// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license. use deno_core::error::generic_error; use deno_core::error::type_error; use deno_core::error::AnyError; use deno_core::op; use deno_core::serde_v8; use deno_core::task::spawn_blocking; use deno_core::JsBuffer; use deno_core::OpState; use deno_core::ResourceId; use deno_core::StringOrBuffer; use deno_core::ToJsBuffer; use hkdf::Hkdf; use num_bigint::BigInt; use num_bigint_dig::BigUint; use num_traits::FromPrimitive; use rand::distributions::Distribution; use rand::distributions::Uniform; use rand::thread_rng; use rand::Rng; use std::future::Future; use std::rc::Rc; use p224::NistP224; use p256::NistP256; use p384::NistP384; use rsa::padding::PaddingScheme; use rsa::pkcs8::DecodePrivateKey; use rsa::pkcs8::DecodePublicKey; use rsa::PublicKey; use rsa::RsaPrivateKey; use rsa::RsaPublicKey; use secp256k1::ecdh::SharedSecret; use secp256k1::Secp256k1; use secp256k1::SecretKey; mod cipher; mod dh; mod digest; mod primes; pub mod x509; #[op] pub fn op_node_check_prime(num: serde_v8::BigInt, checks: usize) -> bool { primes::is_probably_prime(&num, checks) } #[op] pub fn op_node_check_prime_bytes( bytes: &[u8], checks: usize, ) -> Result { let candidate = BigInt::from_bytes_be(num_bigint::Sign::Plus, bytes); Ok(primes::is_probably_prime(&candidate, checks)) } #[op] pub async fn op_node_check_prime_async( num: serde_v8::BigInt, checks: usize, ) -> Result { // TODO(@littledivy): use rayon for CPU-bound tasks Ok(spawn_blocking(move || primes::is_probably_prime(&num, checks)).await?) } #[op] pub fn op_node_check_prime_bytes_async( bytes: &[u8], checks: usize, ) -> Result> + 'static, AnyError> { let candidate = BigInt::from_bytes_be(num_bigint::Sign::Plus, bytes); // TODO(@littledivy): use rayon for CPU-bound tasks Ok(async move { Ok( spawn_blocking(move || primes::is_probably_prime(&candidate, checks)) .await?, ) }) } #[op(fast)] pub fn op_node_create_hash(state: &mut OpState, algorithm: &str) -> u32 { state .resource_table .add(match digest::Context::new(algorithm) { Ok(context) => context, Err(_) => return 0, }) } #[op(fast)] pub fn op_node_get_hashes() -> Vec<&'static str> { digest::Hash::get_hashes() } #[op(fast)] pub fn op_node_hash_update(state: &mut OpState, rid: u32, data: &[u8]) -> bool { let context = match state.resource_table.get::(rid) { Ok(context) => context, _ => return false, }; context.update(data); true } #[op(fast)] pub fn op_node_hash_update_str( state: &mut OpState, rid: u32, data: &str, ) -> bool { let context = match state.resource_table.get::(rid) { Ok(context) => context, _ => return false, }; context.update(data.as_bytes()); true } #[op] pub fn op_node_hash_digest( state: &mut OpState, rid: ResourceId, ) -> Result { let context = state.resource_table.take::(rid)?; let context = Rc::try_unwrap(context) .map_err(|_| type_error("Hash context is already in use"))?; Ok(context.digest()?.into()) } #[op] pub fn op_node_hash_digest_hex( state: &mut OpState, rid: ResourceId, ) -> Result { let context = state.resource_table.take::(rid)?; let context = Rc::try_unwrap(context) .map_err(|_| type_error("Hash context is already in use"))?; let digest = context.digest()?; Ok(hex::encode(digest)) } #[op] pub fn op_node_hash_clone( state: &mut OpState, rid: ResourceId, ) -> Result { let context = state.resource_table.get::(rid)?; Ok(state.resource_table.add(context.as_ref().clone())) } #[op] pub fn op_node_private_encrypt( key: StringOrBuffer, msg: StringOrBuffer, padding: u32, ) -> Result { let key = RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)?; let mut rng = rand::thread_rng(); match padding { 1 => Ok( key .encrypt(&mut rng, PaddingScheme::new_pkcs1v15_encrypt(), &msg)? .into(), ), 4 => Ok( key .encrypt(&mut rng, PaddingScheme::new_oaep::(), &msg)? .into(), ), _ => Err(type_error("Unknown padding")), } } #[op] pub fn op_node_private_decrypt( key: StringOrBuffer, msg: StringOrBuffer, padding: u32, ) -> Result { let key = RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)?; match padding { 1 => Ok( key .decrypt(PaddingScheme::new_pkcs1v15_encrypt(), &msg)? .into(), ), 4 => Ok( key .decrypt(PaddingScheme::new_oaep::(), &msg)? .into(), ), _ => Err(type_error("Unknown padding")), } } #[op] pub fn op_node_public_encrypt( key: StringOrBuffer, msg: StringOrBuffer, padding: u32, ) -> Result { let key = RsaPublicKey::from_public_key_pem((&key).try_into()?)?; let mut rng = rand::thread_rng(); match padding { 1 => Ok( key .encrypt(&mut rng, PaddingScheme::new_pkcs1v15_encrypt(), &msg)? .into(), ), 4 => Ok( key .encrypt(&mut rng, PaddingScheme::new_oaep::(), &msg)? .into(), ), _ => Err(type_error("Unknown padding")), } } #[op(fast)] pub fn op_node_create_cipheriv( state: &mut OpState, algorithm: &str, key: &[u8], iv: &[u8], ) -> u32 { state.resource_table.add( match cipher::CipherContext::new(algorithm, key, iv) { Ok(context) => context, Err(_) => return 0, }, ) } #[op(fast)] pub fn op_node_cipheriv_encrypt( state: &mut OpState, rid: u32, input: &[u8], output: &mut [u8], ) -> bool { let context = match state.resource_table.get::(rid) { Ok(context) => context, Err(_) => return false, }; context.encrypt(input, output); true } #[op] pub fn op_node_cipheriv_final( state: &mut OpState, rid: u32, input: &[u8], output: &mut [u8], ) -> Result<(), AnyError> { let context = state.resource_table.take::(rid)?; let context = Rc::try_unwrap(context) .map_err(|_| type_error("Cipher context is already in use"))?; context.r#final(input, output) } #[op(fast)] pub fn op_node_create_decipheriv( state: &mut OpState, algorithm: &str, key: &[u8], iv: &[u8], ) -> u32 { state.resource_table.add( match cipher::DecipherContext::new(algorithm, key, iv) { Ok(context) => context, Err(_) => return 0, }, ) } #[op(fast)] pub fn op_node_decipheriv_decrypt( state: &mut OpState, rid: u32, input: &[u8], output: &mut [u8], ) -> bool { let context = match state.resource_table.get::(rid) { Ok(context) => context, Err(_) => return false, }; context.decrypt(input, output); true } #[op] pub fn op_node_decipheriv_final( state: &mut OpState, rid: u32, input: &[u8], output: &mut [u8], ) -> Result<(), AnyError> { let context = state.resource_table.take::(rid)?; let context = Rc::try_unwrap(context) .map_err(|_| type_error("Cipher context is already in use"))?; context.r#final(input, output) } #[op] pub fn op_node_sign( digest: &[u8], digest_type: &str, key: StringOrBuffer, key_type: &str, key_format: &str, ) -> Result { match key_type { "rsa" => { use rsa::pkcs1v15::SigningKey; use signature::hazmat::PrehashSigner; let key = match key_format { "pem" => RsaPrivateKey::from_pkcs8_pem((&key).try_into()?) .map_err(|_| type_error("Invalid RSA private key"))?, // TODO(kt3k): Support der and jwk formats _ => { return Err(type_error(format!( "Unsupported key format: {}", key_format ))) } }; Ok( match digest_type { "sha224" => { let signing_key = SigningKey::::new_with_prefix(key); signing_key.sign_prehash(digest)?.to_vec() } "sha256" => { let signing_key = SigningKey::::new_with_prefix(key); signing_key.sign_prehash(digest)?.to_vec() } "sha384" => { let signing_key = SigningKey::::new_with_prefix(key); signing_key.sign_prehash(digest)?.to_vec() } "sha512" => { let signing_key = SigningKey::::new_with_prefix(key); signing_key.sign_prehash(digest)?.to_vec() } _ => { return Err(type_error(format!( "Unknown digest algorithm: {}", digest_type ))) } } .into(), ) } _ => Err(type_error(format!( "Signing with {} keys is not supported yet", key_type ))), } } #[op] fn op_node_verify( digest: &[u8], digest_type: &str, key: StringOrBuffer, key_type: &str, key_format: &str, signature: &[u8], ) -> Result { match key_type { "rsa" => { use rsa::pkcs1v15::VerifyingKey; use signature::hazmat::PrehashVerifier; let key = match key_format { "pem" => RsaPublicKey::from_public_key_pem((&key).try_into()?) .map_err(|_| type_error("Invalid RSA public key"))?, // TODO(kt3k): Support der and jwk formats _ => { return Err(type_error(format!( "Unsupported key format: {}", key_format ))) } }; Ok(match digest_type { "sha224" => VerifyingKey::::new_with_prefix(key) .verify_prehash(digest, &signature.to_vec().try_into()?) .is_ok(), "sha256" => VerifyingKey::::new_with_prefix(key) .verify_prehash(digest, &signature.to_vec().try_into()?) .is_ok(), "sha384" => VerifyingKey::::new_with_prefix(key) .verify_prehash(digest, &signature.to_vec().try_into()?) .is_ok(), "sha512" => VerifyingKey::::new_with_prefix(key) .verify_prehash(digest, &signature.to_vec().try_into()?) .is_ok(), _ => { return Err(type_error(format!( "Unknown digest algorithm: {}", digest_type ))) } }) } _ => Err(type_error(format!( "Verifying with {} keys is not supported yet", key_type ))), } } fn pbkdf2_sync( password: &[u8], salt: &[u8], iterations: u32, digest: &str, derived_key: &mut [u8], ) -> Result<(), AnyError> { macro_rules! pbkdf2_hmac { ($digest:ty) => {{ pbkdf2::pbkdf2_hmac::<$digest>(password, salt, iterations, derived_key) }}; } match digest { "md4" => pbkdf2_hmac!(md4::Md4), "md5" => pbkdf2_hmac!(md5::Md5), "ripemd160" => pbkdf2_hmac!(ripemd::Ripemd160), "sha1" => pbkdf2_hmac!(sha1::Sha1), "sha224" => pbkdf2_hmac!(sha2::Sha224), "sha256" => pbkdf2_hmac!(sha2::Sha256), "sha384" => pbkdf2_hmac!(sha2::Sha384), "sha512" => pbkdf2_hmac!(sha2::Sha512), _ => return Err(type_error("Unknown digest")), } Ok(()) } #[op] pub fn op_node_pbkdf2( password: StringOrBuffer, salt: StringOrBuffer, iterations: u32, digest: &str, derived_key: &mut [u8], ) -> bool { pbkdf2_sync(&password, &salt, iterations, digest, derived_key).is_ok() } #[op] pub async fn op_node_pbkdf2_async( password: StringOrBuffer, salt: StringOrBuffer, iterations: u32, digest: String, keylen: usize, ) -> Result { spawn_blocking(move || { let mut derived_key = vec![0; keylen]; pbkdf2_sync(&password, &salt, iterations, &digest, &mut derived_key) .map(|_| derived_key.into()) }) .await? } #[op] pub fn op_node_generate_secret(buf: &mut [u8]) { rand::thread_rng().fill(buf); } #[op] pub async fn op_node_generate_secret_async(len: i32) -> ToJsBuffer { spawn_blocking(move || { let mut buf = vec![0u8; len as usize]; rand::thread_rng().fill(&mut buf[..]); buf.into() }) .await .unwrap() } fn hkdf_sync( hash: &str, ikm: &[u8], salt: &[u8], info: &[u8], okm: &mut [u8], ) -> Result<(), AnyError> { macro_rules! hkdf { ($hash:ty) => {{ let hk = Hkdf::<$hash>::new(Some(salt), ikm); hk.expand(info, okm) .map_err(|_| type_error("HKDF-Expand failed"))?; }}; } match hash { "md4" => hkdf!(md4::Md4), "md5" => hkdf!(md5::Md5), "ripemd160" => hkdf!(ripemd::Ripemd160), "sha1" => hkdf!(sha1::Sha1), "sha224" => hkdf!(sha2::Sha224), "sha256" => hkdf!(sha2::Sha256), "sha384" => hkdf!(sha2::Sha384), "sha512" => hkdf!(sha2::Sha512), _ => return Err(type_error("Unknown digest")), } Ok(()) } #[op] pub fn op_node_hkdf( hash: &str, ikm: &[u8], salt: &[u8], info: &[u8], okm: &mut [u8], ) -> Result<(), AnyError> { hkdf_sync(hash, ikm, salt, info, okm) } #[op] pub async fn op_node_hkdf_async( hash: String, ikm: JsBuffer, salt: JsBuffer, info: JsBuffer, okm_len: usize, ) -> Result { spawn_blocking(move || { let mut okm = vec![0u8; okm_len]; hkdf_sync(&hash, &ikm, &salt, &info, &mut okm)?; Ok(okm.into()) }) .await? } use rsa::pkcs1::EncodeRsaPrivateKey; use rsa::pkcs1::EncodeRsaPublicKey; use self::primes::Prime; fn generate_rsa( modulus_length: usize, public_exponent: usize, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { let mut rng = rand::thread_rng(); let private_key = RsaPrivateKey::new_with_exp( &mut rng, modulus_length, &rsa::BigUint::from_usize(public_exponent).unwrap(), )?; let public_key = private_key.to_public_key(); let private_key_der = private_key.to_pkcs1_der()?.as_bytes().to_vec(); let public_key_der = public_key.to_pkcs1_der()?.to_vec(); Ok((private_key_der.into(), public_key_der.into())) } #[op] pub fn op_node_generate_rsa( modulus_length: usize, public_exponent: usize, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { generate_rsa(modulus_length, public_exponent) } #[op] pub async fn op_node_generate_rsa_async( modulus_length: usize, public_exponent: usize, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { spawn_blocking(move || generate_rsa(modulus_length, public_exponent)).await? } fn dsa_generate( modulus_length: usize, divisor_length: usize, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { let mut rng = rand::thread_rng(); use dsa::pkcs8::EncodePrivateKey; use dsa::pkcs8::EncodePublicKey; use dsa::Components; use dsa::KeySize; use dsa::SigningKey; let key_size = match (modulus_length, divisor_length) { #[allow(deprecated)] (1024, 160) => KeySize::DSA_1024_160, (2048, 224) => KeySize::DSA_2048_224, (2048, 256) => KeySize::DSA_2048_256, (3072, 256) => KeySize::DSA_3072_256, _ => return Err(type_error("Invalid modulus_length or divisor_length")), }; let components = Components::generate(&mut rng, key_size); let signing_key = SigningKey::generate(&mut rng, components); let verifying_key = signing_key.verifying_key(); Ok(( signing_key .to_pkcs8_der() .map_err(|_| type_error("Not valid pkcs8"))? .as_bytes() .to_vec() .into(), verifying_key .to_public_key_der() .map_err(|_| type_error("Not valid spki"))? .to_vec() .into(), )) } #[op] pub fn op_node_dsa_generate( modulus_length: usize, divisor_length: usize, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { dsa_generate(modulus_length, divisor_length) } #[op] pub async fn op_node_dsa_generate_async( modulus_length: usize, divisor_length: usize, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { spawn_blocking(move || dsa_generate(modulus_length, divisor_length)).await? } fn ec_generate( named_curve: &str, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { use ring::signature::EcdsaKeyPair; use ring::signature::KeyPair; let curve = match named_curve { "P-256" => &ring::signature::ECDSA_P256_SHA256_FIXED_SIGNING, "P-384" => &ring::signature::ECDSA_P384_SHA384_FIXED_SIGNING, _ => return Err(type_error("Unsupported named curve")), }; let rng = ring::rand::SystemRandom::new(); let pkcs8 = EcdsaKeyPair::generate_pkcs8(curve, &rng) .map_err(|_| type_error("Failed to generate EC key"))?; let public_key = EcdsaKeyPair::from_pkcs8(curve, pkcs8.as_ref()) .map_err(|_| type_error("Failed to generate EC key"))? .public_key() .as_ref() .to_vec(); Ok((pkcs8.as_ref().to_vec().into(), public_key.into())) } #[op] pub fn op_node_ec_generate( named_curve: &str, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { ec_generate(named_curve) } #[op] pub async fn op_node_ec_generate_async( named_curve: String, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { spawn_blocking(move || ec_generate(&named_curve)).await? } fn ed25519_generate() -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { use ring::signature::Ed25519KeyPair; use ring::signature::KeyPair; let mut rng = thread_rng(); let mut seed = vec![0u8; 32]; rng.fill(seed.as_mut_slice()); let pair = Ed25519KeyPair::from_seed_unchecked(&seed) .map_err(|_| type_error("Failed to generate Ed25519 key"))?; let public_key = pair.public_key().as_ref().to_vec(); Ok((seed.into(), public_key.into())) } #[op] pub fn op_node_ed25519_generate() -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { ed25519_generate() } #[op] pub async fn op_node_ed25519_generate_async( ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { spawn_blocking(ed25519_generate).await? } fn x25519_generate() -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { // u-coordinate of the base point. const X25519_BASEPOINT_BYTES: [u8; 32] = [ 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ]; let mut pkey = [0; 32]; let mut rng = thread_rng(); rng.fill(pkey.as_mut_slice()); let pkey_copy = pkey.to_vec(); // https://www.rfc-editor.org/rfc/rfc7748#section-6.1 // pubkey = x25519(a, 9) which is constant-time Montgomery ladder. // https://eprint.iacr.org/2014/140.pdf page 4 // https://eprint.iacr.org/2017/212.pdf algorithm 8 // pubkey is in LE order. let pubkey = x25519_dalek::x25519(pkey, X25519_BASEPOINT_BYTES); Ok((pkey_copy.into(), pubkey.to_vec().into())) } #[op] pub fn op_node_x25519_generate() -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { x25519_generate() } #[op] pub async fn op_node_x25519_generate_async( ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { spawn_blocking(x25519_generate).await? } fn dh_generate_group( group_name: &str, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { let dh = match group_name { "modp5" => dh::DiffieHellman::group::(), "modp14" => dh::DiffieHellman::group::(), "modp15" => dh::DiffieHellman::group::(), "modp16" => dh::DiffieHellman::group::(), "modp17" => dh::DiffieHellman::group::(), "modp18" => dh::DiffieHellman::group::(), _ => return Err(type_error("Unsupported group name")), }; Ok(( dh.private_key.into_vec().into(), dh.public_key.into_vec().into(), )) } #[op] pub fn op_node_dh_generate_group( group_name: &str, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { dh_generate_group(group_name) } #[op] pub async fn op_node_dh_generate_group_async( group_name: String, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { spawn_blocking(move || dh_generate_group(&group_name)).await? } fn dh_generate( prime: Option<&[u8]>, prime_len: usize, generator: usize, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { let prime = prime .map(|p| p.into()) .unwrap_or_else(|| Prime::generate(prime_len)); let dh = dh::DiffieHellman::new(prime, generator); Ok(( dh.private_key.into_vec().into(), dh.public_key.into_vec().into(), )) } #[op] pub fn op_node_dh_generate( prime: Option<&[u8]>, prime_len: usize, generator: usize, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { dh_generate(prime, prime_len, generator) } // TODO(lev): This duplication should be avoided. #[op] pub fn op_node_dh_generate2( prime: JsBuffer, prime_len: usize, generator: usize, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { dh_generate(Some(prime).as_deref(), prime_len, generator) } #[op] pub fn op_node_dh_compute_secret( prime: JsBuffer, private_key: JsBuffer, their_public_key: JsBuffer, ) -> Result { let pubkey: BigUint = BigUint::from_bytes_be(their_public_key.as_ref()); let privkey: BigUint = BigUint::from_bytes_be(private_key.as_ref()); let primei: BigUint = BigUint::from_bytes_be(prime.as_ref()); let shared_secret: BigUint = pubkey.modpow(&privkey, &primei); Ok(shared_secret.to_bytes_be().into()) } #[op] pub async fn op_node_dh_generate_async( prime: Option, prime_len: usize, generator: usize, ) -> Result<(ToJsBuffer, ToJsBuffer), AnyError> { spawn_blocking(move || dh_generate(prime.as_deref(), prime_len, generator)) .await? } #[op] pub fn op_node_random_int(min: i32, max: i32) -> Result { let mut rng = rand::thread_rng(); // Uniform distribution is required to avoid Modulo Bias // https://en.wikipedia.org/wiki/Fisher–Yates_shuffle#Modulo_bias let dist = Uniform::from(min..max); Ok(dist.sample(&mut rng)) } #[allow(clippy::too_many_arguments)] fn scrypt( password: StringOrBuffer, salt: StringOrBuffer, keylen: u32, cost: u32, block_size: u32, parallelization: u32, _maxmem: u32, output_buffer: &mut [u8], ) -> Result<(), AnyError> { // Construct Params let params = scrypt::Params::new( cost as u8, block_size, parallelization, keylen as usize, ) .unwrap(); // Call into scrypt let res = scrypt::scrypt(&password, &salt, ¶ms, output_buffer); if res.is_ok() { Ok(()) } else { // TODO(lev): key derivation failed, so what? Err(generic_error("scrypt key derivation failed")) } } #[op] pub fn op_node_scrypt_sync( password: StringOrBuffer, salt: StringOrBuffer, keylen: u32, cost: u32, block_size: u32, parallelization: u32, maxmem: u32, output_buffer: &mut [u8], ) -> Result<(), AnyError> { scrypt( password, salt, keylen, cost, block_size, parallelization, maxmem, output_buffer, ) } #[op] pub async fn op_node_scrypt_async( password: StringOrBuffer, salt: StringOrBuffer, keylen: u32, cost: u32, block_size: u32, parallelization: u32, maxmem: u32, ) -> Result { spawn_blocking(move || { let mut output_buffer = vec![0u8; keylen as usize]; let res = scrypt( password, salt, keylen, cost, block_size, parallelization, maxmem, &mut output_buffer, ); if res.is_ok() { Ok(output_buffer.into()) } else { // TODO(lev): rethrow the error? Err(generic_error("scrypt failure")) } }) .await? } #[op] pub fn op_node_ecdh_generate_keys( curve: &str, pubbuf: &mut [u8], privbuf: &mut [u8], ) -> Result { let mut rng = rand::thread_rng(); match curve { "secp256k1" => { let secp = Secp256k1::new(); let (privkey, pubkey) = secp.generate_keypair(&mut rng); pubbuf.copy_from_slice(&pubkey.serialize_uncompressed()); privbuf.copy_from_slice(&privkey.secret_bytes()); Ok(0) } "prime256v1" | "secp256r1" => { let privkey = elliptic_curve::SecretKey::::random(&mut rng); let pubkey = privkey.public_key(); pubbuf.copy_from_slice(pubkey.to_sec1_bytes().as_ref()); privbuf.copy_from_slice(privkey.to_nonzero_scalar().to_bytes().as_ref()); Ok(0) } "secp384r1" => { let privkey = elliptic_curve::SecretKey::::random(&mut rng); let pubkey = privkey.public_key(); pubbuf.copy_from_slice(pubkey.to_sec1_bytes().as_ref()); privbuf.copy_from_slice(privkey.to_nonzero_scalar().to_bytes().as_ref()); Ok(0) } "secp224r1" => { let privkey = elliptic_curve::SecretKey::::random(&mut rng); let pubkey = privkey.public_key(); pubbuf.copy_from_slice(pubkey.to_sec1_bytes().as_ref()); privbuf.copy_from_slice(privkey.to_nonzero_scalar().to_bytes().as_ref()); Ok(0) } &_ => todo!(), } } #[op] pub fn op_node_ecdh_compute_secret( curve: &str, this_priv: Option, their_pub: &mut [u8], secret: &mut [u8], ) -> Result<(), AnyError> { match curve { "secp256k1" => { let this_secret_key = SecretKey::from_slice( this_priv.expect("no private key provided?").as_ref(), ) .unwrap(); let their_public_key = secp256k1::PublicKey::from_slice(their_pub).unwrap(); let shared_secret = SharedSecret::new(&their_public_key, &this_secret_key); secret.copy_from_slice(&shared_secret.secret_bytes()); Ok(()) } "prime256v1" | "secp256r1" => { let their_public_key = elliptic_curve::PublicKey::::from_sec1_bytes(their_pub) .expect("bad public key"); let this_private_key = elliptic_curve::SecretKey::::from_slice( &this_priv.expect("must supply private key"), ) .expect("bad private key"); let shared_secret = elliptic_curve::ecdh::diffie_hellman( this_private_key.to_nonzero_scalar(), their_public_key.as_affine(), ); secret.copy_from_slice(shared_secret.raw_secret_bytes()); Ok(()) } "secp384r1" => { let their_public_key = elliptic_curve::PublicKey::::from_sec1_bytes(their_pub) .expect("bad public key"); let this_private_key = elliptic_curve::SecretKey::::from_slice( &this_priv.expect("must supply private key"), ) .expect("bad private key"); let shared_secret = elliptic_curve::ecdh::diffie_hellman( this_private_key.to_nonzero_scalar(), their_public_key.as_affine(), ); secret.copy_from_slice(shared_secret.raw_secret_bytes()); Ok(()) } "secp224r1" => { let their_public_key = elliptic_curve::PublicKey::::from_sec1_bytes(their_pub) .expect("bad public key"); let this_private_key = elliptic_curve::SecretKey::::from_slice( &this_priv.expect("must supply private key"), ) .expect("bad private key"); let shared_secret = elliptic_curve::ecdh::diffie_hellman( this_private_key.to_nonzero_scalar(), their_public_key.as_affine(), ); secret.copy_from_slice(shared_secret.raw_secret_bytes()); Ok(()) } &_ => todo!(), } } #[op] pub fn op_node_ecdh_compute_public_key( curve: &str, privkey: &[u8], pubkey: &mut [u8], ) -> Result<(), AnyError> { match curve { "secp256k1" => { let secp = Secp256k1::new(); let secret_key = SecretKey::from_slice(privkey).unwrap(); let public_key = secp256k1::PublicKey::from_secret_key(&secp, &secret_key); pubkey.copy_from_slice(&public_key.serialize_uncompressed()); Ok(()) } "prime256v1" | "secp256r1" => { let this_private_key = elliptic_curve::SecretKey::::from_slice(privkey) .expect("bad private key"); let public_key = this_private_key.public_key(); pubkey.copy_from_slice(public_key.to_sec1_bytes().as_ref()); Ok(()) } "secp384r1" => { let this_private_key = elliptic_curve::SecretKey::::from_slice(privkey) .expect("bad private key"); let public_key = this_private_key.public_key(); pubkey.copy_from_slice(public_key.to_sec1_bytes().as_ref()); Ok(()) } "secp224r1" => { let this_private_key = elliptic_curve::SecretKey::::from_slice(privkey) .expect("bad private key"); let public_key = this_private_key.public_key(); pubkey.copy_from_slice(public_key.to_sec1_bytes().as_ref()); Ok(()) } &_ => todo!(), } } #[inline] fn gen_prime(size: usize) -> ToJsBuffer { primes::Prime::generate(size).0.to_bytes_be().into() } #[op] pub fn op_node_gen_prime(size: usize) -> ToJsBuffer { gen_prime(size) } #[op] pub async fn op_node_gen_prime_async( size: usize, ) -> Result { Ok(spawn_blocking(move || gen_prime(size)).await?) }