// Copyright 2018-2021 the Deno authors. All rights reserved. MIT license. //! This example shows you how to define ops in Rust and then call them from //! JavaScript. use anyhow::anyhow; use deno_core::json_op_sync; use deno_core::JsRuntime; use deno_core::Op; use serde_json::Value; use std::io::Write; fn main() { // Initialize a runtime instance let mut runtime = JsRuntime::new(Default::default()); // The first thing we do is define two ops. They will be used to show how to // pass data to Rust and back to JavaScript. // // The first one is used to print data to stdout, because by default the // JavaScript console functions are just stubs (they don't do anything). // // The second one just transforms some input and returns it to JavaScript. // Register the op for outputting bytes to stdout. // It can be invoked with Deno.core.dispatch and the id this method returns // or Deno.core.dispatchByName and the name provided. runtime.register_op( "op_print", // The op_fn callback takes a state object OpState // and a vector of ZeroCopyBuf's, which are mutable references // to ArrayBuffer's in JavaScript. |_state, zero_copy| { let mut out = std::io::stdout(); // Write the contents of every buffer to stdout for buf in zero_copy { out.write_all(&buf).unwrap(); } Op::Sync(Box::new([])) // No meaningful result }, ); // Register the JSON op for summing a number array. // A JSON op is just an op where the first ZeroCopyBuf is a serialized JSON // value, the return value is also a serialized JSON value. It can be invoked // with Deno.core.jsonOpSync and the name. runtime.register_op( "op_sum", // The json_op_sync function automatically deserializes // the first ZeroCopyBuf and serializes the return value // to reduce boilerplate json_op_sync(|_state, json: Vec, zero_copy| { // We check that we only got the JSON value. if !zero_copy.is_empty() { Err(anyhow!("Expected exactly one argument")) } else { // And if we did, do our actual task let sum = json.iter().fold(0.0, |a, v| a + v); // Finally we return a JSON value Ok(Value::from(sum)) } }), ); // Now we see how to invoke the ops we just defined. The runtime automatically // contains a Deno.core object with several functions for interacting with it. // You can find its definition in core.js. runtime.execute( "", r#" // First we initialize the ops cache. // This maps op names to their id's. Deno.core.ops(); // Then we define a print function that uses // our op_print op to display the stringified argument. const _newline = new Uint8Array([10]); function print(value) { Deno.core.dispatchByName('op_print', Deno.core.encode(value.toString()), _newline); } // Finally we register the error class used by op_sum // so that it throws the correct class. Deno.core.registerErrorClass('Error', Error); "#, ).unwrap(); // Now we can finally use this in an example. runtime .execute( "", r#" const arr = [1, 2, 3]; print("The sum of"); print(arr); print("is"); print(Deno.core.jsonOpSync('op_sum', arr)); // And incorrect usage try { print(Deno.core.jsonOpSync('op_sum', 0)); } catch(e) { print('Exception:'); print(e); } "#, ) .unwrap(); }