// Copyright 2018-2020 the Deno authors. All rights reserved. MIT license. // Do not add any dependency to modules.rs! // modules.rs is complex and should remain decoupled from isolate.rs to keep the // Isolate struct from becoming too bloating for users who do not need // asynchronous module loading. use rusty_v8 as v8; use crate::any_error::ErrBox; use crate::bindings; use crate::js_errors::CoreJSError; use crate::js_errors::V8Exception; use crate::ops::*; use crate::shared_queue::SharedQueue; use crate::shared_queue::RECOMMENDED_SIZE; use futures::future::FutureExt; use futures::future::TryFutureExt; use futures::stream::FuturesUnordered; use futures::stream::StreamExt; use futures::task::AtomicWaker; use libc::c_void; use std::collections::HashMap; use std::convert::From; use std::future::Future; use std::ops::{Deref, DerefMut}; use std::option::Option; use std::pin::Pin; use std::ptr::null; use std::ptr::NonNull; use std::slice; use std::sync::{Arc, Mutex, Once}; use std::task::Context; use std::task::Poll; // TODO(bartlomieju): get rid of DenoBuf /// This type represents a borrowed slice. #[repr(C)] pub struct DenoBuf { pub data_ptr: *const u8, pub data_len: usize, } /// `DenoBuf` can not clone, and there is no interior mutability. /// This type satisfies Send bound. unsafe impl Send for DenoBuf {} impl DenoBuf { #[inline] pub fn empty() -> Self { Self { data_ptr: null(), data_len: 0, } } #[allow(clippy::missing_safety_doc)] #[inline] pub unsafe fn from_raw_parts(ptr: *const u8, len: usize) -> Self { Self { data_ptr: ptr, data_len: len, } } } /// Converts Rust &Buf to libdeno `DenoBuf`. impl<'a> From<&'a [u8]> for DenoBuf { #[inline] fn from(x: &'a [u8]) -> Self { Self { data_ptr: x.as_ref().as_ptr(), data_len: x.len(), } } } impl<'a> From<&'a mut [u8]> for DenoBuf { #[inline] fn from(x: &'a mut [u8]) -> Self { Self { data_ptr: x.as_ref().as_ptr(), data_len: x.len(), } } } impl Deref for DenoBuf { type Target = [u8]; #[inline] fn deref(&self) -> &[u8] { unsafe { std::slice::from_raw_parts(self.data_ptr, self.data_len) } } } impl AsRef<[u8]> for DenoBuf { #[inline] fn as_ref(&self) -> &[u8] { &*self } } /// A PinnedBuf encapsulates a slice that's been borrowed from a JavaScript /// ArrayBuffer object. JavaScript objects can normally be garbage collected, /// but the existence of a PinnedBuf inhibits this until it is dropped. It /// behaves much like an Arc<[u8]>, although a PinnedBuf currently can't be /// cloned. pub struct PinnedBuf { data_ptr: NonNull, data_len: usize, #[allow(unused)] backing_store: v8::SharedRef, } unsafe impl Send for PinnedBuf {} impl PinnedBuf { pub fn new(view: v8::Local) -> Self { let mut backing_store = view.buffer().unwrap().get_backing_store(); let backing_store_ptr = backing_store.data() as *mut _ as *mut u8; let view_ptr = unsafe { backing_store_ptr.add(view.byte_offset()) }; let view_len = view.byte_length(); Self { data_ptr: NonNull::new(view_ptr).unwrap(), data_len: view_len, backing_store, } } } impl Deref for PinnedBuf { type Target = [u8]; fn deref(&self) -> &[u8] { unsafe { slice::from_raw_parts(self.data_ptr.as_ptr(), self.data_len) } } } impl DerefMut for PinnedBuf { fn deref_mut(&mut self) -> &mut [u8] { unsafe { slice::from_raw_parts_mut(self.data_ptr.as_ptr(), self.data_len) } } } impl AsRef<[u8]> for PinnedBuf { fn as_ref(&self) -> &[u8] { &*self } } impl AsMut<[u8]> for PinnedBuf { fn as_mut(&mut self) -> &mut [u8] { &mut *self } } pub enum SnapshotConfig { Borrowed(v8::StartupData<'static>), Owned(v8::OwnedStartupData), } impl From<&'static [u8]> for SnapshotConfig { fn from(sd: &'static [u8]) -> Self { Self::Borrowed(v8::StartupData::new(sd)) } } impl From for SnapshotConfig { fn from(sd: v8::OwnedStartupData) -> Self { Self::Owned(sd) } } impl Deref for SnapshotConfig { type Target = v8::StartupData<'static>; fn deref(&self) -> &Self::Target { match self { Self::Borrowed(sd) => sd, Self::Owned(sd) => &*sd, } } } /// Stores a script used to initalize a Isolate pub struct Script<'a> { pub source: &'a str, pub filename: &'a str, } // TODO(ry) It's ugly that we have both Script and OwnedScript. Ideally we // wouldn't expose such twiddly complexity. struct OwnedScript { pub source: String, pub filename: String, } impl From> for OwnedScript { fn from(s: Script) -> OwnedScript { OwnedScript { source: s.source.to_string(), filename: s.filename.to_string(), } } } /// Represents data used to initialize isolate at startup /// either a binary snapshot or a javascript source file /// in the form of the StartupScript struct. pub enum StartupData<'a> { Script(Script<'a>), Snapshot(&'static [u8]), OwnedSnapshot(v8::OwnedStartupData), None, } type JSErrorCreateFn = dyn Fn(V8Exception) -> ErrBox; type IsolateErrorHandleFn = dyn FnMut(ErrBox) -> Result<(), ErrBox>; /// A single execution context of JavaScript. Corresponds roughly to the "Web /// Worker" concept in the DOM. An Isolate is a Future that can be used with /// Tokio. The Isolate future complete when there is an error or when all /// pending ops have completed. /// /// Ops are created in JavaScript by calling Deno.core.dispatch(), and in Rust /// by implementing dispatcher function that takes control buffer and optional zero copy buffer /// as arguments. An async Op corresponds exactly to a Promise in JavaScript. #[allow(unused)] pub struct Isolate { pub(crate) v8_isolate: Option, snapshot_creator: Option, has_snapshotted: bool, snapshot: Option, pub(crate) last_exception: Option, pub(crate) last_exception_handle: v8::Global, pub(crate) global_context: v8::Global, pub(crate) shared_buf: DenoBuf, pub(crate) shared_ab: v8::Global, pub(crate) js_recv_cb: v8::Global, pub(crate) current_send_cb_info: *const v8::FunctionCallbackInfo, pub(crate) pending_promise_map: HashMap>, // TODO: These two fields were not yet ported from libdeno // void* global_import_buf_ptr_; // v8::Persistent global_import_buf_; shared_isolate_handle: Arc>>, js_error_create: Arc, needs_init: bool, shared: SharedQueue, pending_ops: FuturesUnordered, have_unpolled_ops: bool, startup_script: Option, pub op_registry: Arc, waker: AtomicWaker, error_handler: Option>, } unsafe impl Send for Isolate {} impl Drop for Isolate { fn drop(&mut self) { // remove shared_libdeno_isolate reference *self.shared_isolate_handle.lock().unwrap() = None; // TODO Too much boiler plate. // let isolate = self.v8_isolate.take().unwrap(); // Clear persistent handles we own. { let mut locker = v8::Locker::new(&isolate); let mut hs = v8::HandleScope::new(&mut locker); let scope = hs.enter(); // self.global_context.reset(scope); self.shared_ab.reset(scope); self.last_exception_handle.reset(scope); self.js_recv_cb.reset(scope); for (_key, handle) in self.pending_promise_map.iter_mut() { handle.reset(scope); } } if let Some(creator) = self.snapshot_creator.take() { // TODO(ry) V8 has a strange assert which prevents a SnapshotCreator from // being deallocated if it hasn't created a snapshot yet. // https://github.com/v8/v8/blob/73212783fbd534fac76cc4b66aac899c13f71fc8/src/api.cc#L603 // If that assert is removed, this if guard could be removed. // WARNING: There may be false positive LSAN errors here. std::mem::forget(isolate); if self.has_snapshotted { drop(creator); } } else { drop(isolate); } } } static DENO_INIT: Once = Once::new(); #[allow(clippy::missing_safety_doc)] pub unsafe fn v8_init() { let platform = v8::platform::new_default_platform(); v8::V8::initialize_platform(platform); v8::V8::initialize(); // TODO(ry) This makes WASM compile synchronously. Eventually we should // remove this to make it work asynchronously too. But that requires getting // PumpMessageLoop and RunMicrotasks setup correctly. // See https://github.com/denoland/deno/issues/2544 let argv = vec![ "".to_string(), "--no-wasm-async-compilation".to_string(), "--harmony-top-level-await".to_string(), ]; v8::V8::set_flags_from_command_line(argv); } impl Isolate { /// startup_data defines the snapshot or script used at startup to initialize /// the isolate. pub fn new(startup_data: StartupData, will_snapshot: bool) -> Box { DENO_INIT.call_once(|| { unsafe { v8_init() }; }); let mut load_snapshot: Option = None; let mut startup_script: Option = None; // Separate into Option values for each startup type match startup_data { StartupData::Script(d) => { startup_script = Some(d.into()); } StartupData::Snapshot(d) => { load_snapshot = Some(d.into()); } StartupData::OwnedSnapshot(d) => { load_snapshot = Some(d.into()); } StartupData::None => {} }; let mut global_context = v8::Global::::new(); let (mut isolate, maybe_snapshot_creator) = if will_snapshot { // TODO(ry) Support loading snapshots before snapshotting. assert!(load_snapshot.is_none()); let mut creator = v8::SnapshotCreator::new(Some(&bindings::EXTERNAL_REFERENCES)); let isolate = unsafe { creator.get_owned_isolate() }; let isolate = Isolate::setup_isolate(isolate); let mut locker = v8::Locker::new(&isolate); { let mut hs = v8::HandleScope::new(&mut locker); let scope = hs.enter(); let context = v8::Context::new(scope); // context.enter(); global_context.set(scope, context); creator.set_default_context(context); bindings::initialize_context(scope, context); // context.exit(); } (isolate, Some(creator)) } else { let mut params = v8::Isolate::create_params(); params.set_array_buffer_allocator(v8::new_default_allocator()); params.set_external_references(&bindings::EXTERNAL_REFERENCES); if let Some(ref mut snapshot) = load_snapshot { params.set_snapshot_blob(snapshot); } let load_snapshot_is_null = load_snapshot.is_none(); let isolate = v8::Isolate::new(params); let isolate = Isolate::setup_isolate(isolate); { let mut locker = v8::Locker::new(&isolate); let mut hs = v8::HandleScope::new(&mut locker); let scope = hs.enter(); let context = v8::Context::new(scope); if load_snapshot_is_null { // If no snapshot is provided, we initialize the context with empty // main source code and source maps. bindings::initialize_context(scope, context); } global_context.set(scope, context); } (isolate, None) }; let shared = SharedQueue::new(RECOMMENDED_SIZE); let needs_init = true; let core_isolate = Self { v8_isolate: None, last_exception: None, last_exception_handle: v8::Global::::new(), global_context, pending_promise_map: HashMap::new(), shared_buf: shared.as_deno_buf(), shared_ab: v8::Global::::new(), js_recv_cb: v8::Global::::new(), current_send_cb_info: std::ptr::null(), snapshot_creator: maybe_snapshot_creator, snapshot: load_snapshot, has_snapshotted: false, shared_isolate_handle: Arc::new(Mutex::new(None)), js_error_create: Arc::new(CoreJSError::from_v8_exception), shared, needs_init, pending_ops: FuturesUnordered::new(), have_unpolled_ops: false, startup_script, op_registry: Arc::new(OpRegistry::new()), waker: AtomicWaker::new(), error_handler: None, }; let mut boxed_isolate = Box::new(core_isolate); { let core_isolate_ptr: *mut Self = Box::into_raw(boxed_isolate); unsafe { isolate.set_data(0, core_isolate_ptr as *mut c_void) }; boxed_isolate = unsafe { Box::from_raw(core_isolate_ptr) }; let shared_handle_ptr = &mut *isolate; *boxed_isolate.shared_isolate_handle.lock().unwrap() = Some(shared_handle_ptr); boxed_isolate.v8_isolate = Some(isolate); } boxed_isolate } pub fn setup_isolate(mut isolate: v8::OwnedIsolate) -> v8::OwnedIsolate { isolate.set_capture_stack_trace_for_uncaught_exceptions(true, 10); isolate.set_promise_reject_callback(bindings::promise_reject_callback); isolate.add_message_listener(bindings::message_callback); isolate } pub fn handle_exception<'a>( &mut self, s: &mut impl v8::ToLocal<'a>, mut context: v8::Local<'a, v8::Context>, exception: v8::Local<'a, v8::Value>, ) { let isolate = context.get_isolate(); // TerminateExecution was called if isolate.is_execution_terminating() { // cancel exception termination so that the exception can be created isolate.cancel_terminate_execution(); // maybe make a new exception object let exception = if exception.is_null_or_undefined() { let exception_str = v8::String::new(s, "execution terminated").unwrap(); isolate.enter(); let e = v8::error(s, exception_str); isolate.exit(); e } else { exception }; // handle the exception as if it is a regular exception self.handle_exception(s, context, exception); // re-enable exception termination context.get_isolate().terminate_execution(); return; } let json_str = self.encode_exception_as_json(s, context, exception); self.last_exception = Some(json_str); self.last_exception_handle.set(s, exception); } pub fn encode_exception_as_json<'a>( &mut self, s: &mut impl v8::ToLocal<'a>, context: v8::Local<'a, v8::Context>, exception: v8::Local<'a, v8::Value>, ) -> String { let message = v8::create_message(s, exception); self.encode_message_as_json(s, context, message) } pub fn encode_message_as_json<'a>( &mut self, s: &mut impl v8::ToLocal<'a>, context: v8::Local, message: v8::Local, ) -> String { let json_obj = bindings::encode_message_as_object(s, context, message); let json_string = v8::json::stringify(context, json_obj.into()).unwrap(); json_string.to_rust_string_lossy(s) } #[allow(dead_code)] pub fn run_microtasks(&mut self) { let isolate = self.v8_isolate.as_mut().unwrap(); let _locker = v8::Locker::new(isolate); isolate.enter(); isolate.run_microtasks(); isolate.exit(); } pub fn set_error_handler(&mut self, handler: Box) { self.error_handler = Some(handler); } /// Defines the how Deno.core.dispatch() acts. /// Called whenever Deno.core.dispatch() is called in JavaScript. zero_copy_buf /// corresponds to the second argument of Deno.core.dispatch(). /// /// Requires runtime to explicitly ask for op ids before using any of the ops. pub fn register_op(&self, name: &str, op: F) -> OpId where F: Fn(&[u8], Option) -> CoreOp + Send + Sync + 'static, { self.op_registry.register(name, op) } /// Allows a callback to be set whenever a V8 exception is made. This allows /// the caller to wrap the V8Exception into an error. By default this callback /// is set to CoreJSError::from_v8_exception. pub fn set_js_error_create(&mut self, f: F) where F: Fn(V8Exception) -> ErrBox + 'static, { self.js_error_create = Arc::new(f); } /// Get a thread safe handle on the isolate. pub fn shared_isolate_handle(&mut self) -> IsolateHandle { IsolateHandle { shared_isolate: self.shared_isolate_handle.clone(), } } /// Executes a bit of built-in JavaScript to provide Deno.sharedQueue. pub(crate) fn shared_init(&mut self) { if self.needs_init { self.needs_init = false; js_check( self.execute("shared_queue.js", include_str!("shared_queue.js")), ); // Maybe execute the startup script. if let Some(s) = self.startup_script.take() { self.execute(&s.filename, &s.source).unwrap() } } } pub fn pre_dispatch( &mut self, op_id: OpId, control_buf: DenoBuf, zero_copy_buf: Option, ) { let maybe_op = self .op_registry .call(op_id, control_buf.as_ref(), zero_copy_buf); let op = match maybe_op { Some(op) => op, None => { return self.throw_exception(&format!("Unknown op id: {}", op_id)) } }; debug_assert_eq!(self.shared.size(), 0); match op { Op::Sync(buf) => { // For sync messages, we always return the response via Deno.core.send's // return value. Sync messages ignore the op_id. let op_id = 0; self .respond(Some((op_id, &buf))) // Because this is a sync op, deno_respond() does not actually call // into JavaScript. We should not get an error here. .expect("unexpected error"); } Op::Async(fut) => { let fut2 = fut.map_ok(move |buf| (op_id, buf)); self.pending_ops.push(fut2.boxed()); self.have_unpolled_ops = true; } } } /// Executes traditional JavaScript code (traditional = not ES modules) /// /// ErrBox can be downcast to a type that exposes additional information about /// the V8 exception. By default this type is CoreJSError, however it may be a /// different type if Isolate::set_js_error_create() has been used. pub fn execute( &mut self, js_filename: &str, js_source: &str, ) -> Result<(), ErrBox> { self.shared_init(); let isolate = self.v8_isolate.as_ref().unwrap(); let mut locker = v8::Locker::new(isolate); assert!(!self.global_context.is_empty()); let mut hs = v8::HandleScope::new(&mut locker); let s = hs.enter(); let mut context = self.global_context.get(s).unwrap(); context.enter(); let source = v8::String::new(s, js_source).unwrap(); let name = v8::String::new(s, js_filename).unwrap(); let mut try_catch = v8::TryCatch::new(s); let tc = try_catch.enter(); let origin = bindings::script_origin(s, name); let mut script = v8::Script::compile(s, context, source, Some(&origin)).unwrap(); let result = script.run(s, context); if result.is_none() { assert!(tc.has_caught()); let exception = tc.exception().unwrap(); self.handle_exception(s, context, exception); } context.exit(); self.check_last_exception() } pub(crate) fn check_last_exception(&mut self) -> Result<(), ErrBox> { if self.last_exception.is_none() { return Ok(()); } let json_str = self.last_exception.clone().unwrap(); let js_error_create = &*self.js_error_create; if self.error_handler.is_some() { // We need to clear last exception to avoid double handling. self.last_exception = None; let v8_exception = V8Exception::from_json(&json_str).unwrap(); let js_error = js_error_create(v8_exception); let handler = self.error_handler.as_mut().unwrap(); handler(js_error) } else { let v8_exception = V8Exception::from_json(&json_str).unwrap(); let js_error = js_error_create(v8_exception); Err(js_error) } } fn check_promise_errors(&mut self) { let isolate = self.v8_isolate.as_ref().unwrap(); if self.pending_promise_map.is_empty() { return; } let mut locker = v8::Locker::new(isolate); assert!(!self.global_context.is_empty()); let mut hs = v8::HandleScope::new(&mut locker); let scope = hs.enter(); let mut context = self.global_context.get(scope).unwrap(); context.enter(); let pending_promises: Vec<(i32, v8::Global)> = self.pending_promise_map.drain().collect(); for (_promise_id, mut handle) in pending_promises { let error = handle.get(scope).expect("Empty error handle"); self.handle_exception(scope, context, error); handle.reset(scope); } context.exit(); } fn throw_exception(&mut self, text: &str) { let isolate = self.v8_isolate.as_ref().unwrap(); let mut locker = v8::Locker::new(isolate); let mut hs = v8::HandleScope::new(&mut locker); let scope = hs.enter(); let msg = v8::String::new(scope, text).unwrap(); isolate.throw_exception(msg.into()); } fn respond2(&mut self, op_id: OpId, buf: DenoBuf) { if !self.current_send_cb_info.is_null() { // Synchronous response. // Note op_id is not passed back in the case of synchronous response. let isolate = self.v8_isolate.as_ref().unwrap(); let mut locker = v8::Locker::new(isolate); assert!(!self.global_context.is_empty()); let mut hs = v8::HandleScope::new(&mut locker); let scope = hs.enter(); if !buf.data_ptr.is_null() && buf.data_len > 0 { let ab = unsafe { bindings::buf_to_uint8array(scope, buf) }; let info: &v8::FunctionCallbackInfo = unsafe { &*self.current_send_cb_info }; let rv = &mut info.get_return_value(); rv.set(ab.into()) } self.current_send_cb_info = std::ptr::null(); return; } let isolate = self.v8_isolate.as_ref().unwrap(); // println!("deno_execute -> Isolate ptr {:?}", isolate); let mut locker = v8::Locker::new(isolate); assert!(!self.global_context.is_empty()); let mut hs = v8::HandleScope::new(&mut locker); let scope = hs.enter(); let mut context = self.global_context.get(scope).unwrap(); context.enter(); let mut try_catch = v8::TryCatch::new(scope); let tc = try_catch.enter(); let js_recv_cb = self.js_recv_cb.get(scope); if js_recv_cb.is_none() { let msg = "Deno.core.recv has not been called.".to_string(); self.last_exception = Some(msg); return; } let mut argc = 0; let mut args: Vec> = vec![]; if !buf.data_ptr.is_null() { argc = 2; let op_id = v8::Integer::new(scope, op_id as i32); args.push(op_id.into()); let buf = unsafe { bindings::buf_to_uint8array(scope, buf) }; args.push(buf.into()); } let global = context.global(scope); let maybe_value = js_recv_cb .unwrap() .call(scope, context, global.into(), argc, args); if tc.has_caught() { assert!(maybe_value.is_none()); self.handle_exception(scope, context, tc.exception().unwrap()); } context.exit(); } fn respond( &mut self, maybe_buf: Option<(OpId, &[u8])>, ) -> Result<(), ErrBox> { let (op_id, buf) = match maybe_buf { None => (0, DenoBuf::empty()), Some((op_id, r)) => (op_id, DenoBuf::from(r)), }; self.respond2(op_id, buf); self.check_last_exception() } /// Takes a snapshot. The isolate should have been created with will_snapshot /// set to true. /// /// ErrBox can be downcast to a type that exposes additional information about /// the V8 exception. By default this type is CoreJSError, however it may be a /// different type if Isolate::set_js_error_create() has been used. pub fn snapshot(&mut self) -> Result { assert!(self.snapshot_creator.is_some()); let isolate = self.v8_isolate.as_ref().unwrap(); let mut locker = v8::Locker::new(isolate); let mut hs = v8::HandleScope::new(&mut locker); let scope = hs.enter(); self.global_context.reset(scope); let snapshot_creator = self.snapshot_creator.as_mut().unwrap(); let snapshot = snapshot_creator .create_blob(v8::FunctionCodeHandling::Keep) .unwrap(); self.has_snapshotted = true; match self.check_last_exception() { Ok(..) => Ok(snapshot), Err(err) => Err(err), } } } impl Future for Isolate { type Output = Result<(), ErrBox>; fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll { let inner = self.get_mut(); inner.waker.register(cx.waker()); inner.shared_init(); let mut overflow_response: Option<(OpId, Buf)> = None; loop { // Now handle actual ops. inner.have_unpolled_ops = false; #[allow(clippy::match_wild_err_arm)] match inner.pending_ops.poll_next_unpin(cx) { Poll::Ready(Some(Err(_))) => panic!("unexpected op error"), Poll::Ready(None) => break, Poll::Pending => break, Poll::Ready(Some(Ok((op_id, buf)))) => { let successful_push = inner.shared.push(op_id, &buf); if !successful_push { // If we couldn't push the response to the shared queue, because // there wasn't enough size, we will return the buffer via the // legacy route, using the argument of deno_respond. overflow_response = Some((op_id, buf)); break; } } } } if inner.shared.size() > 0 { inner.respond(None)?; // The other side should have shifted off all the messages. assert_eq!(inner.shared.size(), 0); } if overflow_response.is_some() { let (op_id, buf) = overflow_response.take().unwrap(); inner.respond(Some((op_id, &buf)))?; } inner.check_promise_errors(); inner.check_last_exception()?; // We're idle if pending_ops is empty. if inner.pending_ops.is_empty() { Poll::Ready(Ok(())) } else { if inner.have_unpolled_ops { inner.waker.wake(); } Poll::Pending } } } /// IsolateHandle is a thread safe handle on an Isolate. It exposed thread safe V8 functions. #[derive(Clone)] pub struct IsolateHandle { shared_isolate: Arc>>, } unsafe impl Send for IsolateHandle {} impl IsolateHandle { /// Terminate the execution of any currently running javascript. /// After terminating execution it is probably not wise to continue using /// the isolate. pub fn terminate_execution(&self) { if let Some(isolate) = *self.shared_isolate.lock().unwrap() { let isolate = unsafe { &mut *isolate }; isolate.terminate_execution(); } } } pub fn js_check(r: Result) -> T { if let Err(e) = r { panic!(e.to_string()); } r.unwrap() } #[cfg(test)] pub mod tests { use super::*; use futures::future::lazy; use std::ops::FnOnce; use std::sync::atomic::{AtomicUsize, Ordering}; pub fn run_in_task(f: F) where F: FnOnce(&mut Context) + Send + 'static, { futures::executor::block_on(lazy(move |cx| f(cx))); } fn poll_until_ready(future: &mut F, max_poll_count: usize) -> F::Output where F: Future + Unpin, { let mut cx = Context::from_waker(futures::task::noop_waker_ref()); for _ in 0..max_poll_count { match future.poll_unpin(&mut cx) { Poll::Pending => continue, Poll::Ready(val) => return val, } } panic!( "Isolate still not ready after polling {} times.", max_poll_count ) } pub enum Mode { Async, OverflowReqSync, OverflowResSync, OverflowReqAsync, OverflowResAsync, } pub fn setup(mode: Mode) -> (Box, Arc) { let dispatch_count = Arc::new(AtomicUsize::new(0)); let dispatch_count_ = dispatch_count.clone(); let mut isolate = Isolate::new(StartupData::None, false); let dispatcher = move |control: &[u8], _zero_copy: Option| -> CoreOp { dispatch_count_.fetch_add(1, Ordering::Relaxed); match mode { Mode::Async => { assert_eq!(control.len(), 1); assert_eq!(control[0], 42); let buf = vec![43u8, 0, 0, 0].into_boxed_slice(); Op::Async(futures::future::ok(buf).boxed()) } Mode::OverflowReqSync => { assert_eq!(control.len(), 100 * 1024 * 1024); let buf = vec![43u8, 0, 0, 0].into_boxed_slice(); Op::Sync(buf) } Mode::OverflowResSync => { assert_eq!(control.len(), 1); assert_eq!(control[0], 42); let mut vec = Vec::::new(); vec.resize(100 * 1024 * 1024, 0); vec[0] = 99; let buf = vec.into_boxed_slice(); Op::Sync(buf) } Mode::OverflowReqAsync => { assert_eq!(control.len(), 100 * 1024 * 1024); let buf = vec![43u8, 0, 0, 0].into_boxed_slice(); Op::Async(futures::future::ok(buf).boxed()) } Mode::OverflowResAsync => { assert_eq!(control.len(), 1); assert_eq!(control[0], 42); let mut vec = Vec::::new(); vec.resize(100 * 1024 * 1024, 0); vec[0] = 4; let buf = vec.into_boxed_slice(); Op::Async(futures::future::ok(buf).boxed()) } } }; isolate.register_op("test", dispatcher); js_check(isolate.execute( "setup.js", r#" function assert(cond) { if (!cond) { throw Error("assert"); } } "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); (isolate, dispatch_count) } #[test] fn test_dispatch() { let (mut isolate, dispatch_count) = setup(Mode::Async); js_check(isolate.execute( "filename.js", r#" let control = new Uint8Array([42]); Deno.core.send(1, control); async function main() { Deno.core.send(1, control); } main(); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); } #[test] fn test_poll_async_delayed_ops() { run_in_task(|cx| { let (mut isolate, dispatch_count) = setup(Mode::Async); js_check(isolate.execute( "setup2.js", r#" let nrecv = 0; Deno.core.setAsyncHandler((opId, buf) => { nrecv++; }); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); js_check(isolate.execute( "check1.js", r#" assert(nrecv == 0); let control = new Uint8Array([42]); Deno.core.send(1, control); assert(nrecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); assert!(match isolate.poll_unpin(cx) { Poll::Ready(Ok(_)) => true, _ => false, }); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); js_check(isolate.execute( "check2.js", r#" assert(nrecv == 1); Deno.core.send(1, control); assert(nrecv == 1); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); assert!(match isolate.poll_unpin(cx) { Poll::Ready(Ok(_)) => true, _ => false, }); js_check(isolate.execute("check3.js", "assert(nrecv == 2)")); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); // We are idle, so the next poll should be the last. assert!(match isolate.poll_unpin(cx) { Poll::Ready(Ok(_)) => true, _ => false, }); }); } #[test] fn terminate_execution() { let (tx, rx) = std::sync::mpsc::channel::(); let tx_clone = tx.clone(); let (mut isolate, _dispatch_count) = setup(Mode::Async); let shared = isolate.shared_isolate_handle(); let t1 = std::thread::spawn(move || { // allow deno to boot and run std::thread::sleep(std::time::Duration::from_millis(100)); // terminate execution shared.terminate_execution(); // allow shutdown std::thread::sleep(std::time::Duration::from_millis(200)); // unless reported otherwise the test should fail after this point tx_clone.send(false).ok(); }); let t2 = std::thread::spawn(move || { // run an infinite loop let res = isolate.execute( "infinite_loop.js", r#" let i = 0; while (true) { i++; } "#, ); // execute() terminated, which means terminate_execution() was successful. tx.send(true).ok(); if let Err(e) = res { assert_eq!(e.to_string(), "Uncaught Error: execution terminated"); } else { panic!("should return an error"); } // make sure the isolate is still unusable let res = isolate.execute("simple.js", "1+1;"); if let Err(e) = res { assert_eq!(e.to_string(), "Uncaught Error: execution terminated"); } else { panic!("should return an error"); } }); if !rx.recv().unwrap() { panic!("should have terminated") } t1.join().unwrap(); t2.join().unwrap(); } #[test] fn dangling_shared_isolate() { let shared = { // isolate is dropped at the end of this block let (mut isolate, _dispatch_count) = setup(Mode::Async); isolate.shared_isolate_handle() }; // this should not SEGFAULT shared.terminate_execution(); } #[test] fn overflow_req_sync() { let (mut isolate, dispatch_count) = setup(Mode::OverflowReqSync); js_check(isolate.execute( "overflow_req_sync.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler((opId, buf) => { asyncRecv++ }); // Large message that will overflow the shared space. let control = new Uint8Array(100 * 1024 * 1024); let response = Deno.core.dispatch(1, control); assert(response instanceof Uint8Array); assert(response.length == 4); assert(response[0] == 43); assert(asyncRecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn overflow_res_sync() { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. let (mut isolate, dispatch_count) = setup(Mode::OverflowResSync); js_check(isolate.execute( "overflow_res_sync.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler((opId, buf) => { asyncRecv++ }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = Deno.core.dispatch(1, control); assert(response instanceof Uint8Array); assert(response.length == 100 * 1024 * 1024); assert(response[0] == 99); assert(asyncRecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn overflow_req_async() { run_in_task(|cx| { let (mut isolate, dispatch_count) = setup(Mode::OverflowReqAsync); js_check(isolate.execute( "overflow_req_async.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler((opId, buf) => { assert(opId == 1); assert(buf.byteLength === 4); assert(buf[0] === 43); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array(100 * 1024 * 1024); let response = Deno.core.dispatch(1, control); // Async messages always have null response. assert(response == null); assert(asyncRecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); assert!(match isolate.poll_unpin(cx) { Poll::Ready(Ok(_)) => true, _ => false, }); js_check(isolate.execute("check.js", "assert(asyncRecv == 1);")); }); } #[test] fn overflow_res_async() { run_in_task(|_cx| { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. let (mut isolate, dispatch_count) = setup(Mode::OverflowResAsync); js_check(isolate.execute( "overflow_res_async.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler((opId, buf) => { assert(opId == 1); assert(buf.byteLength === 100 * 1024 * 1024); assert(buf[0] === 4); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = Deno.core.dispatch(1, control); assert(response == null); assert(asyncRecv == 0); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); poll_until_ready(&mut isolate, 3).unwrap(); js_check(isolate.execute("check.js", "assert(asyncRecv == 1);")); }); } #[test] fn overflow_res_multiple_dispatch_async() { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. run_in_task(|_cx| { let (mut isolate, dispatch_count) = setup(Mode::OverflowResAsync); js_check(isolate.execute( "overflow_res_multiple_dispatch_async.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler((opId, buf) => { assert(opId === 1); assert(buf.byteLength === 100 * 1024 * 1024); assert(buf[0] === 4); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = Deno.core.dispatch(1, control); assert(response == null); assert(asyncRecv == 0); // Dispatch another message to verify that pending ops // are done even if shared space overflows Deno.core.dispatch(1, control); "#, )); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); poll_until_ready(&mut isolate, 3).unwrap(); js_check(isolate.execute("check.js", "assert(asyncRecv == 2);")); }); } #[test] fn test_pre_dispatch() { run_in_task(|mut cx| { let (mut isolate, _dispatch_count) = setup(Mode::OverflowResAsync); js_check(isolate.execute( "bad_op_id.js", r#" let thrown; try { Deno.core.dispatch(100, []); } catch (e) { thrown = e; } assert(thrown == "Unknown op id: 100"); "#, )); if let Poll::Ready(Err(_)) = isolate.poll_unpin(&mut cx) { unreachable!(); } }); } #[test] fn test_js() { run_in_task(|mut cx| { let (mut isolate, _dispatch_count) = setup(Mode::Async); js_check( isolate.execute( "shared_queue_test.js", include_str!("shared_queue_test.js"), ), ); if let Poll::Ready(Err(_)) = isolate.poll_unpin(&mut cx) { unreachable!(); } }); } #[test] fn will_snapshot() { let snapshot = { let mut isolate = Isolate::new(StartupData::None, true); js_check(isolate.execute("a.js", "a = 1 + 2")); let s = isolate.snapshot().unwrap(); drop(isolate); s }; let startup_data = StartupData::OwnedSnapshot(snapshot); let mut isolate2 = Isolate::new(startup_data, false); js_check(isolate2.execute("check.js", "if (a != 3) throw Error('x')")); } }