// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license. use crate::compressible::is_content_compressible; use crate::extract_network_stream; use crate::hyper_util_tokioio::TokioIo; use crate::network_buffered_stream::NetworkStreamPrefixCheck; use crate::request_body::HttpRequestBody; use crate::request_properties::HttpConnectionProperties; use crate::request_properties::HttpListenProperties; use crate::request_properties::HttpPropertyExtractor; use crate::response_body::Compression; use crate::response_body::ResponseBytes; use crate::response_body::ResponseBytesInner; use crate::slab::http_trace; use crate::slab::slab_drop; use crate::slab::slab_get; use crate::slab::slab_init; use crate::slab::slab_insert; use crate::slab::HttpRequestBodyAutocloser; use crate::slab::RefCount; use crate::slab::SlabId; use crate::websocket_upgrade::WebSocketUpgrade; use crate::LocalExecutor; use cache_control::CacheControl; use deno_core::error::AnyError; use deno_core::futures::TryFutureExt; use deno_core::op; use deno_core::op2; use deno_core::serde_v8; use deno_core::serde_v8::from_v8; use deno_core::unsync::spawn; use deno_core::unsync::JoinHandle; use deno_core::v8; use deno_core::AsyncRefCell; use deno_core::AsyncResult; use deno_core::BufView; use deno_core::ByteString; use deno_core::CancelFuture; use deno_core::CancelHandle; use deno_core::CancelTryFuture; use deno_core::JsBuffer; use deno_core::OpState; use deno_core::RcRef; use deno_core::Resource; use deno_core::ResourceId; use deno_net::ops_tls::TlsStream; use deno_net::raw::NetworkStream; use deno_websocket::ws_create_server_stream; use fly_accept_encoding::Encoding; use http::header::ACCEPT_ENCODING; use http::header::CACHE_CONTROL; use http::header::CONTENT_ENCODING; use http::header::CONTENT_LENGTH; use http::header::CONTENT_RANGE; use http::header::CONTENT_TYPE; use http::HeaderMap; use hyper1::body::Incoming; use hyper1::header::COOKIE; use hyper1::http::HeaderName; use hyper1::http::HeaderValue; use hyper1::server::conn::http1; use hyper1::server::conn::http2; use hyper1::service::service_fn; use hyper1::service::HttpService; use hyper1::StatusCode; use once_cell::sync::Lazy; use pin_project::pin_project; use pin_project::pinned_drop; use smallvec::SmallVec; use std::borrow::Cow; use std::cell::RefCell; use std::future::Future; use std::io; use std::pin::Pin; use std::rc::Rc; use std::time::Duration; use tokio::io::AsyncReadExt; use tokio::io::AsyncWriteExt; type Request = hyper1::Request; type Response = hyper1::Response; static USE_WRITEV: Lazy = Lazy::new(|| { let enable = std::env::var("DENO_USE_WRITEV").ok(); if let Some(val) = enable { return !val.is_empty(); } false }); /// All HTTP/2 connections start with this byte string. /// /// In HTTP/2, each endpoint is required to send a connection preface as a final confirmation /// of the protocol in use and to establish the initial settings for the HTTP/2 connection. The /// client and server each send a different connection preface. /// /// The client connection preface starts with a sequence of 24 octets, which in hex notation is: /// /// 0x505249202a20485454502f322e300d0a0d0a534d0d0a0d0a /// /// That is, the connection preface starts with the string PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n). This sequence /// MUST be followed by a SETTINGS frame (Section 6.5), which MAY be empty. const HTTP2_PREFIX: &[u8] = b"PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"; /// ALPN negotiation for "h2" const TLS_ALPN_HTTP_2: &[u8] = b"h2"; /// ALPN negotiation for "http/1.1" const TLS_ALPN_HTTP_11: &[u8] = b"http/1.1"; /// Name a trait for streams we can serve HTTP over. trait HttpServeStream: tokio::io::AsyncRead + tokio::io::AsyncWrite + Unpin + Send + 'static { } impl< S: tokio::io::AsyncRead + tokio::io::AsyncWrite + Unpin + Send + 'static, > HttpServeStream for S { } #[op2(fast)] #[smi] pub fn op_http_upgrade_raw( state: &mut OpState, #[smi] slab_id: SlabId, ) -> Result { // Stage 1: extract the upgrade future let upgrade = slab_get(slab_id).upgrade()?; let (read, write) = tokio::io::duplex(1024); let (read_rx, write_tx) = tokio::io::split(read); let (mut write_rx, mut read_tx) = tokio::io::split(write); spawn(async move { let mut upgrade_stream = WebSocketUpgrade::::default(); // Stage 2: Extract the Upgraded connection let mut buf = [0; 1024]; let upgraded = loop { let read = Pin::new(&mut write_rx).read(&mut buf).await?; match upgrade_stream.write(&buf[..read]) { Ok(None) => continue, Ok(Some((response, bytes))) => { let mut http = slab_get(slab_id); *http.response() = response; http.complete(); let mut upgraded = TokioIo::new(upgrade.await?); upgraded.write_all(&bytes).await?; break upgraded; } Err(err) => return Err(err), } }; // Stage 3: Pump the data let (mut upgraded_rx, mut upgraded_tx) = tokio::io::split(upgraded); spawn(async move { let mut buf = [0; 1024]; loop { let read = upgraded_rx.read(&mut buf).await?; if read == 0 { break; } read_tx.write_all(&buf[..read]).await?; } Ok::<_, AnyError>(()) }); spawn(async move { let mut buf = [0; 1024]; loop { let read = write_rx.read(&mut buf).await?; if read == 0 { break; } upgraded_tx.write_all(&buf[..read]).await?; } Ok::<_, AnyError>(()) }); Ok(()) }); Ok( state .resource_table .add(UpgradeStream::new(read_rx, write_tx)), ) } #[op2(async)] #[smi] pub async fn op_http_upgrade_websocket_next( state: Rc>, #[smi] slab_id: SlabId, #[serde] headers: Vec<(ByteString, ByteString)>, ) -> Result { let mut http = slab_get(slab_id); // Stage 1: set the response to 101 Switching Protocols and send it let upgrade = http.upgrade()?; let response = http.response(); *response.status_mut() = StatusCode::SWITCHING_PROTOCOLS; for (name, value) in headers { response.headers_mut().append( HeaderName::from_bytes(&name).unwrap(), HeaderValue::from_bytes(&value).unwrap(), ); } http.complete(); // Stage 2: wait for the request to finish upgrading let upgraded = upgrade.await?; // Stage 3: take the extracted raw network stream and upgrade it to a websocket, then return it let (stream, bytes) = extract_network_stream(upgraded); ws_create_server_stream(&mut state.borrow_mut(), stream, bytes) } #[op2(fast)] pub fn op_http_set_promise_complete(#[smi] slab_id: SlabId, status: u16) { let mut http = slab_get(slab_id); // The Javascript code should never provide a status that is invalid here (see 23_response.js), so we // will quitely ignore invalid values. if let Ok(code) = StatusCode::from_u16(status) { *http.response().status_mut() = code; } http.complete(); } #[op(v8)] pub fn op_http_get_request_method_and_url<'scope, HTTP>( scope: &mut v8::HandleScope<'scope>, slab_id: SlabId, ) -> serde_v8::Value<'scope> where HTTP: HttpPropertyExtractor, { let http = slab_get(slab_id); let request_info = http.request_info(); let request_parts = http.request_parts(); let request_properties = HTTP::request_properties( request_info, &request_parts.uri, &request_parts.headers, ); let method: v8::Local = v8::String::new_from_utf8( scope, request_parts.method.as_str().as_bytes(), v8::NewStringType::Normal, ) .unwrap() .into(); let authority: v8::Local = match request_properties.authority { Some(authority) => v8::String::new_from_utf8( scope, authority.as_ref(), v8::NewStringType::Normal, ) .unwrap() .into(), None => v8::undefined(scope).into(), }; // Only extract the path part - we handle authority elsewhere let path = match &request_parts.uri.path_and_query() { Some(path_and_query) => path_and_query.to_string(), None => "".to_owned(), }; let path: v8::Local = v8::String::new_from_utf8(scope, path.as_ref(), v8::NewStringType::Normal) .unwrap() .into(); let peer_address: v8::Local = v8::String::new_from_utf8( scope, request_info.peer_address.as_bytes(), v8::NewStringType::Normal, ) .unwrap() .into(); let port: v8::Local = match request_info.peer_port { Some(port) => v8::Integer::new(scope, port.into()).into(), None => v8::undefined(scope).into(), }; let vec = [method, authority, path, peer_address, port]; let array = v8::Array::new_with_elements(scope, vec.as_slice()); let array_value: v8::Local = array.into(); array_value.into() } #[op2] #[serde] pub fn op_http_get_request_header( #[smi] slab_id: SlabId, #[string] name: String, ) -> Option { let http = slab_get(slab_id); let value = http.request_parts().headers.get(name); value.map(|value| value.as_bytes().into()) } #[op(v8)] pub fn op_http_get_request_headers<'scope>( scope: &mut v8::HandleScope<'scope>, slab_id: SlabId, ) -> serde_v8::Value<'scope> { let http = slab_get(slab_id); let headers = &http.request_parts().headers; // Two slots for each header key/value pair let mut vec: SmallVec<[v8::Local; 32]> = SmallVec::with_capacity(headers.len() * 2); let mut cookies: Option> = None; for (name, value) in headers { if name == COOKIE { if let Some(ref mut cookies) = cookies { cookies.push(value.as_bytes()); } else { cookies = Some(vec![value.as_bytes()]); } } else { vec.push( v8::String::new_from_one_byte( scope, name.as_ref(), v8::NewStringType::Normal, ) .unwrap() .into(), ); vec.push( v8::String::new_from_one_byte( scope, value.as_bytes(), v8::NewStringType::Normal, ) .unwrap() .into(), ); } } // We treat cookies specially, because we don't want them to get them // mangled by the `Headers` object in JS. What we do is take all cookie // headers and concat them into a single cookie header, separated by // semicolons. // TODO(mmastrac): This should probably happen on the JS side on-demand if let Some(cookies) = cookies { let cookie_sep = "; ".as_bytes(); vec.push( v8::String::new_external_onebyte_static(scope, COOKIE.as_ref()) .unwrap() .into(), ); vec.push( v8::String::new_from_one_byte( scope, cookies.join(cookie_sep).as_ref(), v8::NewStringType::Normal, ) .unwrap() .into(), ); } let array = v8::Array::new_with_elements(scope, vec.as_slice()); let array_value: v8::Local = array.into(); array_value.into() } #[op(fast)] pub fn op_http_read_request_body( state: Rc>, slab_id: SlabId, ) -> ResourceId { let mut http = slab_get(slab_id); let rid = if let Some(incoming) = http.take_body() { let body_resource = Rc::new(HttpRequestBody::new(incoming)); state.borrow_mut().resource_table.add_rc(body_resource) } else { // This should not be possible, but rather than panicking we'll return an invalid // resource value to JavaScript. ResourceId::MAX }; http.put_resource(HttpRequestBodyAutocloser::new(rid, state.clone())); rid } #[op2(fast)] pub fn op_http_set_response_header( #[smi] slab_id: SlabId, #[string(onebyte)] name: Cow<[u8]>, #[string(onebyte)] value: Cow<[u8]>, ) { let mut http = slab_get(slab_id); let resp_headers = http.response().headers_mut(); // These are valid latin-1 strings let name = HeaderName::from_bytes(&name).unwrap(); let value = match value { Cow::Borrowed(bytes) => HeaderValue::from_bytes(bytes).unwrap(), // SAFETY: These are valid latin-1 strings Cow::Owned(bytes_vec) => unsafe { HeaderValue::from_maybe_shared_unchecked(bytes::Bytes::from(bytes_vec)) }, }; resp_headers.append(name, value); } #[op2] pub fn op_http_set_response_headers( scope: &mut v8::HandleScope, #[smi] slab_id: SlabId, headers: v8::Local, ) { let mut http = slab_get(slab_id); // TODO(mmastrac): Invalid headers should be handled? let resp_headers = http.response().headers_mut(); let len = headers.length(); let header_len = len * 2; resp_headers.reserve(header_len.try_into().unwrap()); for i in 0..len { let item = headers.get_index(scope, i).unwrap(); let pair = v8::Local::::try_from(item).unwrap(); let name = pair.get_index(scope, 0).unwrap(); let value = pair.get_index(scope, 1).unwrap(); let v8_name: ByteString = from_v8(scope, name).unwrap(); let v8_value: ByteString = from_v8(scope, value).unwrap(); let header_name = HeaderName::from_bytes(&v8_name).unwrap(); let header_value = // SAFETY: These are valid latin-1 strings unsafe { HeaderValue::from_maybe_shared_unchecked(v8_value) }; resp_headers.append(header_name, header_value); } } #[op2] pub fn op_http_set_response_trailers( #[smi] slab_id: SlabId, #[serde] trailers: Vec<(ByteString, ByteString)>, ) { let mut http = slab_get(slab_id); let mut trailer_map: HeaderMap = HeaderMap::with_capacity(trailers.len()); for (name, value) in trailers { // These are valid latin-1 strings let name = HeaderName::from_bytes(&name).unwrap(); // SAFETY: These are valid latin-1 strings let value = unsafe { HeaderValue::from_maybe_shared_unchecked(value) }; trailer_map.append(name, value); } *http.trailers().borrow_mut() = Some(trailer_map); } fn is_request_compressible( length: Option, headers: &HeaderMap, ) -> Compression { if let Some(length) = length { // By the time we add compression headers and Accept-Encoding, it probably doesn't make sense // to compress stuff that's smaller than this. if length < 64 { return Compression::None; } } let Some(accept_encoding) = headers.get(ACCEPT_ENCODING) else { return Compression::None; }; match accept_encoding.to_str().unwrap() { // Firefox and Chrome send this -- no need to parse "gzip, deflate, br" => return Compression::Brotli, "gzip" => return Compression::GZip, "br" => return Compression::Brotli, _ => (), } // Fall back to the expensive parser let accepted = fly_accept_encoding::encodings_iter(headers).filter(|r| { matches!( r, Ok(( Some(Encoding::Identity | Encoding::Gzip | Encoding::Brotli), _ )) ) }); match fly_accept_encoding::preferred(accepted) { Ok(Some(fly_accept_encoding::Encoding::Gzip)) => Compression::GZip, Ok(Some(fly_accept_encoding::Encoding::Brotli)) => Compression::Brotli, _ => Compression::None, } } fn is_response_compressible(headers: &HeaderMap) -> bool { if let Some(content_type) = headers.get(CONTENT_TYPE) { if !is_content_compressible(content_type) { return false; } } else { return false; } if headers.contains_key(CONTENT_ENCODING) { return false; } if headers.contains_key(CONTENT_RANGE) { return false; } if let Some(cache_control) = headers.get(CACHE_CONTROL) { if let Ok(s) = std::str::from_utf8(cache_control.as_bytes()) { if let Some(cache_control) = CacheControl::from_value(s) { if cache_control.no_transform { return false; } } } } true } fn modify_compressibility_from_response( compression: Compression, headers: &mut HeaderMap, ) -> Compression { ensure_vary_accept_encoding(headers); if compression == Compression::None { return Compression::None; } if !is_response_compressible(headers) { return Compression::None; } let encoding = match compression { Compression::Brotli => "br", Compression::GZip => "gzip", _ => unreachable!(), }; weaken_etag(headers); headers.remove(CONTENT_LENGTH); headers.insert(CONTENT_ENCODING, HeaderValue::from_static(encoding)); compression } /// If the user provided a ETag header for uncompressed data, we need to ensure it is a /// weak Etag header ("W/"). fn weaken_etag(hmap: &mut HeaderMap) { if let Some(etag) = hmap.get_mut(hyper::header::ETAG) { if !etag.as_bytes().starts_with(b"W/") { let mut v = Vec::with_capacity(etag.as_bytes().len() + 2); v.extend(b"W/"); v.extend(etag.as_bytes()); *etag = v.try_into().unwrap(); } } } // Set Vary: Accept-Encoding header for direct body response. // Note: we set the header irrespective of whether or not we compress the data // to make sure cache services do not serve uncompressed data to clients that // support compression. fn ensure_vary_accept_encoding(hmap: &mut HeaderMap) { if let Some(v) = hmap.get_mut(hyper::header::VARY) { if let Ok(s) = v.to_str() { if !s.to_lowercase().contains("accept-encoding") { *v = format!("Accept-Encoding, {s}").try_into().unwrap() } return; } } hmap.insert( hyper::header::VARY, HeaderValue::from_static("Accept-Encoding"), ); } fn set_response( slab_id: SlabId, length: Option, status: u16, response_fn: impl FnOnce(Compression) -> ResponseBytesInner, ) { let mut http = slab_get(slab_id); // The request may have been cancelled by this point and if so, there's no need for us to // do all of this work to send the response. if !http.cancelled() { let resource = http.take_resource(); let compression = is_request_compressible(length, &http.request_parts().headers); let response = http.response(); let compression = modify_compressibility_from_response(compression, response.headers_mut()); response .body_mut() .initialize(response_fn(compression), resource); // The Javascript code should never provide a status that is invalid here (see 23_response.js), so we // will quitely ignore invalid values. if let Ok(code) = StatusCode::from_u16(status) { *response.status_mut() = code; } } http.complete(); } #[op2(fast)] pub fn op_http_set_response_body_resource( state: Rc>, #[smi] slab_id: SlabId, #[smi] stream_rid: ResourceId, auto_close: bool, status: u16, ) -> Result<(), AnyError> { // IMPORTANT: We might end up requiring the OpState lock in set_response if we need to drop the request // body resource so we _cannot_ hold the OpState lock longer than necessary. // If the stream is auto_close, we will hold the last ref to it until the response is complete. // TODO(mmastrac): We should be using the same auto-close functionality rather than removing autoclose resources. // It's possible things could fail elsewhere if code expects the rid to continue existing after the response has been // returned. let resource = { let mut state = state.borrow_mut(); if auto_close { state.resource_table.take_any(stream_rid)? } else { state.resource_table.get_any(stream_rid)? } }; set_response( slab_id, resource.size_hint().1.map(|s| s as usize), status, move |compression| { ResponseBytesInner::from_resource(compression, resource, auto_close) }, ); Ok(()) } #[op2(fast)] pub fn op_http_set_response_body_text( #[smi] slab_id: SlabId, #[string] text: String, status: u16, ) { if !text.is_empty() { set_response(slab_id, Some(text.len()), status, |compression| { ResponseBytesInner::from_vec(compression, text.into_bytes()) }); } else { op_http_set_promise_complete::call(slab_id, status); } } // Skipping `fast` because we prefer an owned buffer here. #[op2] pub fn op_http_set_response_body_bytes( #[smi] slab_id: SlabId, #[buffer] buffer: JsBuffer, status: u16, ) { if !buffer.is_empty() { set_response(slab_id, Some(buffer.len()), status, |compression| { ResponseBytesInner::from_bufview(compression, BufView::from(buffer)) }); } else { op_http_set_promise_complete::call(slab_id, status); } } #[op2(async)] pub async fn op_http_track( state: Rc>, #[smi] slab_id: SlabId, #[smi] server_rid: ResourceId, ) -> Result<(), AnyError> { let http = slab_get(slab_id); let handle = http.body_promise(); let join_handle = state .borrow_mut() .resource_table .get::(server_rid)?; match handle .or_cancel(join_handle.connection_cancel_handle()) .await { Ok(true) => Ok(()), Ok(false) => { Err(AnyError::msg("connection closed before message completed")) } Err(_e) => Ok(()), } } #[pin_project(PinnedDrop)] pub struct SlabFuture>(SlabId, #[pin] F); pub fn new_slab_future( request: Request, request_info: HttpConnectionProperties, refcount: RefCount, tx: tokio::sync::mpsc::Sender, ) -> SlabFuture> { let index = slab_insert(request, request_info, refcount); let rx = slab_get(index).promise(); SlabFuture(index, async move { if tx.send(index).await.is_ok() { http_trace!(index, "SlabFuture await"); // We only need to wait for completion if we aren't closed rx.await; http_trace!(index, "SlabFuture complete"); } }) } impl> SlabFuture {} #[pinned_drop] impl> PinnedDrop for SlabFuture { fn drop(self: Pin<&mut Self>) { slab_drop(self.0); } } impl> Future for SlabFuture { type Output = Result; fn poll( self: Pin<&mut Self>, cx: &mut std::task::Context<'_>, ) -> std::task::Poll { let index = self.0; self .project() .1 .poll(cx) .map(|_| Ok(slab_get(index).take_response())) } } fn serve_http11_unconditional( io: impl HttpServeStream, svc: impl HttpService + 'static, cancel: Rc, ) -> impl Future> + 'static { let conn = http1::Builder::new() .keep_alive(true) .writev(*USE_WRITEV) .serve_connection(TokioIo::new(io), svc) .with_upgrades(); async { match conn.or_abort(cancel).await { Err(mut conn) => { Pin::new(&mut conn).graceful_shutdown(); conn.await } Ok(res) => res, } } } fn serve_http2_unconditional( io: impl HttpServeStream, svc: impl HttpService + 'static, cancel: Rc, ) -> impl Future> + 'static { let conn = http2::Builder::new(LocalExecutor).serve_connection(TokioIo::new(io), svc); async { match conn.or_abort(cancel).await { Err(mut conn) => { Pin::new(&mut conn).graceful_shutdown(); conn.await } Ok(res) => res, } } } async fn serve_http2_autodetect( io: impl HttpServeStream, svc: impl HttpService + 'static, cancel: Rc, ) -> Result<(), AnyError> { let prefix = NetworkStreamPrefixCheck::new(io, HTTP2_PREFIX); let (matches, io) = prefix.match_prefix().await?; if matches { serve_http2_unconditional(io, svc, cancel) .await .map_err(|e| e.into()) } else { serve_http11_unconditional(io, svc, cancel) .await .map_err(|e| e.into()) } } fn serve_https( mut io: TlsStream, request_info: HttpConnectionProperties, lifetime: HttpLifetime, tx: tokio::sync::mpsc::Sender, ) -> JoinHandle> { let HttpLifetime { refcount, connection_cancel_handle, listen_cancel_handle, } = lifetime; let svc = service_fn(move |req: Request| { new_slab_future(req, request_info.clone(), refcount.clone(), tx.clone()) }); spawn( async { io.handshake().await?; // If the client specifically negotiates a protocol, we will use it. If not, we'll auto-detect // based on the prefix bytes let handshake = io.get_ref().1.alpn_protocol(); if handshake == Some(TLS_ALPN_HTTP_2) { serve_http2_unconditional(io, svc, listen_cancel_handle) .await .map_err(|e| e.into()) } else if handshake == Some(TLS_ALPN_HTTP_11) { serve_http11_unconditional(io, svc, listen_cancel_handle) .await .map_err(|e| e.into()) } else { serve_http2_autodetect(io, svc, listen_cancel_handle).await } } .try_or_cancel(connection_cancel_handle), ) } fn serve_http( io: impl HttpServeStream, request_info: HttpConnectionProperties, lifetime: HttpLifetime, tx: tokio::sync::mpsc::Sender, ) -> JoinHandle> { let HttpLifetime { refcount, connection_cancel_handle, listen_cancel_handle, } = lifetime; let svc = service_fn(move |req: Request| { new_slab_future(req, request_info.clone(), refcount.clone(), tx.clone()) }); spawn( serve_http2_autodetect(io, svc, listen_cancel_handle) .try_or_cancel(connection_cancel_handle), ) } fn serve_http_on( connection: HTTP::Connection, listen_properties: &HttpListenProperties, lifetime: HttpLifetime, tx: tokio::sync::mpsc::Sender, ) -> JoinHandle> where HTTP: HttpPropertyExtractor, { let connection_properties: HttpConnectionProperties = HTTP::connection_properties(listen_properties, &connection); let network_stream = HTTP::to_network_stream_from_connection(connection); match network_stream { NetworkStream::Tcp(conn) => { serve_http(conn, connection_properties, lifetime, tx) } NetworkStream::Tls(conn) => { serve_https(conn, connection_properties, lifetime, tx) } #[cfg(unix)] NetworkStream::Unix(conn) => { serve_http(conn, connection_properties, lifetime, tx) } } } #[derive(Clone)] struct HttpLifetime { connection_cancel_handle: Rc, listen_cancel_handle: Rc, refcount: RefCount, } struct HttpJoinHandle { join_handle: AsyncRefCell>>>, connection_cancel_handle: Rc, listen_cancel_handle: Rc, rx: AsyncRefCell>, refcount: RefCount, } impl HttpJoinHandle { fn new(rx: tokio::sync::mpsc::Receiver) -> Self { Self { join_handle: AsyncRefCell::new(None), connection_cancel_handle: CancelHandle::new_rc(), listen_cancel_handle: CancelHandle::new_rc(), rx: AsyncRefCell::new(rx), refcount: RefCount::default(), } } fn lifetime(self: &Rc) -> HttpLifetime { HttpLifetime { connection_cancel_handle: self.connection_cancel_handle.clone(), listen_cancel_handle: self.listen_cancel_handle.clone(), refcount: self.refcount.clone(), } } fn connection_cancel_handle(self: &Rc) -> Rc { self.connection_cancel_handle.clone() } fn listen_cancel_handle(self: &Rc) -> Rc { self.listen_cancel_handle.clone() } } impl Resource for HttpJoinHandle { fn name(&self) -> Cow { "http".into() } fn close(self: Rc) { // During a close operation, we cancel everything self.connection_cancel_handle.cancel(); self.listen_cancel_handle.cancel(); } } impl Drop for HttpJoinHandle { fn drop(&mut self) { // In some cases we may be dropped without closing, so let's cancel everything on the way out self.connection_cancel_handle.cancel(); self.listen_cancel_handle.cancel(); } } #[op2] #[serde] pub fn op_http_serve( state: Rc>, #[smi] listener_rid: ResourceId, ) -> Result<(ResourceId, &'static str, String), AnyError> where HTTP: HttpPropertyExtractor, { slab_init(); let listener = HTTP::get_listener_for_rid(&mut state.borrow_mut(), listener_rid)?; let listen_properties = HTTP::listen_properties_from_listener(&listener)?; let (tx, rx) = tokio::sync::mpsc::channel(10); let resource: Rc = Rc::new(HttpJoinHandle::new(rx)); let listen_cancel_clone = resource.listen_cancel_handle(); let lifetime = resource.lifetime(); let listen_properties_clone: HttpListenProperties = listen_properties.clone(); let handle = spawn(async move { loop { let conn = HTTP::accept_connection_from_listener(&listener) .try_or_cancel(listen_cancel_clone.clone()) .await?; serve_http_on::( conn, &listen_properties_clone, lifetime.clone(), tx.clone(), ); } #[allow(unreachable_code)] Ok::<_, AnyError>(()) }); // Set the handle after we start the future *RcRef::map(&resource, |this| &this.join_handle) .try_borrow_mut() .unwrap() = Some(handle); Ok(( state.borrow_mut().resource_table.add_rc(resource), listen_properties.scheme, listen_properties.fallback_host, )) } #[op2] #[serde] pub fn op_http_serve_on( state: Rc>, #[smi] connection_rid: ResourceId, ) -> Result<(ResourceId, &'static str, String), AnyError> where HTTP: HttpPropertyExtractor, { slab_init(); let connection = HTTP::get_connection_for_rid(&mut state.borrow_mut(), connection_rid)?; let listen_properties = HTTP::listen_properties_from_connection(&connection)?; let (tx, rx) = tokio::sync::mpsc::channel(10); let resource: Rc = Rc::new(HttpJoinHandle::new(rx)); let handle: JoinHandle> = serve_http_on::( connection, &listen_properties, resource.lifetime(), tx, ); // Set the handle after we start the future *RcRef::map(&resource, |this| &this.join_handle) .try_borrow_mut() .unwrap() = Some(handle); Ok(( state.borrow_mut().resource_table.add_rc(resource), listen_properties.scheme, listen_properties.fallback_host, )) } /// Synchronous, non-blocking call to see if there are any further HTTP requests. If anything /// goes wrong in this method we return [`SlabId::MAX`] and let the async handler pick up the real error. #[op2(fast)] #[smi] pub fn op_http_try_wait(state: &mut OpState, #[smi] rid: ResourceId) -> SlabId { // The resource needs to exist. let Ok(join_handle) = state.resource_table.get::(rid) else { return SlabId::MAX; }; // If join handle is somehow locked, just abort. let Some(mut handle) = RcRef::map(&join_handle, |this| &this.rx).try_borrow_mut() else { return SlabId::MAX; }; // See if there are any requests waiting on this channel. If not, return. let Ok(id) = handle.try_recv() else { return SlabId::MAX; }; id } #[op2(async)] #[smi] pub async fn op_http_wait( state: Rc>, #[smi] rid: ResourceId, ) -> Result { // We will get the join handle initially, as we might be consuming requests still let join_handle = state .borrow_mut() .resource_table .get::(rid)?; let cancel = join_handle.listen_cancel_handle(); let next = async { let mut recv = RcRef::map(&join_handle, |this| &this.rx).borrow_mut().await; recv.recv().await } .or_cancel(cancel) .unwrap_or_else(|_| None) .await; // Do we have a request? if let Some(req) = next { return Ok(req); } // No - we're shutting down let res = RcRef::map(join_handle, |this| &this.join_handle) .borrow_mut() .await .take() .unwrap() .await?; // Filter out shutdown (ENOTCONN) errors if let Err(err) = res { if let Some(err) = err.source() { if let Some(err) = err.downcast_ref::() { if err.kind() == io::ErrorKind::NotConnected { return Ok(SlabId::MAX); } } } return Err(err); } Ok(SlabId::MAX) } /// Cancels the HTTP handle. #[op2(fast)] pub fn op_http_cancel( state: &mut OpState, #[smi] rid: ResourceId, graceful: bool, ) -> Result<(), AnyError> { let join_handle = state.resource_table.get::(rid)?; if graceful { // In a graceful shutdown, we close the listener and allow all the remaining connections to drain join_handle.listen_cancel_handle().cancel(); } else { // In a forceful shutdown, we close everything join_handle.listen_cancel_handle().cancel(); join_handle.connection_cancel_handle().cancel(); } Ok(()) } #[op2(async)] pub async fn op_http_close( state: Rc>, #[smi] rid: ResourceId, graceful: bool, ) -> Result<(), AnyError> { let join_handle = state .borrow_mut() .resource_table .take::(rid)?; if graceful { deno_net::check_unstable2(&state, "Deno.Server.shutdown"); // In a graceful shutdown, we close the listener and allow all the remaining connections to drain join_handle.listen_cancel_handle().cancel(); } else { // In a forceful shutdown, we close everything join_handle.listen_cancel_handle().cancel(); join_handle.connection_cancel_handle().cancel(); } // Async spin on the refcount while we wait for everything to drain while Rc::strong_count(&join_handle.refcount.0) > 1 { tokio::time::sleep(Duration::from_millis(10)).await; } let mut join_handle = RcRef::map(&join_handle, |this| &this.join_handle) .borrow_mut() .await; if let Some(join_handle) = join_handle.take() { join_handle.await??; } Ok(()) } struct UpgradeStream { read: AsyncRefCell>, write: AsyncRefCell>, cancel_handle: CancelHandle, } impl UpgradeStream { pub fn new( read: tokio::io::ReadHalf, write: tokio::io::WriteHalf, ) -> Self { Self { read: AsyncRefCell::new(read), write: AsyncRefCell::new(write), cancel_handle: CancelHandle::new(), } } async fn read(self: Rc, buf: &mut [u8]) -> Result { let cancel_handle = RcRef::map(self.clone(), |this| &this.cancel_handle); async { let read = RcRef::map(self, |this| &this.read); let mut read = read.borrow_mut().await; Ok(Pin::new(&mut *read).read(buf).await?) } .try_or_cancel(cancel_handle) .await } async fn write(self: Rc, buf: &[u8]) -> Result { let cancel_handle = RcRef::map(self.clone(), |this| &this.cancel_handle); async { let write = RcRef::map(self, |this| &this.write); let mut write = write.borrow_mut().await; Ok(Pin::new(&mut *write).write(buf).await?) } .try_or_cancel(cancel_handle) .await } async fn write_vectored( self: Rc, buf1: &[u8], buf2: &[u8], ) -> Result { let mut wr = RcRef::map(self, |r| &r.write).borrow_mut().await; let total = buf1.len() + buf2.len(); let mut bufs = [std::io::IoSlice::new(buf1), std::io::IoSlice::new(buf2)]; let mut nwritten = wr.write_vectored(&bufs).await?; if nwritten == total { return Ok(nwritten); } // Slightly more optimized than (unstable) write_all_vectored for 2 iovecs. while nwritten <= buf1.len() { bufs[0] = std::io::IoSlice::new(&buf1[nwritten..]); nwritten += wr.write_vectored(&bufs).await?; } // First buffer out of the way. if nwritten < total && nwritten > buf1.len() { wr.write_all(&buf2[nwritten - buf1.len()..]).await?; } Ok(total) } } impl Resource for UpgradeStream { fn name(&self) -> Cow { "httpRawUpgradeStream".into() } deno_core::impl_readable_byob!(); deno_core::impl_writable!(); fn close(self: Rc) { self.cancel_handle.cancel(); } } #[op2(fast)] pub fn op_can_write_vectored( state: &mut OpState, #[smi] rid: ResourceId, ) -> bool { state.resource_table.get::(rid).is_ok() } // TODO(bartlomieju): op2 doesn't want to handle `usize` in the return type #[op] pub async fn op_raw_write_vectored( state: Rc>, rid: ResourceId, buf1: JsBuffer, buf2: JsBuffer, ) -> Result { let resource: Rc = state.borrow().resource_table.get::(rid)?; let nwritten = resource.write_vectored(&buf1, &buf2).await?; Ok(nwritten) }