!(count.load(Ordering::Relaxed), 2); assert_eq!(Ready(()), isolate.poll().unwrap()); assert_eq!(count.load(Ordering::Relaxed), 2); }) } #[test] fn terminate_execution() { let (tx, rx) = std::sync::mpsc::channel::(); let tx_clone = tx.clone(); let (mut isolate, _dispatch_count) = setup(Mode::AsyncImmediate); let shared = isolate.shared_isolate_handle(); let t1 = std::thread::spawn(move || { // allow deno to boot and run std::thread::sleep(std::time::Duration::from_millis(100)); // terminate execution shared.terminate_execution(); // allow shutdown std::thread::sleep(std::time::Duration::from_millis(100)); // unless reported otherwise the test should fail after this point tx_clone.send(false).ok(); }); let t2 = std::thread::spawn(move || { // run an infinite loop let res = isolate.execute( "infinite_loop.js", r#" let i = 0; while (true) { i++; } "#, ); // execute() terminated, which means terminate_execution() was successful. tx.send(true).ok(); if let Err(e) = res { assert_eq!(e.to_string(), "Uncaught Error: execution terminated"); } else { panic!("should return an error"); } // make sure the isolate is still unusable let res = isolate.execute("simple.js", "1+1;"); if let Err(e) = res { assert_eq!(e.to_string(), "Uncaught Error: execution terminated"); } else { panic!("should return an error"); } }); if !rx.recv().unwrap() { panic!("should have terminated") } t1.join().unwrap(); t2.join().unwrap(); } #[test] fn dangling_shared_isolate() { let shared = { // isolate is dropped at the end of this block let (mut isolate, _dispatch_count) = setup(Mode::AsyncImmediate); isolate.shared_isolate_handle() }; // this should not SEGFAULT shared.terminate_execution(); } #[test] fn overflow_req_sync() { let (mut isolate, dispatch_count) = setup(Mode::OverflowReqSync); js_check(isolate.execute( "overflow_req_sync.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler((opId, buf) => { asyncRecv++ }); // Large message that will overflow the shared space. let control = new Uint8Array(100 * 1024 * 1024); let response = Deno.core.dispatch(99, control); assert(response instanceof Uint8Array); assert(response.length == 4); assert(response[0] == 43); assert(asyncRecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn overflow_res_sync() { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. let (mut isolate, dispatch_count) = setup(Mode::OverflowResSync); js_check(isolate.execute( "overflow_res_sync.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler((opId, buf) => { asyncRecv++ }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = Deno.core.dispatch(99, control); assert(response instanceof Uint8Array); assert(response.length == 100 * 1024 * 1024); assert(response[0] == 99); assert(asyncRecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn overflow_req_async() { run_in_task(|| { let (mut isolate, dispatch_count) = setup(Mode::OverflowReqAsync); js_check(isolate.execute( "overflow_req_async.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler((opId, buf) => { assert(opId == 99); assert(buf.byteLength === 4); assert(buf[0] === 43); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array(100 * 1024 * 1024); let response = Deno.core.dispatch(99, control); // Async messages always have null response. assert(response == null); assert(asyncRecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); assert_eq!(Async::Ready(()), js_check(isolate.poll())); js_check(isolate.execute("check.js", "assert(asyncRecv == 1);")); }); } #[test] fn overflow_res_async() { run_in_task(|| { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. let (mut isolate, dispatch_count) = setup(Mode::OverflowResAsync); js_check(isolate.execute( "overflow_res_async.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler((opId, buf) => { assert(opId == 99); assert(buf.byteLength === 100 * 1024 * 1024); assert(buf[0] === 4); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = Deno.core.dispatch(99, control); assert(response == null); assert(asyncRecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); poll_until_ready(&mut isolate, 3).unwrap(); js_check(isolate.execute("check.js", "assert(asyncRecv == 1);")); }); } #[test] fn overflow_res_multiple_dispatch_async() { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. run_in_task(|| { let (mut isolate, dispatch_count) = setup(Mode::OverflowResAsync); js_check(isolate.execute( "overflow_res_multiple_dispatch_async.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler((opId, buf) => { assert(opId === 99); assert(buf.byteLength === 100 * 1024 * 1024); assert(buf[0] === 4); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = Deno.core.dispatch(99, control); assert(response == null); assert(asyncRecv == 0); // Dispatch another message to verify that pending ops // are done even if shared space overflows Deno.core.dispatch(99, control); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); poll_until_ready(&mut isolate, 3).unwrap(); js_check(isolate.execute("check.js", "assert(asyncRecv == 2);")); }); } #[test] fn test_js() { run_in_task(|| { let (mut isolate, _dispatch_count) = setup(Mode::AsyncImmediate); js_check( isolate.execute( "shared_queue_test.js", include_str!("shared_queue_test.js"), ), ); assert_eq!(Async::Ready(()), isolate.poll().unwrap()); }); } #[test] fn will_snapshot() { let snapshot = { let mut isolate = Isolate::new(StartupData::None, true); js_check(isolate.execute("a.js", "a = 1 + 2")); let s = isolate.snapshot().unwrap(); drop(isolate); s }; let startup_data = StartupData::LibdenoSnapshot(snapshot); let mut isolate2 = Isolate::new(startup_data, false); js_check(isolate2.execute("check.js", "if (a != 3) throw Error('x')")); } }