// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license. use crate::bindings; use crate::bindings::BindingsMode; use crate::error::generic_error; use crate::error::to_v8_type_error; use crate::error::JsError; use crate::extensions::OpDecl; use crate::extensions::OpEventLoopFn; use crate::inspector::JsRuntimeInspector; use crate::module_specifier::ModuleSpecifier; use crate::modules::AssertedModuleType; use crate::modules::ExtModuleLoader; use crate::modules::ExtModuleLoaderCb; use crate::modules::ModuleCode; use crate::modules::ModuleError; use crate::modules::ModuleId; use crate::modules::ModuleLoadId; use crate::modules::ModuleLoader; use crate::modules::ModuleMap; use crate::modules::ModuleName; use crate::ops::*; use crate::realm::ContextState; use crate::realm::JsRealm; use crate::realm::JsRealmInner; use crate::snapshot_util; use crate::snapshot_util::SnapshotOptions; use crate::snapshot_util::SnapshottedData; use crate::source_map::SourceMapCache; use crate::source_map::SourceMapGetter; use crate::Extension; use crate::ModuleType; use crate::NoopModuleLoader; use crate::OpMiddlewareFn; use crate::OpResult; use crate::OpState; use crate::PromiseId; use anyhow::Context as AnyhowContext; use anyhow::Error; use futures::channel::oneshot; use futures::future::poll_fn; use futures::future::Future; use futures::future::FutureExt; use futures::future::MaybeDone; use futures::stream::StreamExt; use futures::task::noop_waker; use futures::task::AtomicWaker; use smallvec::SmallVec; use std::any::Any; use std::cell::RefCell; use std::collections::HashMap; use std::ffi::c_void; use std::mem::ManuallyDrop; use std::ops::Deref; use std::ops::DerefMut; use std::option::Option; use std::pin::Pin; use std::rc::Rc; use std::sync::atomic::AtomicBool; use std::sync::atomic::Ordering; use std::sync::Arc; use std::sync::Mutex; use std::sync::Once; use std::task::Context; use std::task::Poll; use v8::CreateParams; const STATE_DATA_OFFSET: u32 = 0; const MODULE_MAP_DATA_OFFSET: u32 = 1; pub enum Snapshot { Static(&'static [u8]), JustCreated(v8::StartupData), Boxed(Box<[u8]>), } pub type JsErrorCreateFn = dyn Fn(JsError) -> Error; pub type GetErrorClassFn = &'static dyn for<'e> Fn(&'e Error) -> &'static str; /// Objects that need to live as long as the isolate #[derive(Default)] struct IsolateAllocations { near_heap_limit_callback_data: Option<(Box>, v8::NearHeapLimitCallback)>, } /// ManuallyDrop> is clone, but it returns a ManuallyDrop> which is a massive /// memory-leak footgun. struct ManuallyDropRc(ManuallyDrop>); impl ManuallyDropRc { pub fn clone(&self) -> Rc { self.0.deref().clone() } } impl Deref for ManuallyDropRc { type Target = Rc; fn deref(&self) -> &Self::Target { self.0.deref() } } impl DerefMut for ManuallyDropRc { fn deref_mut(&mut self) -> &mut Self::Target { self.0.deref_mut() } } /// This struct contains the [`JsRuntimeState`] and [`v8::OwnedIsolate`] that are required /// to do an orderly shutdown of V8. We keep these in a separate struct to allow us to control /// the destruction more closely, as snapshots require the isolate to be destroyed by the /// snapshot process, not the destructor. /// /// The way rusty_v8 works w/snapshots is that the [`v8::OwnedIsolate`] gets consumed by a /// [`v8::snapshot::SnapshotCreator`] that is stored in its annex. It's a bit awkward, because this /// means we cannot let it drop (because we don't have it after a snapshot). On top of that, we have /// to consume it in the snapshot creator because otherwise it panics. /// /// This inner struct allows us to let the outer JsRuntime drop normally without a Drop impl, while we /// control dropping more closely here using ManuallyDrop. struct InnerIsolateState { snapshotting: bool, state: ManuallyDropRc>, v8_isolate: ManuallyDrop, } impl InnerIsolateState { /// Clean out the opstate and take the inspector to prevent the inspector from getting destroyed /// after we've torn down the contexts. If the inspector is not correctly torn down, random crashes /// happen in tests (and possibly for users using the inspector). pub fn prepare_for_cleanup(&mut self) { let mut state = self.state.borrow_mut(); let inspector = state.inspector.take(); state.op_state.borrow_mut().clear(); if let Some(inspector) = inspector { assert_eq!( Rc::strong_count(&inspector), 1, "The inspector must be dropped before the runtime" ); } } pub fn cleanup(&mut self) { self.prepare_for_cleanup(); let state_ptr = self.v8_isolate.get_data(STATE_DATA_OFFSET); // SAFETY: We are sure that it's a valid pointer for whole lifetime of // the runtime. _ = unsafe { Rc::from_raw(state_ptr as *const RefCell) }; let module_map_ptr = self.v8_isolate.get_data(MODULE_MAP_DATA_OFFSET); // SAFETY: We are sure that it's a valid pointer for whole lifetime of // the runtime. _ = unsafe { Rc::from_raw(module_map_ptr as *const RefCell) }; self.state.borrow_mut().destroy_all_realms(); debug_assert_eq!(Rc::strong_count(&self.state), 1); } pub fn prepare_for_snapshot(mut self) -> v8::OwnedIsolate { self.cleanup(); // SAFETY: We're copying out of self and then immediately forgetting self let (state, isolate) = unsafe { ( ManuallyDrop::take(&mut self.state.0), ManuallyDrop::take(&mut self.v8_isolate), ) }; std::mem::forget(self); drop(state); isolate } } impl Drop for InnerIsolateState { fn drop(&mut self) { self.cleanup(); // SAFETY: We gotta drop these unsafe { ManuallyDrop::drop(&mut self.state.0); if self.snapshotting { // Create the snapshot and just drop it. eprintln!("WARNING: v8::OwnedIsolate for snapshot was leaked"); } else { ManuallyDrop::drop(&mut self.v8_isolate); } } } } /// A single execution context of JavaScript. Corresponds roughly to the "Web /// Worker" concept in the DOM. //// /// The JsRuntimeImpl future completes when there is an error or when all /// pending ops have completed. /// /// API consumers will want to use either the [`JsRuntime`] or [`JsRuntimeForSnapshot`] /// type aliases. pub struct JsRuntimeImpl { inner: InnerIsolateState, module_map: Rc>, allocations: IsolateAllocations, extensions: Vec, event_loop_middlewares: Vec>, bindings_mode: BindingsMode, // Marks if this is considered the top-level runtime. Used only be inspector. is_main: bool, } /// The runtime type that most users will use when not creating a snapshot. pub struct JsRuntime(JsRuntimeImpl); impl Deref for JsRuntime { type Target = JsRuntimeImpl; fn deref(&self) -> &Self::Target { &self.0 } } impl DerefMut for JsRuntime { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } /// The runtime type used for snapshot creation. pub struct JsRuntimeForSnapshot(JsRuntimeImpl); impl Deref for JsRuntimeForSnapshot { type Target = JsRuntimeImpl; fn deref(&self) -> &Self::Target { &self.0 } } impl DerefMut for JsRuntimeForSnapshot { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } pub(crate) struct DynImportModEvaluate { load_id: ModuleLoadId, module_id: ModuleId, promise: v8::Global, module: v8::Global, } pub(crate) struct ModEvaluate { pub(crate) promise: Option>, pub(crate) has_evaluated: bool, pub(crate) handled_promise_rejections: Vec>, sender: oneshot::Sender>, } pub struct CrossIsolateStore(Arc>>); struct CrossIsolateStoreInner { map: HashMap, last_id: u32, } impl CrossIsolateStore { pub(crate) fn insert(&self, value: T) -> u32 { let mut store = self.0.lock().unwrap(); let last_id = store.last_id; store.map.insert(last_id, value); store.last_id += 1; last_id } pub(crate) fn take(&self, id: u32) -> Option { let mut store = self.0.lock().unwrap(); store.map.remove(&id) } } impl Default for CrossIsolateStore { fn default() -> Self { CrossIsolateStore(Arc::new(Mutex::new(CrossIsolateStoreInner { map: Default::default(), last_id: 0, }))) } } impl Clone for CrossIsolateStore { fn clone(&self) -> Self { Self(self.0.clone()) } } pub type SharedArrayBufferStore = CrossIsolateStore>; pub type CompiledWasmModuleStore = CrossIsolateStore; /// Internal state for JsRuntimeImpl which is stored in one of v8::Isolate's /// embedder slots. pub struct JsRuntimeState { global_realm: Option, known_realms: Vec, pub(crate) has_tick_scheduled: bool, pub(crate) pending_dyn_mod_evaluate: Vec, pub(crate) pending_mod_evaluate: Option, /// A counter used to delay our dynamic import deadlock detection by one spin /// of the event loop. dyn_module_evaluate_idle_counter: u32, pub(crate) source_map_getter: Option>>, pub(crate) source_map_cache: Rc>, pub(crate) have_unpolled_ops: bool, pub(crate) op_state: Rc>, pub(crate) shared_array_buffer_store: Option, pub(crate) compiled_wasm_module_store: Option, /// The error that was passed to an `op_dispatch_exception` call. /// It will be retrieved by `exception_to_err_result` and used as an error /// instead of any other exceptions. // TODO(nayeemrmn): This is polled in `exception_to_err_result()` which is // flimsy. Try to poll it similarly to `pending_promise_rejections`. pub(crate) dispatched_exception: Option>, pub(crate) inspector: Option>>, waker: AtomicWaker, } impl JsRuntimeState { pub(crate) fn destroy_all_realms(&mut self) { self.global_realm.take(); for realm in self.known_realms.drain(..) { realm.destroy() } } pub(crate) fn remove_realm( &mut self, realm_context: &Rc>, ) { self .known_realms .retain(|realm| !realm.is_same(realm_context)); } } fn v8_init( v8_platform: Option>, predictable: bool, ) { // Include 10MB ICU data file. #[repr(C, align(16))] struct IcuData([u8; 10541264]); static ICU_DATA: IcuData = IcuData(*include_bytes!("icudtl.dat")); v8::icu::set_common_data_72(&ICU_DATA.0).unwrap(); let flags = concat!( " --wasm-test-streaming", " --harmony-import-assertions", " --no-validate-asm", " --turbo_fast_api_calls", " --harmony-change-array-by-copy", ); if predictable { v8::V8::set_flags_from_string(&format!( "{}{}", flags, " --predictable --random-seed=42" )); } else { v8::V8::set_flags_from_string(flags); } let v8_platform = v8_platform .unwrap_or_else(|| v8::new_default_platform(0, false).make_shared()); v8::V8::initialize_platform(v8_platform); v8::V8::initialize(); } pub const V8_WRAPPER_TYPE_INDEX: i32 = 0; pub const V8_WRAPPER_OBJECT_INDEX: i32 = 1; #[derive(Default)] pub struct RuntimeOptions { /// Source map reference for errors. pub source_map_getter: Option>, /// Allows to map error type to a string "class" used to represent /// error in JavaScript. pub get_error_class_fn: Option, /// Implementation of `ModuleLoader` which will be /// called when V8 requests to load ES modules. /// /// If not provided runtime will error if code being /// executed tries to load modules. pub module_loader: Option>, /// JsRuntimeImpl extensions, not to be confused with ES modules. /// Only ops registered by extensions will be initialized. If you need /// to execute JS code from extensions, pass source files in `js` or `esm` /// option on `ExtensionBuilder`. /// /// If you are creating a runtime from a snapshot take care not to include /// JavaScript sources in the extensions. pub extensions: Vec, /// V8 snapshot that should be loaded on startup. pub startup_snapshot: Option, /// Isolate creation parameters. pub create_params: Option, /// V8 platform instance to use. Used when Deno initializes V8 /// (which it only does once), otherwise it's silenty dropped. pub v8_platform: Option>, /// The store to use for transferring SharedArrayBuffers between isolates. /// If multiple isolates should have the possibility of sharing /// SharedArrayBuffers, they should use the same [SharedArrayBufferStore]. If /// no [SharedArrayBufferStore] is specified, SharedArrayBuffer can not be /// serialized. pub shared_array_buffer_store: Option, /// The store to use for transferring `WebAssembly.Module` objects between /// isolates. /// If multiple isolates should have the possibility of sharing /// `WebAssembly.Module` objects, they should use the same /// [CompiledWasmModuleStore]. If no [CompiledWasmModuleStore] is specified, /// `WebAssembly.Module` objects cannot be serialized. pub compiled_wasm_module_store: Option, /// Start inspector instance to allow debuggers to connect. pub inspector: bool, /// Describe if this is the main runtime instance, used by debuggers in some /// situation - like disconnecting when program finishes running. pub is_main: bool, } #[derive(Default)] pub struct RuntimeSnapshotOptions { /// An optional callback that will be called for each module that is loaded /// during snapshotting. This callback can be used to transpile source on the /// fly, during snapshotting, eg. to transpile TypeScript to JavaScript. pub snapshot_module_load_cb: Option, } trait JsRuntimeInternalTrait { fn create_raw_isolate( refs: &'static v8::ExternalReferences, params: Option, snapshot: SnapshotOptions, ) -> v8::OwnedIsolate; } impl JsRuntimeImpl { fn init_v8(v8_platform: Option>) { static DENO_INIT: Once = Once::new(); static DENO_PREDICTABLE: AtomicBool = AtomicBool::new(false); static DENO_PREDICTABLE_SET: AtomicBool = AtomicBool::new(false); let predictable = FOR_SNAPSHOT || cfg!(test); if DENO_PREDICTABLE_SET.load(Ordering::SeqCst) { let current = DENO_PREDICTABLE.load(Ordering::SeqCst); assert_eq!(current, predictable, "V8 may only be initialized once in either snapshotting or non-snapshotting mode. Either snapshotting or non-snapshotting mode may be used in a single process, not both."); DENO_PREDICTABLE_SET.store(true, Ordering::SeqCst); DENO_PREDICTABLE.store(predictable, Ordering::SeqCst); } DENO_INIT.call_once(move || v8_init(v8_platform, predictable)); } fn new_runtime( mut options: RuntimeOptions, snapshot_options: SnapshotOptions, maybe_load_callback: Option, ) -> JsRuntimeImpl where JsRuntimeImpl: JsRuntimeInternalTrait, { let (op_state, ops) = Self::create_opstate(&mut options, &snapshot_options); let op_state = Rc::new(RefCell::new(op_state)); // Collect event-loop middleware let mut event_loop_middlewares = Vec::with_capacity(options.extensions.len()); for extension in &mut options.extensions { if let Some(middleware) = extension.init_event_loop_middleware() { event_loop_middlewares.push(middleware); } } let align = std::mem::align_of::(); let layout = std::alloc::Layout::from_size_align( std::mem::size_of::<*mut v8::OwnedIsolate>(), align, ) .unwrap(); assert!(layout.size() > 0); let isolate_ptr: *mut v8::OwnedIsolate = // SAFETY: we just asserted that layout has non-0 size. unsafe { std::alloc::alloc(layout) as *mut _ }; let state_rc = Rc::new(RefCell::new(JsRuntimeState { pending_dyn_mod_evaluate: vec![], pending_mod_evaluate: None, dyn_module_evaluate_idle_counter: 0, has_tick_scheduled: false, source_map_getter: options.source_map_getter.map(Rc::new), source_map_cache: Default::default(), shared_array_buffer_store: options.shared_array_buffer_store, compiled_wasm_module_store: options.compiled_wasm_module_store, op_state: op_state.clone(), waker: AtomicWaker::new(), have_unpolled_ops: false, dispatched_exception: None, // Some fields are initialized later after isolate is created inspector: None, global_realm: None, known_realms: Vec::with_capacity(1), })); let weak = Rc::downgrade(&state_rc); let context_state = Rc::new(RefCell::new(ContextState::default())); let op_ctxs = ops .into_iter() .enumerate() .map(|(id, decl)| { OpCtx::new( id as u16, context_state.clone(), Rc::new(decl), op_state.clone(), weak.clone(), ) }) .collect::>() .into_boxed_slice(); context_state.borrow_mut().op_ctxs = op_ctxs; context_state.borrow_mut().isolate = Some(isolate_ptr); let refs = bindings::external_references(&context_state.borrow().op_ctxs); // V8 takes ownership of external_references. let refs: &'static v8::ExternalReferences = Box::leak(Box::new(refs)); let bindings_mode = match snapshot_options { SnapshotOptions::None => bindings::BindingsMode::New, SnapshotOptions::Create => bindings::BindingsMode::New, SnapshotOptions::Load(_) => bindings::BindingsMode::LoadedFinal, SnapshotOptions::CreateFromExisting(_) => bindings::BindingsMode::Loaded, }; let snapshotting = snapshot_options.will_snapshot(); let (mut isolate, global_context, snapshotted_data) = Self::create_isolate( refs, options.create_params.take(), snapshot_options, ); // SAFETY: this is first use of `isolate_ptr` so we are sure we're // not overwriting an existing pointer. isolate = unsafe { isolate_ptr.write(isolate); isolate_ptr.read() }; let mut context_scope: v8::HandleScope = v8::HandleScope::with_context(&mut isolate, global_context.clone()); let scope = &mut context_scope; let context = v8::Local::new(scope, global_context.clone()); bindings::initialize_context( scope, context, &context_state.borrow().op_ctxs, bindings_mode, ); context.set_slot(scope, context_state.clone()); op_state.borrow_mut().put(isolate_ptr); let inspector = if options.inspector { Some(JsRuntimeInspector::new(scope, context, options.is_main)) } else { None }; let loader = options .module_loader .unwrap_or_else(|| Rc::new(NoopModuleLoader)); { let global_realm = JsRealmInner::new( context_state, global_context, state_rc.clone(), true, ); let mut state = state_rc.borrow_mut(); state.global_realm = Some(JsRealm::new(global_realm.clone())); state.inspector = inspector; state.known_realms.push(global_realm); } scope.set_data( STATE_DATA_OFFSET, Rc::into_raw(state_rc.clone()) as *mut c_void, ); let module_map_rc = Rc::new(RefCell::new(ModuleMap::new(loader))); if let Some(snapshotted_data) = snapshotted_data { let mut module_map = module_map_rc.borrow_mut(); module_map.update_with_snapshotted_data(scope, snapshotted_data); } scope.set_data( MODULE_MAP_DATA_OFFSET, Rc::into_raw(module_map_rc.clone()) as *mut c_void, ); drop(context_scope); let mut js_runtime = JsRuntimeImpl { inner: InnerIsolateState { snapshotting, state: ManuallyDropRc(ManuallyDrop::new(state_rc)), v8_isolate: ManuallyDrop::new(isolate), }, bindings_mode, allocations: IsolateAllocations::default(), event_loop_middlewares, extensions: options.extensions, module_map: module_map_rc, is_main: options.is_main, }; let realm = js_runtime.global_realm(); // TODO(mmastrac): We should thread errors back out of the runtime js_runtime .init_extension_js(&realm, maybe_load_callback) .unwrap(); js_runtime } /// Create a new [`v8::OwnedIsolate`] and its global [`v8::Context`] from optional parameters and snapshot. fn create_isolate( refs: &'static v8::ExternalReferences, params: Option, snapshot: SnapshotOptions, ) -> ( v8::OwnedIsolate, v8::Global, Option, ) where JsRuntimeImpl: JsRuntimeInternalTrait, { let has_snapshot = snapshot.loaded(); let mut isolate = Self::create_raw_isolate(refs, params, snapshot); isolate.set_capture_stack_trace_for_uncaught_exceptions(true, 10); isolate.set_promise_reject_callback(bindings::promise_reject_callback); isolate.set_host_initialize_import_meta_object_callback( bindings::host_initialize_import_meta_object_callback, ); isolate.set_host_import_module_dynamically_callback( bindings::host_import_module_dynamically_callback, ); isolate.set_wasm_async_resolve_promise_callback( bindings::wasm_async_resolve_promise_callback, ); let (context, snapshotted_data) = { let scope = &mut v8::HandleScope::new(&mut isolate); let context = v8::Context::new(scope); // Get module map data from the snapshot let snapshotted_data = if has_snapshot { Some(snapshot_util::get_snapshotted_data(scope, context)) } else { None }; (v8::Global::new(scope, context), snapshotted_data) }; (isolate, context, snapshotted_data) } #[cfg(test)] #[inline] pub(crate) fn module_map(&self) -> &Rc> { &self.module_map } #[inline] pub fn global_context(&self) -> v8::Global { self .inner .state .borrow() .known_realms .get(0) .unwrap() .context() .clone() } #[inline] pub fn v8_isolate(&mut self) -> &mut v8::OwnedIsolate { &mut self.inner.v8_isolate } #[inline] pub fn inspector(&mut self) -> Rc> { self.inner.state.borrow().inspector() } #[inline] pub fn global_realm(&mut self) -> JsRealm { let state = self.inner.state.borrow(); state.global_realm.clone().unwrap() } /// Returns the extensions that this runtime is using (including internal ones). pub fn extensions(&self) -> &Vec { &self.extensions } /// Creates a new realm (V8 context) in this JS execution context, /// pre-initialized with all of the extensions that were passed in /// [`RuntimeOptions::extensions`] when the [`JsRuntimeImpl`] was /// constructed. pub fn create_realm(&mut self) -> Result { let realm = { let context_state = Rc::new(RefCell::new(ContextState::default())); let op_ctxs: Box<[OpCtx]> = self .global_realm() .0 .state() .borrow() .op_ctxs .iter() .map(|op_ctx| { OpCtx::new( op_ctx.id, context_state.clone(), op_ctx.decl.clone(), op_ctx.state.clone(), op_ctx.runtime_state.clone(), ) }) .collect(); context_state.borrow_mut().op_ctxs = op_ctxs; context_state.borrow_mut().isolate = Some(self.v8_isolate() as _); let raw_ptr = self.v8_isolate() as *mut v8::OwnedIsolate; // SAFETY: Having the scope tied to self's lifetime makes it impossible to // reference JsRuntimeState::op_ctxs while the scope is alive. Here we // turn it into an unbound lifetime, which is sound because 1. it only // lives until the end of this block, and 2. the HandleScope only has // access to the isolate, and nothing else we're accessing from self does. let isolate = unsafe { raw_ptr.as_mut() }.unwrap(); let scope = &mut v8::HandleScope::new(isolate); let context = v8::Context::new(scope); let scope = &mut v8::ContextScope::new(scope, context); let context = bindings::initialize_context( scope, context, &context_state.borrow().op_ctxs, self.bindings_mode, ); context.set_slot(scope, context_state.clone()); let realm = JsRealmInner::new( context_state, v8::Global::new(scope, context), self.inner.state.clone(), false, ); let mut state = self.inner.state.borrow_mut(); state.known_realms.push(realm.clone()); JsRealm::new(realm) }; self.init_extension_js(&realm, None)?; Ok(realm) } #[inline] pub fn handle_scope(&mut self) -> v8::HandleScope { self.global_realm().handle_scope(self.v8_isolate()) } /// Initializes JS of provided Extensions in the given realm. fn init_extension_js( &mut self, realm: &JsRealm, maybe_load_callback: Option, ) -> Result<(), Error> { // Initialization of JS happens in phases: // 1. Iterate through all extensions: // a. Execute all extension "script" JS files // b. Load all extension "module" JS files (but do not execute them yet) // 2. Iterate through all extensions: // a. If an extension has a `esm_entry_point`, execute it. // Take extensions temporarily so we can avoid have a mutable reference to self let extensions = std::mem::take(&mut self.extensions); // TODO(nayeemrmn): Module maps should be per-realm. let loader = self.module_map.borrow().loader.clone(); let ext_loader = Rc::new(ExtModuleLoader::new( &extensions, maybe_load_callback.map(Rc::new), )); self.module_map.borrow_mut().loader = ext_loader; let mut esm_entrypoints = vec![]; futures::executor::block_on(async { for extension in &extensions { let maybe_esm_entry_point = extension.get_esm_entry_point(); if let Some(esm_files) = extension.get_esm_sources() { for file_source in esm_files { self .load_side_module( &ModuleSpecifier::parse(file_source.specifier)?, None, ) .await?; } } if let Some(entry_point) = maybe_esm_entry_point { esm_entrypoints.push(entry_point); } if let Some(js_files) = extension.get_js_sources() { for file_source in js_files { realm.execute_script( self.v8_isolate(), file_source.specifier, file_source.load()?, )?; } } if extension.is_core { self.init_cbs(realm); } } for specifier in esm_entrypoints { let mod_id = { self .module_map .borrow() .get_id(specifier, AssertedModuleType::JavaScriptOrWasm) .unwrap_or_else(|| { panic!("{} not present in the module map", specifier) }) }; let receiver = self.mod_evaluate(mod_id); self.run_event_loop(false).await?; receiver .await? .with_context(|| format!("Couldn't execute '{specifier}'"))?; } #[cfg(debug_assertions)] { let module_map_rc = self.module_map.clone(); let mut scope = realm.handle_scope(self.v8_isolate()); let module_map = module_map_rc.borrow(); module_map.assert_all_modules_evaluated(&mut scope); } Ok::<_, anyhow::Error>(()) })?; self.extensions = extensions; self.module_map.borrow_mut().loader = loader; Ok(()) } /// Collects ops from extensions & applies middleware fn collect_ops(exts: &mut [Extension]) -> Vec { for (ext, previous_exts) in exts.iter().enumerate().map(|(i, ext)| (ext, &exts[..i])) { ext.check_dependencies(previous_exts); } // Middleware let middleware: Vec> = exts .iter_mut() .filter_map(|e| e.init_middleware()) .collect(); // macroware wraps an opfn in all the middleware let macroware = move |d| middleware.iter().fold(d, |d, m| m(d)); // Flatten ops, apply middlware & override disabled ops let ops: Vec<_> = exts .iter_mut() .filter_map(|e| e.init_ops()) .flatten() .map(|d| OpDecl { name: d.name, ..macroware(d) }) .collect(); // In debug build verify there are no duplicate ops. #[cfg(debug_assertions)] { let mut count_by_name = HashMap::new(); for op in ops.iter() { count_by_name .entry(&op.name) .or_insert(vec![]) .push(op.name.to_string()); } let mut duplicate_ops = vec![]; for (op_name, _count) in count_by_name.iter().filter(|(_k, v)| v.len() > 1) { duplicate_ops.push(op_name.to_string()); } if !duplicate_ops.is_empty() { let mut msg = "Found ops with duplicate names:\n".to_string(); for op_name in duplicate_ops { msg.push_str(&format!(" - {}\n", op_name)); } msg.push_str("Op names need to be unique."); panic!("{}", msg); } } ops } /// Initializes ops of provided Extensions fn create_opstate( options: &mut RuntimeOptions, snapshot_options: &SnapshotOptions, ) -> (OpState, Vec) { // Add built-in extension if snapshot_options.loaded() { options .extensions .insert(0, crate::ops_builtin::core::init_ops()); } else { options .extensions .insert(0, crate::ops_builtin::core::init_ops_and_esm()); } let ops = Self::collect_ops(&mut options.extensions); let mut op_state = OpState::new(ops.len()); if let Some(get_error_class_fn) = options.get_error_class_fn { op_state.get_error_class_fn = get_error_class_fn; } // Setup state for e in &mut options.extensions { // ops are already registered during in bindings::initialize_context(); e.init_state(&mut op_state); } (op_state, ops) } pub fn eval<'s, T>( scope: &mut v8::HandleScope<'s>, code: &str, ) -> Option> where v8::Local<'s, T>: TryFrom, Error = v8::DataError>, { let scope = &mut v8::EscapableHandleScope::new(scope); let source = v8::String::new(scope, code).unwrap(); let script = v8::Script::compile(scope, source, None).unwrap(); let v = script.run(scope)?; scope.escape(v).try_into().ok() } /// Grabs a reference to core.js' eventLoopTick & buildCustomError fn init_cbs(&mut self, realm: &JsRealm) { let (event_loop_tick_cb, build_custom_error_cb) = { let scope = &mut realm.handle_scope(self.v8_isolate()); let context = realm.context(); let context_local = v8::Local::new(scope, context); let global = context_local.global(scope); let deno_str = v8::String::new_external_onebyte_static(scope, b"Deno").unwrap(); let core_str = v8::String::new_external_onebyte_static(scope, b"core").unwrap(); let event_loop_tick_str = v8::String::new_external_onebyte_static(scope, b"eventLoopTick") .unwrap(); let build_custom_error_str = v8::String::new_external_onebyte_static(scope, b"buildCustomError") .unwrap(); let deno_obj: v8::Local = global .get(scope, deno_str.into()) .unwrap() .try_into() .unwrap(); let core_obj: v8::Local = deno_obj .get(scope, core_str.into()) .unwrap() .try_into() .unwrap(); let event_loop_tick_cb: v8::Local = core_obj .get(scope, event_loop_tick_str.into()) .unwrap() .try_into() .unwrap(); let build_custom_error_cb: v8::Local = core_obj .get(scope, build_custom_error_str.into()) .unwrap() .try_into() .unwrap(); ( v8::Global::new(scope, event_loop_tick_cb), v8::Global::new(scope, build_custom_error_cb), ) }; // Put global handles in the realm's ContextState let state_rc = realm.0.state(); let mut state = state_rc.borrow_mut(); state .js_event_loop_tick_cb .replace(Rc::new(event_loop_tick_cb)); state .js_build_custom_error_cb .replace(Rc::new(build_custom_error_cb)); } /// Returns the runtime's op state, which can be used to maintain ops /// and access resources between op calls. pub fn op_state(&mut self) -> Rc> { let state = self.inner.state.borrow(); state.op_state.clone() } /// Executes traditional JavaScript code (traditional = not ES modules). /// /// The execution takes place on the current global context, so it is possible /// to maintain local JS state and invoke this method multiple times. /// /// `name` can be a filepath or any other string, but it is required to be 7-bit ASCII, eg. /// /// - "/some/file/path.js" /// - "" /// - "[native code]" /// /// The same `name` value can be used for multiple executions. /// /// `Error` can usually be downcast to `JsError`. pub fn execute_script( &mut self, name: &'static str, source_code: ModuleCode, ) -> Result, Error> { self .global_realm() .execute_script(self.v8_isolate(), name, source_code) } /// Executes traditional JavaScript code (traditional = not ES modules). /// /// The execution takes place on the current global context, so it is possible /// to maintain local JS state and invoke this method multiple times. /// /// `name` can be a filepath or any other string, but it is required to be 7-bit ASCII, eg. /// /// - "/some/file/path.js" /// - "" /// - "[native code]" /// /// The same `name` value can be used for multiple executions. /// /// `Error` can usually be downcast to `JsError`. pub fn execute_script_static( &mut self, name: &'static str, source_code: &'static str, ) -> Result, Error> { self.global_realm().execute_script( self.v8_isolate(), name, ModuleCode::from_static(source_code), ) } /// Call a function. If it returns a promise, run the event loop until that /// promise is settled. If the promise rejects or there is an uncaught error /// in the event loop, return `Err(error)`. Or return `Ok()`. pub async fn call_and_await( &mut self, function: &v8::Global, ) -> Result, Error> { let promise = { let scope = &mut self.handle_scope(); let cb = function.open(scope); let this = v8::undefined(scope).into(); let promise = cb.call(scope, this, &[]); if promise.is_none() || scope.is_execution_terminating() { let undefined = v8::undefined(scope).into(); return exception_to_err_result(scope, undefined, false); } v8::Global::new(scope, promise.unwrap()) }; self.resolve_value(promise).await } /// Returns the namespace object of a module. /// /// This is only available after module evaluation has completed. /// This function panics if module has not been instantiated. pub fn get_module_namespace( &mut self, module_id: ModuleId, ) -> Result, Error> { let module_handle = self .module_map .borrow() .get_handle(module_id) .expect("ModuleInfo not found"); let scope = &mut self.handle_scope(); let module = module_handle.open(scope); if module.get_status() == v8::ModuleStatus::Errored { let exception = module.get_exception(); return exception_to_err_result(scope, exception, false); } assert!(matches!( module.get_status(), v8::ModuleStatus::Instantiated | v8::ModuleStatus::Evaluated )); let module_namespace: v8::Local = v8::Local::try_from(module.get_module_namespace()) .map_err(|err: v8::DataError| generic_error(err.to_string()))?; Ok(v8::Global::new(scope, module_namespace)) } /// Registers a callback on the isolate when the memory limits are approached. /// Use this to prevent V8 from crashing the process when reaching the limit. /// /// Calls the closure with the current heap limit and the initial heap limit. /// The return value of the closure is set as the new limit. pub fn add_near_heap_limit_callback(&mut self, cb: C) where C: FnMut(usize, usize) -> usize + 'static, { let boxed_cb = Box::new(RefCell::new(cb)); let data = boxed_cb.as_ptr() as *mut c_void; let prev = self .allocations .near_heap_limit_callback_data .replace((boxed_cb, near_heap_limit_callback::)); if let Some((_, prev_cb)) = prev { self .v8_isolate() .remove_near_heap_limit_callback(prev_cb, 0); } self .v8_isolate() .add_near_heap_limit_callback(near_heap_limit_callback::, data); } pub fn remove_near_heap_limit_callback(&mut self, heap_limit: usize) { if let Some((_, cb)) = self.allocations.near_heap_limit_callback_data.take() { self .v8_isolate() .remove_near_heap_limit_callback(cb, heap_limit); } } fn pump_v8_message_loop(&mut self) -> Result<(), Error> { let scope = &mut self.handle_scope(); while v8::Platform::pump_message_loop( &v8::V8::get_current_platform(), scope, false, // don't block if there are no tasks ) { // do nothing } let tc_scope = &mut v8::TryCatch::new(scope); tc_scope.perform_microtask_checkpoint(); match tc_scope.exception() { None => Ok(()), Some(exception) => exception_to_err_result(tc_scope, exception, false), } } pub fn maybe_init_inspector(&mut self) { if self.inner.state.borrow().inspector.is_some() { return; } let context = self.global_context(); let scope = &mut v8::HandleScope::with_context( self.inner.v8_isolate.as_mut(), context.clone(), ); let context = v8::Local::new(scope, context); let mut state = self.inner.state.borrow_mut(); state.inspector = Some(JsRuntimeInspector::new(scope, context, self.is_main)); } pub fn poll_value( &mut self, global: &v8::Global, cx: &mut Context, ) -> Poll, Error>> { let state = self.poll_event_loop(cx, false); let mut scope = self.handle_scope(); let local = v8::Local::::new(&mut scope, global); if let Ok(promise) = v8::Local::::try_from(local) { match promise.state() { v8::PromiseState::Pending => match state { Poll::Ready(Ok(_)) => { let msg = "Promise resolution is still pending but the event loop has already resolved."; Poll::Ready(Err(generic_error(msg))) } Poll::Ready(Err(e)) => Poll::Ready(Err(e)), Poll::Pending => Poll::Pending, }, v8::PromiseState::Fulfilled => { let value = promise.result(&mut scope); let value_handle = v8::Global::new(&mut scope, value); Poll::Ready(Ok(value_handle)) } v8::PromiseState::Rejected => { let exception = promise.result(&mut scope); Poll::Ready(exception_to_err_result(&mut scope, exception, false)) } } } else { let value_handle = v8::Global::new(&mut scope, local); Poll::Ready(Ok(value_handle)) } } /// Waits for the given value to resolve while polling the event loop. /// /// This future resolves when either the value is resolved or the event loop runs to /// completion. pub async fn resolve_value( &mut self, global: v8::Global, ) -> Result, Error> { poll_fn(|cx| self.poll_value(&global, cx)).await } /// Runs event loop to completion /// /// This future resolves when: /// - there are no more pending dynamic imports /// - there are no more pending ops /// - there are no more active inspector sessions (only if `wait_for_inspector` is set to true) pub async fn run_event_loop( &mut self, wait_for_inspector: bool, ) -> Result<(), Error> { poll_fn(|cx| self.poll_event_loop(cx, wait_for_inspector)).await } /// Runs a single tick of event loop /// /// If `wait_for_inspector` is set to true event loop /// will return `Poll::Pending` if there are active inspector sessions. pub fn poll_event_loop( &mut self, cx: &mut Context, wait_for_inspector: bool, ) -> Poll> { let has_inspector: bool; { let state = self.inner.state.borrow(); has_inspector = state.inspector.is_some(); state.waker.register(cx.waker()); } if has_inspector { // We poll the inspector first. let _ = self.inspector().borrow().poll_sessions(Some(cx)).unwrap(); } self.pump_v8_message_loop()?; // Dynamic module loading - ie. modules loaded using "import()" { // Run in a loop so that dynamic imports that only depend on another // dynamic import can be resolved in this event loop iteration. // // For example, a dynamically imported module like the following can be // immediately resolved after `dependency.ts` is fully evaluated, but it // wouldn't if not for this loop. // // await delay(1000); // await import("./dependency.ts"); // console.log("test") // loop { let poll_imports = self.prepare_dyn_imports(cx)?; assert!(poll_imports.is_ready()); let poll_imports = self.poll_dyn_imports(cx)?; assert!(poll_imports.is_ready()); if !self.evaluate_dyn_imports() { break; } } } // Resolve async ops, run all next tick callbacks and macrotasks callbacks // and only then check for any promise exceptions (`unhandledrejection` // handlers are run in macrotasks callbacks so we need to let them run // first). self.do_js_event_loop_tick(cx)?; self.check_promise_rejections()?; // Event loop middlewares let mut maybe_scheduling = false; { let op_state = self.inner.state.borrow().op_state.clone(); for f in &self.event_loop_middlewares { if f(op_state.clone(), cx) { maybe_scheduling = true; } } } // Top level module self.evaluate_pending_module(); let pending_state = self.event_loop_pending_state(); if !pending_state.is_pending() && !maybe_scheduling { if has_inspector { let inspector = self.inspector(); let has_active_sessions = inspector.borrow().has_active_sessions(); let has_blocking_sessions = inspector.borrow().has_blocking_sessions(); if wait_for_inspector && has_active_sessions { // If there are no blocking sessions (eg. REPL) we can now notify // debugger that the program has finished running and we're ready // to exit the process once debugger disconnects. if !has_blocking_sessions { let context = self.global_context(); let scope = &mut self.handle_scope(); inspector.borrow_mut().context_destroyed(scope, context); println!("Program finished. Waiting for inspector to disconnect to exit the process..."); } return Poll::Pending; } } return Poll::Ready(Ok(())); } let state = self.inner.state.borrow(); // Check if more async ops have been dispatched // during this turn of event loop. // If there are any pending background tasks, we also wake the runtime to // make sure we don't miss them. // TODO(andreubotella) The event loop will spin as long as there are pending // background tasks. We should look into having V8 notify us when a // background task is done. if state.have_unpolled_ops || pending_state.has_pending_background_tasks || pending_state.has_tick_scheduled || maybe_scheduling { state.waker.wake(); } drop(state); if pending_state.has_pending_module_evaluation { if pending_state.has_pending_refed_ops || pending_state.has_pending_dyn_imports || pending_state.has_pending_dyn_module_evaluation || pending_state.has_pending_background_tasks || pending_state.has_tick_scheduled || maybe_scheduling { // pass, will be polled again } else { let scope = &mut self.handle_scope(); let messages = find_stalled_top_level_await(scope); // We are gonna print only a single message to provide a nice formatting // with source line of offending promise shown. Once user fixed it, then // they will get another error message for the next promise (but this // situation is gonna be very rare, if ever happening). assert!(!messages.is_empty()); let msg = v8::Local::new(scope, messages[0].clone()); let js_error = JsError::from_v8_message(scope, msg); return Poll::Ready(Err(js_error.into())); } } if pending_state.has_pending_dyn_module_evaluation { if pending_state.has_pending_refed_ops || pending_state.has_pending_dyn_imports || pending_state.has_pending_background_tasks || pending_state.has_tick_scheduled { // pass, will be polled again } else if self.inner.state.borrow().dyn_module_evaluate_idle_counter >= 1 { let scope = &mut self.handle_scope(); let messages = find_stalled_top_level_await(scope); // We are gonna print only a single message to provide a nice formatting // with source line of offending promise shown. Once user fixed it, then // they will get another error message for the next promise (but this // situation is gonna be very rare, if ever happening). assert!(!messages.is_empty()); let msg = v8::Local::new(scope, messages[0].clone()); let js_error = JsError::from_v8_message(scope, msg); return Poll::Ready(Err(js_error.into())); } else { let mut state = self.inner.state.borrow_mut(); // Delay the above error by one spin of the event loop. A dynamic import // evaluation may complete during this, in which case the counter will // reset. state.dyn_module_evaluate_idle_counter += 1; state.waker.wake(); } } Poll::Pending } fn event_loop_pending_state(&mut self) -> EventLoopPendingState { let mut scope = v8::HandleScope::new(self.inner.v8_isolate.as_mut()); EventLoopPendingState::new( &mut scope, &mut self.inner.state.borrow_mut(), &self.module_map.borrow(), ) } } impl JsRuntime { /// Only constructor, configuration is done through `options`. pub fn new(mut options: RuntimeOptions) -> JsRuntime { JsRuntimeImpl::::init_v8(options.v8_platform.take()); let snapshot_options = snapshot_util::SnapshotOptions::new_from( options.startup_snapshot.take(), false, ); JsRuntime(JsRuntimeImpl::::new_runtime( options, snapshot_options, None, )) } pub(crate) fn state_from( isolate: &v8::Isolate, ) -> Rc> { let state_ptr = isolate.get_data(STATE_DATA_OFFSET); let state_rc = // SAFETY: We are sure that it's a valid pointer for whole lifetime of // the runtime. unsafe { Rc::from_raw(state_ptr as *const RefCell) }; let state = state_rc.clone(); std::mem::forget(state_rc); state } pub(crate) fn module_map_from( isolate: &v8::Isolate, ) -> Rc> { let module_map_ptr = isolate.get_data(MODULE_MAP_DATA_OFFSET); let module_map_rc = // SAFETY: We are sure that it's a valid pointer for whole lifetime of // the runtime. unsafe { Rc::from_raw(module_map_ptr as *const RefCell) }; let module_map = module_map_rc.clone(); std::mem::forget(module_map_rc); module_map } pub(crate) fn event_loop_pending_state_from_scope( scope: &mut v8::HandleScope, ) -> EventLoopPendingState { let state = JsRuntime::state_from(scope); let module_map = JsRuntime::module_map_from(scope); let state = EventLoopPendingState::new( scope, &mut state.borrow_mut(), &module_map.borrow(), ); state } } impl JsRuntimeForSnapshot { pub fn new( mut options: RuntimeOptions, runtime_snapshot_options: RuntimeSnapshotOptions, ) -> JsRuntimeForSnapshot { JsRuntimeImpl::::init_v8(options.v8_platform.take()); let snapshot_options = snapshot_util::SnapshotOptions::new_from( options.startup_snapshot.take(), true, ); JsRuntimeForSnapshot(JsRuntimeImpl::::new_runtime( options, snapshot_options, runtime_snapshot_options.snapshot_module_load_cb, )) } /// Takes a snapshot and consumes the runtime. /// /// `Error` can usually be downcast to `JsError`. pub fn snapshot(mut self) -> v8::StartupData { // Ensure there are no live inspectors to prevent crashes. self.inner.prepare_for_cleanup(); // Set the context to be snapshot's default context { let context = self.global_context(); let mut scope = self.handle_scope(); let local_context = v8::Local::new(&mut scope, context); scope.set_default_context(local_context); } // Serialize the module map and store its data in the snapshot. { let snapshotted_data = { // `self.module_map` points directly to the v8 isolate data slot, which // we must explicitly drop before destroying the isolate. We have to // take and drop this `Rc` before that. let module_map_rc = std::mem::take(&mut self.module_map); let module_map = module_map_rc.borrow(); module_map.serialize_for_snapshotting(&mut self.handle_scope()) }; let context = self.global_context(); let mut scope = self.handle_scope(); snapshot_util::set_snapshotted_data( &mut scope, context, snapshotted_data, ); } self .0 .inner .prepare_for_snapshot() .create_blob(v8::FunctionCodeHandling::Keep) .unwrap() } } impl JsRuntimeInternalTrait for JsRuntimeImpl { fn create_raw_isolate( refs: &'static v8::ExternalReferences, _params: Option, snapshot: SnapshotOptions, ) -> v8::OwnedIsolate { snapshot_util::create_snapshot_creator(refs, snapshot) } } impl JsRuntimeInternalTrait for JsRuntimeImpl { fn create_raw_isolate( refs: &'static v8::ExternalReferences, params: Option, snapshot: SnapshotOptions, ) -> v8::OwnedIsolate { let mut params = params .unwrap_or_default() .embedder_wrapper_type_info_offsets( V8_WRAPPER_TYPE_INDEX, V8_WRAPPER_OBJECT_INDEX, ) .external_references(&**refs); if let Some(snapshot) = snapshot.snapshot() { params = match snapshot { Snapshot::Static(data) => params.snapshot_blob(data), Snapshot::JustCreated(data) => params.snapshot_blob(data), Snapshot::Boxed(data) => params.snapshot_blob(data), }; } v8::Isolate::new(params) } } fn get_stalled_top_level_await_message_for_module( scope: &mut v8::HandleScope, module_id: ModuleId, ) -> Vec> { let module_map = JsRuntime::module_map_from(scope); let module_map = module_map.borrow(); let module_handle = module_map.handles.get(module_id).unwrap(); let module = v8::Local::new(scope, module_handle); let stalled = module.get_stalled_top_level_await_message(scope); let mut messages = vec![]; for (_, message) in stalled { messages.push(v8::Global::new(scope, message)); } messages } fn find_stalled_top_level_await( scope: &mut v8::HandleScope, ) -> Vec> { let module_map = JsRuntime::module_map_from(scope); let module_map = module_map.borrow(); // First check if that's root module let root_module_id = module_map .info .iter() .filter(|m| m.main) .map(|m| m.id) .next(); if let Some(root_module_id) = root_module_id { let messages = get_stalled_top_level_await_message_for_module(scope, root_module_id); if !messages.is_empty() { return messages; } } // It wasn't a top module, so iterate over all modules and try to find // any with stalled top level await for module_id in 0..module_map.handles.len() { let messages = get_stalled_top_level_await_message_for_module(scope, module_id); if !messages.is_empty() { return messages; } } unreachable!() } #[derive(Clone, Copy, PartialEq, Eq, Debug)] pub(crate) struct EventLoopPendingState { has_pending_refed_ops: bool, has_pending_dyn_imports: bool, has_pending_dyn_module_evaluation: bool, has_pending_module_evaluation: bool, has_pending_background_tasks: bool, has_tick_scheduled: bool, } impl EventLoopPendingState { pub fn new( scope: &mut v8::HandleScope<()>, state: &mut JsRuntimeState, module_map: &ModuleMap, ) -> EventLoopPendingState { let mut num_unrefed_ops = 0; let mut num_pending_ops = 0; for realm in &state.known_realms { num_unrefed_ops += realm.num_unrefed_ops(); num_pending_ops += realm.num_pending_ops(); } EventLoopPendingState { has_pending_refed_ops: num_pending_ops > num_unrefed_ops, has_pending_dyn_imports: module_map.has_pending_dynamic_imports(), has_pending_dyn_module_evaluation: !state .pending_dyn_mod_evaluate .is_empty(), has_pending_module_evaluation: state.pending_mod_evaluate.is_some(), has_pending_background_tasks: scope.has_pending_background_tasks(), has_tick_scheduled: state.has_tick_scheduled, } } pub fn is_pending(&self) -> bool { self.has_pending_refed_ops || self.has_pending_dyn_imports || self.has_pending_dyn_module_evaluation || self.has_pending_module_evaluation || self.has_pending_background_tasks || self.has_tick_scheduled } } extern "C" fn near_heap_limit_callback( data: *mut c_void, current_heap_limit: usize, initial_heap_limit: usize, ) -> usize where F: FnMut(usize, usize) -> usize, { // SAFETY: The data is a pointer to the Rust callback function. It is stored // in `JsRuntimeImpl::allocations` and thus is guaranteed to outlive the isolate. let callback = unsafe { &mut *(data as *mut F) }; callback(current_heap_limit, initial_heap_limit) } impl JsRuntimeState { pub(crate) fn inspector(&self) -> Rc> { self.inspector.as_ref().unwrap().clone() } /// Called by `bindings::host_import_module_dynamically_callback` /// after initiating new dynamic import load. pub fn notify_new_dynamic_import(&mut self) { // Notify event loop to poll again soon. self.waker.wake(); } } pub(crate) fn exception_to_err_result( scope: &mut v8::HandleScope, exception: v8::Local, in_promise: bool, ) -> Result { let state_rc = JsRuntime::state_from(scope); let was_terminating_execution = scope.is_execution_terminating(); // Disable running microtasks for a moment. When upgrading to V8 v11.4 // we discovered that canceling termination here will cause the queued // microtasks to run which breaks some tests. scope.set_microtasks_policy(v8::MicrotasksPolicy::Explicit); // If TerminateExecution was called, cancel isolate termination so that the // exception can be created. Note that `scope.is_execution_terminating()` may // have returned false if TerminateExecution was indeed called but there was // no JS to execute after the call. scope.cancel_terminate_execution(); let mut exception = exception; { // If termination is the result of a `op_dispatch_exception` call, we want // to use the exception that was passed to it rather than the exception that // was passed to this function. let state = state_rc.borrow(); exception = if let Some(exception) = &state.dispatched_exception { v8::Local::new(scope, exception.clone()) } else if was_terminating_execution && exception.is_null_or_undefined() { let message = v8::String::new(scope, "execution terminated").unwrap(); v8::Exception::error(scope, message) } else { exception }; } let mut js_error = JsError::from_v8_exception(scope, exception); if in_promise { js_error.exception_message = format!( "Uncaught (in promise) {}", js_error.exception_message.trim_start_matches("Uncaught ") ); } if was_terminating_execution { // Resume exception termination. scope.terminate_execution(); } scope.set_microtasks_policy(v8::MicrotasksPolicy::Auto); Err(js_error.into()) } // Related to module loading impl JsRuntimeImpl { pub(crate) fn instantiate_module( &mut self, id: ModuleId, ) -> Result<(), v8::Global> { let module_map_rc = self.module_map.clone(); let scope = &mut self.handle_scope(); let tc_scope = &mut v8::TryCatch::new(scope); let module = module_map_rc .borrow() .get_handle(id) .map(|handle| v8::Local::new(tc_scope, handle)) .expect("ModuleInfo not found"); if module.get_status() == v8::ModuleStatus::Errored { return Err(v8::Global::new(tc_scope, module.get_exception())); } // IMPORTANT: No borrows to `ModuleMap` can be held at this point because // `module_resolve_callback` will be calling into `ModuleMap` from within // the isolate. let instantiate_result = module.instantiate_module(tc_scope, bindings::module_resolve_callback); if instantiate_result.is_none() { let exception = tc_scope.exception().unwrap(); return Err(v8::Global::new(tc_scope, exception)); } Ok(()) } fn dynamic_import_module_evaluate( &mut self, load_id: ModuleLoadId, id: ModuleId, ) -> Result<(), Error> { let module_handle = self .module_map .borrow() .get_handle(id) .expect("ModuleInfo not found"); let status = { let scope = &mut self.handle_scope(); let module = module_handle.open(scope); module.get_status() }; match status { v8::ModuleStatus::Instantiated | v8::ModuleStatus::Evaluated => {} _ => return Ok(()), } // IMPORTANT: Top-level-await is enabled, which means that return value // of module evaluation is a promise. // // This promise is internal, and not the same one that gets returned to // the user. We add an empty `.catch()` handler so that it does not result // in an exception if it rejects. That will instead happen for the other // promise if not handled by the user. // // For more details see: // https://github.com/denoland/deno/issues/4908 // https://v8.dev/features/top-level-await#module-execution-order let global_realm = self.inner.state.borrow_mut().global_realm.clone().unwrap(); let scope = &mut global_realm.handle_scope(&mut self.inner.v8_isolate); let tc_scope = &mut v8::TryCatch::new(scope); let module = v8::Local::new(tc_scope, &module_handle); let maybe_value = module.evaluate(tc_scope); // Update status after evaluating. let status = module.get_status(); if let Some(value) = maybe_value { assert!( status == v8::ModuleStatus::Evaluated || status == v8::ModuleStatus::Errored ); let promise = v8::Local::::try_from(value) .expect("Expected to get promise as module evaluation result"); let empty_fn = bindings::create_empty_fn(tc_scope).unwrap(); promise.catch(tc_scope, empty_fn); let promise_global = v8::Global::new(tc_scope, promise); let module_global = v8::Global::new(tc_scope, module); let dyn_import_mod_evaluate = DynImportModEvaluate { load_id, module_id: id, promise: promise_global, module: module_global, }; self .inner .state .borrow_mut() .pending_dyn_mod_evaluate .push(dyn_import_mod_evaluate); } else if tc_scope.has_terminated() || tc_scope.is_execution_terminating() { return Err( generic_error("Cannot evaluate dynamically imported module, because JavaScript execution has been terminated.") ); } else { assert!(status == v8::ModuleStatus::Errored); } Ok(()) } // TODO(bartlomieju): make it return `ModuleEvaluationFuture`? /// Evaluates an already instantiated ES module. /// /// Returns a receiver handle that resolves when module promise resolves. /// Implementors must manually call [`JsRuntimeImpl::run_event_loop`] to drive /// module evaluation future. /// /// `Error` can usually be downcast to `JsError` and should be awaited and /// checked after [`JsRuntimeImpl::run_event_loop`] completion. /// /// This function panics if module has not been instantiated. pub fn mod_evaluate( &mut self, id: ModuleId, ) -> oneshot::Receiver> { let global_realm = self.global_realm(); let state_rc = self.inner.state.clone(); let module_map_rc = self.module_map.clone(); let scope = &mut self.handle_scope(); let tc_scope = &mut v8::TryCatch::new(scope); let module = module_map_rc .borrow() .get_handle(id) .map(|handle| v8::Local::new(tc_scope, handle)) .expect("ModuleInfo not found"); let mut status = module.get_status(); assert_eq!( status, v8::ModuleStatus::Instantiated, "Module not instantiated {id}" ); let (sender, receiver) = oneshot::channel(); // IMPORTANT: Top-level-await is enabled, which means that return value // of module evaluation is a promise. // // Because that promise is created internally by V8, when error occurs during // module evaluation the promise is rejected, and since the promise has no rejection // handler it will result in call to `bindings::promise_reject_callback` adding // the promise to pending promise rejection table - meaning JsRuntimeImpl will return // error on next poll(). // // This situation is not desirable as we want to manually return error at the // end of this function to handle it further. It means we need to manually // remove this promise from pending promise rejection table. // // For more details see: // https://github.com/denoland/deno/issues/4908 // https://v8.dev/features/top-level-await#module-execution-order { let mut state = state_rc.borrow_mut(); assert!( state.pending_mod_evaluate.is_none(), "There is already pending top level module evaluation" ); state.pending_mod_evaluate = Some(ModEvaluate { promise: None, has_evaluated: false, handled_promise_rejections: vec![], sender, }); } let maybe_value = module.evaluate(tc_scope); { let mut state = state_rc.borrow_mut(); let pending_mod_evaluate = state.pending_mod_evaluate.as_mut().unwrap(); pending_mod_evaluate.has_evaluated = true; } // Update status after evaluating. status = module.get_status(); let has_dispatched_exception = state_rc.borrow_mut().dispatched_exception.is_some(); if has_dispatched_exception { // This will be overrided in `exception_to_err_result()`. let exception = v8::undefined(tc_scope).into(); let pending_mod_evaluate = { let mut state = state_rc.borrow_mut(); state.pending_mod_evaluate.take().unwrap() }; pending_mod_evaluate .sender .send(exception_to_err_result(tc_scope, exception, false)) .expect("Failed to send module evaluation error."); } else if let Some(value) = maybe_value { assert!( status == v8::ModuleStatus::Evaluated || status == v8::ModuleStatus::Errored ); let promise = v8::Local::::try_from(value) .expect("Expected to get promise as module evaluation result"); let promise_global = v8::Global::new(tc_scope, promise); let mut state = state_rc.borrow_mut(); { let pending_mod_evaluate = state.pending_mod_evaluate.as_ref().unwrap(); let pending_rejection_was_already_handled = pending_mod_evaluate .handled_promise_rejections .contains(&promise_global); if !pending_rejection_was_already_handled { global_realm .0 .state() .borrow_mut() .pending_promise_rejections .retain(|(key, _)| key != &promise_global); } } let promise_global = v8::Global::new(tc_scope, promise); state.pending_mod_evaluate.as_mut().unwrap().promise = Some(promise_global); tc_scope.perform_microtask_checkpoint(); } else if tc_scope.has_terminated() || tc_scope.is_execution_terminating() { let pending_mod_evaluate = { let mut state = state_rc.borrow_mut(); state.pending_mod_evaluate.take().unwrap() }; pending_mod_evaluate.sender.send(Err( generic_error("Cannot evaluate module, because JavaScript execution has been terminated.") )).expect("Failed to send module evaluation error."); } else { assert!(status == v8::ModuleStatus::Errored); } receiver } /// Clear the module map, meant to be used after initializing extensions. /// Optionally pass a list of exceptions `(old_name, new_name)` representing /// specifiers which will be renamed and preserved in the module map. pub fn clear_module_map( &self, exceptions: impl Iterator, ) { let mut module_map = self.module_map.borrow_mut(); let handles = exceptions .map(|(old_name, new_name)| { (module_map.get_handle_by_name(old_name).unwrap(), new_name) }) .collect::>(); module_map.clear(); for (handle, new_name) in handles { module_map.inject_handle( ModuleName::from_static(new_name), ModuleType::JavaScript, handle, ) } } fn dynamic_import_reject( &mut self, id: ModuleLoadId, exception: v8::Global, ) { let module_map_rc = self.module_map.clone(); let scope = &mut self.handle_scope(); let resolver_handle = module_map_rc .borrow_mut() .dynamic_import_map .remove(&id) .expect("Invalid dynamic import id"); let resolver = resolver_handle.open(scope); // IMPORTANT: No borrows to `ModuleMap` can be held at this point because // rejecting the promise might initiate another `import()` which will // in turn call `bindings::host_import_module_dynamically_callback` which // will reach into `ModuleMap` from within the isolate. let exception = v8::Local::new(scope, exception); resolver.reject(scope, exception).unwrap(); scope.perform_microtask_checkpoint(); } fn dynamic_import_resolve(&mut self, id: ModuleLoadId, mod_id: ModuleId) { let state_rc = self.inner.state.clone(); let module_map_rc = self.module_map.clone(); let scope = &mut self.handle_scope(); let resolver_handle = module_map_rc .borrow_mut() .dynamic_import_map .remove(&id) .expect("Invalid dynamic import id"); let resolver = resolver_handle.open(scope); let module = { module_map_rc .borrow() .get_handle(mod_id) .map(|handle| v8::Local::new(scope, handle)) .expect("Dyn import module info not found") }; // Resolution success assert_eq!(module.get_status(), v8::ModuleStatus::Evaluated); // IMPORTANT: No borrows to `ModuleMap` can be held at this point because // resolving the promise might initiate another `import()` which will // in turn call `bindings::host_import_module_dynamically_callback` which // will reach into `ModuleMap` from within the isolate. let module_namespace = module.get_module_namespace(); resolver.resolve(scope, module_namespace).unwrap(); state_rc.borrow_mut().dyn_module_evaluate_idle_counter = 0; scope.perform_microtask_checkpoint(); } fn prepare_dyn_imports( &mut self, cx: &mut Context, ) -> Poll> { if self .module_map .borrow() .preparing_dynamic_imports .is_empty() { return Poll::Ready(Ok(())); } loop { let poll_result = self .module_map .borrow_mut() .preparing_dynamic_imports .poll_next_unpin(cx); if let Poll::Ready(Some(prepare_poll)) = poll_result { let dyn_import_id = prepare_poll.0; let prepare_result = prepare_poll.1; match prepare_result { Ok(load) => { self .module_map .borrow_mut() .pending_dynamic_imports .push(load.into_future()); } Err(err) => { let exception = to_v8_type_error(&mut self.handle_scope(), err); self.dynamic_import_reject(dyn_import_id, exception); } } // Continue polling for more prepared dynamic imports. continue; } // There are no active dynamic import loads, or none are ready. return Poll::Ready(Ok(())); } } fn poll_dyn_imports(&mut self, cx: &mut Context) -> Poll> { if self.module_map.borrow().pending_dynamic_imports.is_empty() { return Poll::Ready(Ok(())); } loop { let poll_result = self .module_map .borrow_mut() .pending_dynamic_imports .poll_next_unpin(cx); if let Poll::Ready(Some(load_stream_poll)) = poll_result { let maybe_result = load_stream_poll.0; let mut load = load_stream_poll.1; let dyn_import_id = load.id; if let Some(load_stream_result) = maybe_result { match load_stream_result { Ok((request, info)) => { // A module (not necessarily the one dynamically imported) has been // fetched. Create and register it, and if successful, poll for the // next recursive-load event related to this dynamic import. let register_result = load.register_and_recurse( &mut self.handle_scope(), &request, info, ); match register_result { Ok(()) => { // Keep importing until it's fully drained self .module_map .borrow_mut() .pending_dynamic_imports .push(load.into_future()); } Err(err) => { let exception = match err { ModuleError::Exception(e) => e, ModuleError::Other(e) => { to_v8_type_error(&mut self.handle_scope(), e) } }; self.dynamic_import_reject(dyn_import_id, exception) } } } Err(err) => { // A non-javascript error occurred; this could be due to a an invalid // module specifier, or a problem with the source map, or a failure // to fetch the module source code. let exception = to_v8_type_error(&mut self.handle_scope(), err); self.dynamic_import_reject(dyn_import_id, exception); } } } else { // The top-level module from a dynamic import has been instantiated. // Load is done. let module_id = load.root_module_id.expect("Root module should be loaded"); let result = self.instantiate_module(module_id); if let Err(exception) = result { self.dynamic_import_reject(dyn_import_id, exception); } self.dynamic_import_module_evaluate(dyn_import_id, module_id)?; } // Continue polling for more ready dynamic imports. continue; } // There are no active dynamic import loads, or none are ready. return Poll::Ready(Ok(())); } } /// "deno_core" runs V8 with Top Level Await enabled. It means that each /// module evaluation returns a promise from V8. /// Feature docs: https://v8.dev/features/top-level-await /// /// This promise resolves after all dependent modules have also /// resolved. Each dependent module may perform calls to "import()" and APIs /// using async ops will add futures to the runtime's event loop. /// It means that the promise returned from module evaluation will /// resolve only after all futures in the event loop are done. /// /// Thus during turn of event loop we need to check if V8 has /// resolved or rejected the promise. If the promise is still pending /// then another turn of event loop must be performed. fn evaluate_pending_module(&mut self) { let maybe_module_evaluation = self.inner.state.borrow_mut().pending_mod_evaluate.take(); if maybe_module_evaluation.is_none() { return; } let mut module_evaluation = maybe_module_evaluation.unwrap(); let state_rc = self.inner.state.clone(); let scope = &mut self.handle_scope(); let promise_global = module_evaluation.promise.clone().unwrap(); let promise = promise_global.open(scope); let promise_state = promise.state(); match promise_state { v8::PromiseState::Pending => { // NOTE: `poll_event_loop` will decide if // runtime would be woken soon state_rc.borrow_mut().pending_mod_evaluate = Some(module_evaluation); } v8::PromiseState::Fulfilled => { scope.perform_microtask_checkpoint(); // Receiver end might have been already dropped, ignore the result let _ = module_evaluation.sender.send(Ok(())); module_evaluation.handled_promise_rejections.clear(); } v8::PromiseState::Rejected => { let exception = promise.result(scope); scope.perform_microtask_checkpoint(); // Receiver end might have been already dropped, ignore the result if module_evaluation .handled_promise_rejections .contains(&promise_global) { let _ = module_evaluation.sender.send(Ok(())); module_evaluation.handled_promise_rejections.clear(); } else { let _ = module_evaluation .sender .send(exception_to_err_result(scope, exception, false)); } } } } // Returns true if some dynamic import was resolved. fn evaluate_dyn_imports(&mut self) -> bool { let pending = std::mem::take( &mut self.inner.state.borrow_mut().pending_dyn_mod_evaluate, ); if pending.is_empty() { return false; } let mut resolved_any = false; let mut still_pending = vec![]; for pending_dyn_evaluate in pending { let maybe_result = { let scope = &mut self.handle_scope(); let module_id = pending_dyn_evaluate.module_id; let promise = pending_dyn_evaluate.promise.open(scope); let _module = pending_dyn_evaluate.module.open(scope); let promise_state = promise.state(); match promise_state { v8::PromiseState::Pending => { still_pending.push(pending_dyn_evaluate); None } v8::PromiseState::Fulfilled => { Some(Ok((pending_dyn_evaluate.load_id, module_id))) } v8::PromiseState::Rejected => { let exception = promise.result(scope); let exception = v8::Global::new(scope, exception); Some(Err((pending_dyn_evaluate.load_id, exception))) } } }; if let Some(result) = maybe_result { resolved_any = true; match result { Ok((dyn_import_id, module_id)) => { self.dynamic_import_resolve(dyn_import_id, module_id); } Err((dyn_import_id, exception)) => { self.dynamic_import_reject(dyn_import_id, exception); } } } } self.inner.state.borrow_mut().pending_dyn_mod_evaluate = still_pending; resolved_any } /// Asynchronously load specified module and all of its dependencies. /// /// The module will be marked as "main", and because of that /// "import.meta.main" will return true when checked inside that module. /// /// User must call [`JsRuntimeImpl::mod_evaluate`] with returned `ModuleId` /// manually after load is finished. pub async fn load_main_module( &mut self, specifier: &ModuleSpecifier, code: Option, ) -> Result { let module_map_rc = self.module_map.clone(); if let Some(code) = code { let specifier = specifier.as_str().to_owned().into(); let scope = &mut self.handle_scope(); // true for main module module_map_rc .borrow_mut() .new_es_module(scope, true, specifier, code, false) .map_err(|e| match e { ModuleError::Exception(exception) => { let exception = v8::Local::new(scope, exception); exception_to_err_result::<()>(scope, exception, false).unwrap_err() } ModuleError::Other(error) => error, })?; } let mut load = ModuleMap::load_main(module_map_rc.clone(), &specifier).await?; while let Some(load_result) = load.next().await { let (request, info) = load_result?; let scope = &mut self.handle_scope(); load.register_and_recurse(scope, &request, info).map_err( |e| match e { ModuleError::Exception(exception) => { let exception = v8::Local::new(scope, exception); exception_to_err_result::<()>(scope, exception, false).unwrap_err() } ModuleError::Other(error) => error, }, )?; } let root_id = load.root_module_id.expect("Root module should be loaded"); self.instantiate_module(root_id).map_err(|e| { let scope = &mut self.handle_scope(); let exception = v8::Local::new(scope, e); exception_to_err_result::<()>(scope, exception, false).unwrap_err() })?; Ok(root_id) } /// Asynchronously load specified ES module and all of its dependencies. /// /// This method is meant to be used when loading some utility code that /// might be later imported by the main module (ie. an entry point module). /// /// User must call [`JsRuntimeImpl::mod_evaluate`] with returned `ModuleId` /// manually after load is finished. pub async fn load_side_module( &mut self, specifier: &ModuleSpecifier, code: Option, ) -> Result { let module_map_rc = self.module_map.clone(); if let Some(code) = code { let specifier = specifier.as_str().to_owned().into(); let scope = &mut self.handle_scope(); // false for side module (not main module) module_map_rc .borrow_mut() .new_es_module(scope, false, specifier, code, false) .map_err(|e| match e { ModuleError::Exception(exception) => { let exception = v8::Local::new(scope, exception); exception_to_err_result::<()>(scope, exception, false).unwrap_err() } ModuleError::Other(error) => error, })?; } let mut load = ModuleMap::load_side(module_map_rc.clone(), &specifier).await?; while let Some(load_result) = load.next().await { let (request, info) = load_result?; let scope = &mut self.handle_scope(); load.register_and_recurse(scope, &request, info).map_err( |e| match e { ModuleError::Exception(exception) => { let exception = v8::Local::new(scope, exception); exception_to_err_result::<()>(scope, exception, false).unwrap_err() } ModuleError::Other(error) => error, }, )?; } let root_id = load.root_module_id.expect("Root module should be loaded"); self.instantiate_module(root_id).map_err(|e| { let scope = &mut self.handle_scope(); let exception = v8::Local::new(scope, e); exception_to_err_result::<()>(scope, exception, false).unwrap_err() })?; Ok(root_id) } fn check_promise_rejections(&mut self) -> Result<(), Error> { let state = self.inner.state.clone(); let scope = &mut self.handle_scope(); let state = state.borrow(); for realm in &state.known_realms { realm.check_promise_rejections(scope)?; } Ok(()) } // Polls pending ops and then runs `Deno.core.eventLoopTick` callback. fn do_js_event_loop_tick(&mut self, cx: &mut Context) -> Result<(), Error> { // Now handle actual ops. { let mut state = self.inner.state.borrow_mut(); state.have_unpolled_ops = false; } // Handle responses for each realm. let state = self.inner.state.clone(); let isolate = &mut self.inner.v8_isolate; let realm_count = state.borrow().known_realms.len(); for realm_idx in 0..realm_count { let realm = state.borrow().known_realms.get(realm_idx).unwrap().clone(); let context_state = realm.state(); let mut context_state = context_state.borrow_mut(); let scope = &mut realm.handle_scope(isolate); // We return async responses to JS in unbounded batches (may change), // each batch is a flat vector of tuples: // `[promise_id1, op_result1, promise_id2, op_result2, ...]` // promise_id is a simple integer, op_result is an ops::OpResult // which contains a value OR an error, encoded as a tuple. // This batch is received in JS via the special `arguments` variable // and then each tuple is used to resolve or reject promises // // This can handle 15 promises futures in a single batch without heap // allocations. let mut args: SmallVec<[v8::Local; 32]> = SmallVec::with_capacity(32); while let Poll::Ready(Some(item)) = context_state.pending_ops.poll_next_unpin(cx) { let (promise_id, op_id, mut resp) = item; state .borrow() .op_state .borrow() .tracker .track_async_completed(op_id); context_state.unrefed_ops.remove(&promise_id); args.push(v8::Integer::new(scope, promise_id).into()); args.push(match resp.to_v8(scope) { Ok(v) => v, Err(e) => OpResult::Err(OpError::new(&|_| "TypeError", e.into())) .to_v8(scope) .unwrap(), }); } let has_tick_scheduled = v8::Boolean::new(scope, self.inner.state.borrow().has_tick_scheduled); args.push(has_tick_scheduled.into()); let js_event_loop_tick_cb_handle = context_state.js_event_loop_tick_cb.clone().unwrap(); let tc_scope = &mut v8::TryCatch::new(scope); let js_event_loop_tick_cb = js_event_loop_tick_cb_handle.open(tc_scope); let this = v8::undefined(tc_scope).into(); drop(context_state); js_event_loop_tick_cb.call(tc_scope, this, args.as_slice()); if let Some(exception) = tc_scope.exception() { // TODO(@andreubotella): Returning here can cause async ops in other // realms to never resolve. return exception_to_err_result(tc_scope, exception, false); } if tc_scope.has_terminated() || tc_scope.is_execution_terminating() { return Ok(()); } } Ok(()) } } #[inline] pub fn queue_fast_async_op( ctx: &OpCtx, promise_id: PromiseId, op: impl Future> + 'static, ) { let runtime_state = match ctx.runtime_state.upgrade() { Some(rc_state) => rc_state, // at least 1 Rc is held by the JsRuntimeImpl. None => unreachable!(), }; let get_class = { let state = RefCell::borrow(&ctx.state); state.tracker.track_async(ctx.id); state.get_error_class_fn }; let fut = op .map(|result| crate::_ops::to_op_result(get_class, result)) .boxed_local(); let mut state = runtime_state.borrow_mut(); ctx .context_state .borrow_mut() .pending_ops .push(OpCall::pending(ctx, promise_id, fut)); state.have_unpolled_ops = true; } #[inline] pub fn map_async_op1( ctx: &OpCtx, op: impl Future> + 'static, ) -> MaybeDone>>> { let get_class = { let state = RefCell::borrow(&ctx.state); state.tracker.track_async(ctx.id); state.get_error_class_fn }; let fut = op .map(|result| crate::_ops::to_op_result(get_class, result)) .boxed_local(); MaybeDone::Future(fut) } #[inline] pub fn map_async_op2( ctx: &OpCtx, op: impl Future + 'static, ) -> MaybeDone>>> { let state = RefCell::borrow(&ctx.state); state.tracker.track_async(ctx.id); let fut = op.map(|result| OpResult::Ok(result.into())).boxed_local(); MaybeDone::Future(fut) } #[inline] pub fn map_async_op3( ctx: &OpCtx, op: Result> + 'static, Error>, ) -> MaybeDone>>> { let get_class = { let state = RefCell::borrow(&ctx.state); state.tracker.track_async(ctx.id); state.get_error_class_fn }; match op { Err(err) => MaybeDone::Done(OpResult::Err(OpError::new(get_class, err))), Ok(fut) => MaybeDone::Future( fut .map(|result| crate::_ops::to_op_result(get_class, result)) .boxed_local(), ), } } #[inline] pub fn map_async_op4( ctx: &OpCtx, op: Result + 'static, Error>, ) -> MaybeDone>>> { let get_class = { let state = RefCell::borrow(&ctx.state); state.tracker.track_async(ctx.id); state.get_error_class_fn }; match op { Err(err) => MaybeDone::Done(OpResult::Err(OpError::new(get_class, err))), Ok(fut) => MaybeDone::Future( fut.map(|result| OpResult::Ok(result.into())).boxed_local(), ), } } pub fn queue_async_op<'s>( ctx: &OpCtx, scope: &'s mut v8::HandleScope, deferred: bool, promise_id: PromiseId, mut op: MaybeDone>>>, ) -> Option> { let runtime_state = match ctx.runtime_state.upgrade() { Some(rc_state) => rc_state, // at least 1 Rc is held by the JsRuntimeImpl. None => unreachable!(), }; // An op's realm (as given by `OpCtx::realm_idx`) must match the realm in // which it is invoked. Otherwise, we might have cross-realm object exposure. // deno_core doesn't currently support such exposure, even though embedders // can cause them, so we panic in debug mode (since the check is expensive). // TODO(mmastrac): Restore this // debug_assert_eq!( // runtime_state.borrow().context(ctx.realm_idx as usize, scope), // Some(scope.get_current_context()) // ); // All ops are polled immediately let waker = noop_waker(); let mut cx = Context::from_waker(&waker); // Note that MaybeDone returns () from the future let op_call = match op.poll_unpin(&mut cx) { Poll::Pending => { let MaybeDone::Future(fut) = op else { unreachable!() }; OpCall::pending(ctx, promise_id, fut) } Poll::Ready(_) => { let mut op_result = Pin::new(&mut op).take_output().unwrap(); // If the op is ready and is not marked as deferred we can immediately return // the result. if !deferred { ctx.state.borrow_mut().tracker.track_async_completed(ctx.id); return Some(op_result.to_v8(scope).unwrap()); } OpCall::ready(ctx, promise_id, op_result) } }; // Otherwise we will push it to the `pending_ops` and let it be polled again // or resolved on the next tick of the event loop. let mut state = runtime_state.borrow_mut(); ctx.context_state.borrow_mut().pending_ops.push(op_call); state.have_unpolled_ops = true; None } #[cfg(test)] pub mod tests { use super::*; use crate::ascii_str; use crate::error::custom_error; use crate::error::AnyError; use crate::include_ascii_string; use crate::modules::AssertedModuleType; use crate::modules::ModuleInfo; use crate::modules::ModuleSource; use crate::modules::ModuleSourceFuture; use crate::modules::ModuleType; use crate::modules::ResolutionKind; use crate::modules::SymbolicModule; use crate::ZeroCopyBuf; use deno_ops::op; use std::pin::Pin; use std::rc::Rc; use std::sync::atomic::AtomicUsize; use std::sync::atomic::Ordering; use std::sync::Arc; // deno_ops macros generate code assuming deno_core in scope. mod deno_core { pub use crate::*; } #[derive(Copy, Clone)] pub enum Mode { Async, AsyncDeferred, AsyncZeroCopy(bool), } struct TestState { mode: Mode, dispatch_count: Arc, } #[op] async fn op_test( rc_op_state: Rc>, control: u8, buf: Option, ) -> Result { #![allow(clippy::await_holding_refcell_ref)] // False positive. let op_state_ = rc_op_state.borrow(); let test_state = op_state_.borrow::(); test_state.dispatch_count.fetch_add(1, Ordering::Relaxed); let mode = test_state.mode; drop(op_state_); match mode { Mode::Async => { assert_eq!(control, 42); Ok(43) } Mode::AsyncDeferred => { tokio::task::yield_now().await; assert_eq!(control, 42); Ok(43) } Mode::AsyncZeroCopy(has_buffer) => { assert_eq!(buf.is_some(), has_buffer); if let Some(buf) = buf { assert_eq!(buf.len(), 1); } Ok(43) } } } fn setup(mode: Mode) -> (JsRuntime, Arc) { let dispatch_count = Arc::new(AtomicUsize::new(0)); deno_core::extension!( test_ext, ops = [op_test], options = { mode: Mode, dispatch_count: Arc, }, state = |state, options| { state.put(TestState { mode: options.mode, dispatch_count: options.dispatch_count }) } ); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops(mode, dispatch_count.clone())], get_error_class_fn: Some(&|error| { crate::error::get_custom_error_class(error).unwrap() }), ..Default::default() }); runtime .execute_script_static( "setup.js", r#" function assert(cond) { if (!cond) { throw Error("assert"); } } "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); (runtime, dispatch_count) } #[test] fn test_ref_unref_ops() { let (mut runtime, _dispatch_count) = setup(Mode::AsyncDeferred); runtime .execute_script_static( "filename.js", r#" var promiseIdSymbol = Symbol.for("Deno.core.internalPromiseId"); var p1 = Deno.core.opAsync("op_test", 42); var p2 = Deno.core.opAsync("op_test", 42); "#, ) .unwrap(); { let realm = runtime.global_realm(); assert_eq!(realm.num_pending_ops(), 2); assert_eq!(realm.num_unrefed_ops(), 0); } runtime .execute_script_static( "filename.js", r#" Deno.core.ops.op_unref_op(p1[promiseIdSymbol]); Deno.core.ops.op_unref_op(p2[promiseIdSymbol]); "#, ) .unwrap(); { let realm = runtime.global_realm(); assert_eq!(realm.num_pending_ops(), 2); assert_eq!(realm.num_unrefed_ops(), 2); } runtime .execute_script_static( "filename.js", r#" Deno.core.ops.op_ref_op(p1[promiseIdSymbol]); Deno.core.ops.op_ref_op(p2[promiseIdSymbol]); "#, ) .unwrap(); { let realm = runtime.global_realm(); assert_eq!(realm.num_pending_ops(), 2); assert_eq!(realm.num_unrefed_ops(), 0); } } #[test] fn test_dispatch() { let (mut runtime, dispatch_count) = setup(Mode::Async); runtime .execute_script_static( "filename.js", r#" let control = 42; Deno.core.opAsync("op_test", control); async function main() { Deno.core.opAsync("op_test", control); } main(); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); } #[test] fn test_op_async_promise_id() { let (mut runtime, _dispatch_count) = setup(Mode::Async); runtime .execute_script_static( "filename.js", r#" const p = Deno.core.opAsync("op_test", 42); if (p[Symbol.for("Deno.core.internalPromiseId")] == undefined) { throw new Error("missing id on returned promise"); } "#, ) .unwrap(); } #[test] fn test_dispatch_no_zero_copy_buf() { let (mut runtime, dispatch_count) = setup(Mode::AsyncZeroCopy(false)); runtime .execute_script_static( "filename.js", r#" Deno.core.opAsync("op_test"); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn test_dispatch_stack_zero_copy_bufs() { let (mut runtime, dispatch_count) = setup(Mode::AsyncZeroCopy(true)); runtime .execute_script_static( "filename.js", r#" const { op_test } = Deno.core.generateAsyncOpHandler("op_test"); let zero_copy_a = new Uint8Array([0]); op_test(null, zero_copy_a); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn test_execute_script_return_value() { let mut runtime = JsRuntime::new(Default::default()); let value_global = runtime.execute_script_static("a.js", "a = 1 + 2").unwrap(); { let scope = &mut runtime.handle_scope(); let value = value_global.open(scope); assert_eq!(value.integer_value(scope).unwrap(), 3); } let value_global = runtime .execute_script_static("b.js", "b = 'foobar'") .unwrap(); { let scope = &mut runtime.handle_scope(); let value = value_global.open(scope); assert!(value.is_string()); assert_eq!( value.to_string(scope).unwrap().to_rust_string_lossy(scope), "foobar" ); } } #[tokio::test] async fn test_poll_value() { let mut runtime = JsRuntime::new(Default::default()); poll_fn(move |cx| { let value_global = runtime .execute_script_static("a.js", "Promise.resolve(1 + 2)") .unwrap(); let v = runtime.poll_value(&value_global, cx); { let scope = &mut runtime.handle_scope(); assert!( matches!(v, Poll::Ready(Ok(v)) if v.open(scope).integer_value(scope).unwrap() == 3) ); } let value_global = runtime .execute_script_static( "a.js", "Promise.resolve(new Promise(resolve => resolve(2 + 2)))", ) .unwrap(); let v = runtime.poll_value(&value_global, cx); { let scope = &mut runtime.handle_scope(); assert!( matches!(v, Poll::Ready(Ok(v)) if v.open(scope).integer_value(scope).unwrap() == 4) ); } let value_global = runtime .execute_script_static("a.js", "Promise.reject(new Error('fail'))") .unwrap(); let v = runtime.poll_value(&value_global, cx); assert!( matches!(v, Poll::Ready(Err(e)) if e.downcast_ref::().unwrap().exception_message == "Uncaught Error: fail") ); let value_global = runtime .execute_script_static("a.js", "new Promise(resolve => {})") .unwrap(); let v = runtime.poll_value(&value_global, cx); matches!(v, Poll::Ready(Err(e)) if e.to_string() == "Promise resolution is still pending but the event loop has already resolved."); Poll::Ready(()) }).await; } #[tokio::test] async fn test_resolve_value() { let mut runtime = JsRuntime::new(Default::default()); let value_global = runtime .execute_script_static("a.js", "Promise.resolve(1 + 2)") .unwrap(); let result_global = runtime.resolve_value(value_global).await.unwrap(); { let scope = &mut runtime.handle_scope(); let value = result_global.open(scope); assert_eq!(value.integer_value(scope).unwrap(), 3); } let value_global = runtime .execute_script_static( "a.js", "Promise.resolve(new Promise(resolve => resolve(2 + 2)))", ) .unwrap(); let result_global = runtime.resolve_value(value_global).await.unwrap(); { let scope = &mut runtime.handle_scope(); let value = result_global.open(scope); assert_eq!(value.integer_value(scope).unwrap(), 4); } let value_global = runtime .execute_script_static("a.js", "Promise.reject(new Error('fail'))") .unwrap(); let err = runtime.resolve_value(value_global).await.unwrap_err(); assert_eq!( "Uncaught Error: fail", err.downcast::().unwrap().exception_message ); let value_global = runtime .execute_script_static("a.js", "new Promise(resolve => {})") .unwrap(); let error_string = runtime .resolve_value(value_global) .await .unwrap_err() .to_string(); assert_eq!( "Promise resolution is still pending but the event loop has already resolved.", error_string, ); } #[test] fn terminate_execution_webassembly() { let (mut runtime, _dispatch_count) = setup(Mode::Async); let v8_isolate_handle = runtime.v8_isolate().thread_safe_handle(); // Run an infinite loop in Webassemby code, which should be terminated. let promise = runtime.execute_script_static("infinite_wasm_loop.js", r#" (async () => { const wasmCode = new Uint8Array([ 0, 97, 115, 109, 1, 0, 0, 0, 1, 4, 1, 96, 0, 0, 3, 2, 1, 0, 7, 17, 1, 13, 105, 110, 102, 105, 110, 105, 116, 101, 95, 108, 111, 111, 112, 0, 0, 10, 9, 1, 7, 0, 3, 64, 12, 0, 11, 11, ]); const wasmModule = await WebAssembly.compile(wasmCode); globalThis.wasmInstance = new WebAssembly.Instance(wasmModule); })() "#).unwrap(); futures::executor::block_on(runtime.resolve_value(promise)).unwrap(); let terminator_thread = std::thread::spawn(move || { std::thread::sleep(std::time::Duration::from_millis(1000)); // terminate execution let ok = v8_isolate_handle.terminate_execution(); assert!(ok); }); let err = runtime .execute_script_static( "infinite_wasm_loop2.js", "globalThis.wasmInstance.exports.infinite_loop();", ) .unwrap_err(); assert_eq!(err.to_string(), "Uncaught Error: execution terminated"); // Cancel the execution-terminating exception in order to allow script // execution again. let ok = runtime.v8_isolate().cancel_terminate_execution(); assert!(ok); // Verify that the isolate usable again. runtime .execute_script_static("simple.js", "1 + 1") .expect("execution should be possible again"); terminator_thread.join().unwrap(); } #[test] fn terminate_execution() { let (mut isolate, _dispatch_count) = setup(Mode::Async); let v8_isolate_handle = isolate.v8_isolate().thread_safe_handle(); let terminator_thread = std::thread::spawn(move || { // allow deno to boot and run std::thread::sleep(std::time::Duration::from_millis(100)); // terminate execution let ok = v8_isolate_handle.terminate_execution(); assert!(ok); }); // Rn an infinite loop, which should be terminated. match isolate.execute_script_static("infinite_loop.js", "for(;;) {}") { Ok(_) => panic!("execution should be terminated"), Err(e) => { assert_eq!(e.to_string(), "Uncaught Error: execution terminated") } }; // Cancel the execution-terminating exception in order to allow script // execution again. let ok = isolate.v8_isolate().cancel_terminate_execution(); assert!(ok); // Verify that the isolate usable again. isolate .execute_script_static("simple.js", "1 + 1") .expect("execution should be possible again"); terminator_thread.join().unwrap(); } #[test] fn dangling_shared_isolate() { let v8_isolate_handle = { // isolate is dropped at the end of this block let (mut runtime, _dispatch_count) = setup(Mode::Async); runtime.v8_isolate().thread_safe_handle() }; // this should not SEGFAULT v8_isolate_handle.terminate_execution(); } #[test] fn syntax_error() { let mut runtime = JsRuntime::new(Default::default()); let src = "hocuspocus("; let r = runtime.execute_script_static("i.js", src); let e = r.unwrap_err(); let js_error = e.downcast::().unwrap(); let frame = js_error.frames.first().unwrap(); assert_eq!(frame.column_number, Some(12)); } #[tokio::test] async fn test_encode_decode() { let (mut runtime, _dispatch_count) = setup(Mode::Async); poll_fn(move |cx| { runtime .execute_script( "encode_decode_test.js", // Note: We make this to_owned because it contains non-ASCII chars include_str!("encode_decode_test.js").to_owned().into(), ) .unwrap(); if let Poll::Ready(Err(_)) = runtime.poll_event_loop(cx, false) { unreachable!(); } Poll::Ready(()) }) .await; } #[tokio::test] async fn test_serialize_deserialize() { let (mut runtime, _dispatch_count) = setup(Mode::Async); poll_fn(move |cx| { runtime .execute_script( "serialize_deserialize_test.js", include_ascii_string!("serialize_deserialize_test.js"), ) .unwrap(); if let Poll::Ready(Err(_)) = runtime.poll_event_loop(cx, false) { unreachable!(); } Poll::Ready(()) }) .await; } #[tokio::test] async fn test_error_builder() { #[op] fn op_err() -> Result<(), Error> { Err(custom_error("DOMExceptionOperationError", "abc")) } pub fn get_error_class_name(_: &Error) -> &'static str { "DOMExceptionOperationError" } deno_core::extension!(test_ext, ops = [op_err]); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], get_error_class_fn: Some(&get_error_class_name), ..Default::default() }); poll_fn(move |cx| { runtime .execute_script_static( "error_builder_test.js", include_str!("error_builder_test.js"), ) .unwrap(); if let Poll::Ready(Err(_)) = runtime.poll_event_loop(cx, false) { unreachable!(); } Poll::Ready(()) }) .await; } /// Ensure that putting the inspector into OpState doesn't cause crashes. The only valid place we currently allow /// the inspector to be stashed without cleanup is the OpState, and this should not actually cause crashes. #[test] fn inspector() { let mut runtime = JsRuntime::new(RuntimeOptions { inspector: true, ..Default::default() }); // This was causing a crash runtime.op_state().borrow_mut().put(runtime.inspector()); runtime.execute_script_static("check.js", "null").unwrap(); } #[test] fn will_snapshot() { let snapshot = { let mut runtime = JsRuntimeForSnapshot::new(Default::default(), Default::default()); runtime.execute_script_static("a.js", "a = 1 + 2").unwrap(); runtime.snapshot() }; let snapshot = Snapshot::JustCreated(snapshot); let mut runtime2 = JsRuntime::new(RuntimeOptions { startup_snapshot: Some(snapshot), ..Default::default() }); runtime2 .execute_script_static("check.js", "if (a != 3) throw Error('x')") .unwrap(); } #[test] fn will_snapshot2() { let startup_data = { let mut runtime = JsRuntimeForSnapshot::new(Default::default(), Default::default()); runtime .execute_script_static("a.js", "let a = 1 + 2") .unwrap(); runtime.snapshot() }; let snapshot = Snapshot::JustCreated(startup_data); let mut runtime = JsRuntimeForSnapshot::new( RuntimeOptions { startup_snapshot: Some(snapshot), ..Default::default() }, Default::default(), ); let startup_data = { runtime .execute_script_static("check_a.js", "if (a != 3) throw Error('x')") .unwrap(); runtime.execute_script_static("b.js", "b = 2 + 3").unwrap(); runtime.snapshot() }; let snapshot = Snapshot::JustCreated(startup_data); { let mut runtime = JsRuntime::new(RuntimeOptions { startup_snapshot: Some(snapshot), ..Default::default() }); runtime .execute_script_static("check_b.js", "if (b != 5) throw Error('x')") .unwrap(); runtime .execute_script_static("check2.js", "if (!Deno.core) throw Error('x')") .unwrap(); } } #[test] fn test_snapshot_callbacks() { let snapshot = { let mut runtime = JsRuntimeForSnapshot::new(Default::default(), Default::default()); runtime .execute_script_static( "a.js", r#" Deno.core.setMacrotaskCallback(() => { return true; }); Deno.core.ops.op_set_format_exception_callback(()=> { return null; }) Deno.core.setPromiseRejectCallback(() => { return false; }); a = 1 + 2; "#, ) .unwrap(); runtime.snapshot() }; let snapshot = Snapshot::JustCreated(snapshot); let mut runtime2 = JsRuntime::new(RuntimeOptions { startup_snapshot: Some(snapshot), ..Default::default() }); runtime2 .execute_script_static("check.js", "if (a != 3) throw Error('x')") .unwrap(); } #[test] fn test_from_boxed_snapshot() { let snapshot = { let mut runtime = JsRuntimeForSnapshot::new(Default::default(), Default::default()); runtime.execute_script_static("a.js", "a = 1 + 2").unwrap(); let snap: &[u8] = &runtime.snapshot(); Vec::from(snap).into_boxed_slice() }; let snapshot = Snapshot::Boxed(snapshot); let mut runtime2 = JsRuntime::new(RuntimeOptions { startup_snapshot: Some(snapshot), ..Default::default() }); runtime2 .execute_script_static("check.js", "if (a != 3) throw Error('x')") .unwrap(); } #[test] fn test_get_module_namespace() { #[derive(Default)] struct ModsLoader; impl ModuleLoader for ModsLoader { fn resolve( &self, specifier: &str, referrer: &str, _kind: ResolutionKind, ) -> Result { assert_eq!(specifier, "file:///main.js"); assert_eq!(referrer, "."); let s = crate::resolve_import(specifier, referrer).unwrap(); Ok(s) } fn load( &self, _module_specifier: &ModuleSpecifier, _maybe_referrer: Option<&ModuleSpecifier>, _is_dyn_import: bool, ) -> Pin> { async { Err(generic_error("Module loading is not supported")) } .boxed_local() } } let loader = std::rc::Rc::new(ModsLoader::default()); let mut runtime = JsRuntime::new(RuntimeOptions { module_loader: Some(loader), ..Default::default() }); let specifier = crate::resolve_url("file:///main.js").unwrap(); let source_code = ascii_str!( r#" export const a = "b"; export default 1 + 2; "# ); let module_id = futures::executor::block_on( runtime.load_main_module(&specifier, Some(source_code)), ) .unwrap(); #[allow(clippy::let_underscore_future)] let _ = runtime.mod_evaluate(module_id); let module_namespace = runtime.get_module_namespace(module_id).unwrap(); let scope = &mut runtime.handle_scope(); let module_namespace = v8::Local::::new(scope, module_namespace); assert!(module_namespace.is_module_namespace_object()); let unknown_export_name = v8::String::new(scope, "none").unwrap(); let binding = module_namespace.get(scope, unknown_export_name.into()); assert!(binding.is_some()); assert!(binding.unwrap().is_undefined()); let empty_export_name = v8::String::new(scope, "").unwrap(); let binding = module_namespace.get(scope, empty_export_name.into()); assert!(binding.is_some()); assert!(binding.unwrap().is_undefined()); let a_export_name = v8::String::new(scope, "a").unwrap(); let binding = module_namespace.get(scope, a_export_name.into()); assert!(binding.unwrap().is_string()); assert_eq!(binding.unwrap(), v8::String::new(scope, "b").unwrap()); let default_export_name = v8::String::new(scope, "default").unwrap(); let binding = module_namespace.get(scope, default_export_name.into()); assert!(binding.unwrap().is_number()); assert_eq!(binding.unwrap(), v8::Number::new(scope, 3_f64)); } #[test] fn test_heap_limits() { let create_params = v8::Isolate::create_params().heap_limits(0, 5 * 1024 * 1024); let mut runtime = JsRuntime::new(RuntimeOptions { create_params: Some(create_params), ..Default::default() }); let cb_handle = runtime.v8_isolate().thread_safe_handle(); let callback_invoke_count = Rc::new(AtomicUsize::new(0)); let inner_invoke_count = Rc::clone(&callback_invoke_count); runtime.add_near_heap_limit_callback( move |current_limit, _initial_limit| { inner_invoke_count.fetch_add(1, Ordering::SeqCst); cb_handle.terminate_execution(); current_limit * 2 }, ); let err = runtime .execute_script_static( "script name", r#"let s = ""; while(true) { s += "Hello"; }"#, ) .expect_err("script should fail"); assert_eq!( "Uncaught Error: execution terminated", err.downcast::().unwrap().exception_message ); assert!(callback_invoke_count.load(Ordering::SeqCst) > 0) } #[test] fn test_heap_limit_cb_remove() { let mut runtime = JsRuntime::new(Default::default()); runtime.add_near_heap_limit_callback(|current_limit, _initial_limit| { current_limit * 2 }); runtime.remove_near_heap_limit_callback(3 * 1024 * 1024); assert!(runtime.allocations.near_heap_limit_callback_data.is_none()); } #[test] fn test_heap_limit_cb_multiple() { let create_params = v8::Isolate::create_params().heap_limits(0, 5 * 1024 * 1024); let mut runtime = JsRuntime::new(RuntimeOptions { create_params: Some(create_params), ..Default::default() }); let cb_handle = runtime.v8_isolate().thread_safe_handle(); let callback_invoke_count_first = Rc::new(AtomicUsize::new(0)); let inner_invoke_count_first = Rc::clone(&callback_invoke_count_first); runtime.add_near_heap_limit_callback( move |current_limit, _initial_limit| { inner_invoke_count_first.fetch_add(1, Ordering::SeqCst); current_limit * 2 }, ); let callback_invoke_count_second = Rc::new(AtomicUsize::new(0)); let inner_invoke_count_second = Rc::clone(&callback_invoke_count_second); runtime.add_near_heap_limit_callback( move |current_limit, _initial_limit| { inner_invoke_count_second.fetch_add(1, Ordering::SeqCst); cb_handle.terminate_execution(); current_limit * 2 }, ); let err = runtime .execute_script_static( "script name", r#"let s = ""; while(true) { s += "Hello"; }"#, ) .expect_err("script should fail"); assert_eq!( "Uncaught Error: execution terminated", err.downcast::().unwrap().exception_message ); assert_eq!(0, callback_invoke_count_first.load(Ordering::SeqCst)); assert!(callback_invoke_count_second.load(Ordering::SeqCst) > 0); } #[test] fn es_snapshot() { #[derive(Default)] struct ModsLoader; impl ModuleLoader for ModsLoader { fn resolve( &self, specifier: &str, referrer: &str, _kind: ResolutionKind, ) -> Result { let s = crate::resolve_import(specifier, referrer).unwrap(); Ok(s) } fn load( &self, _module_specifier: &ModuleSpecifier, _maybe_referrer: Option<&ModuleSpecifier>, _is_dyn_import: bool, ) -> Pin> { eprintln!("load() should not be called"); unreachable!() } } fn create_module( runtime: &mut JsRuntimeImpl, i: usize, main: bool, ) -> ModuleInfo { let specifier = crate::resolve_url(&format!("file:///{i}.js")).unwrap(); let prev = i - 1; let source_code = format!( r#" import {{ f{prev} }} from "file:///{prev}.js"; export function f{i}() {{ return f{prev}() }} "# ) .into(); let id = if main { futures::executor::block_on( runtime.load_main_module(&specifier, Some(source_code)), ) .unwrap() } else { futures::executor::block_on( runtime.load_side_module(&specifier, Some(source_code)), ) .unwrap() }; assert_eq!(i, id); #[allow(clippy::let_underscore_future)] let _ = runtime.mod_evaluate(id); futures::executor::block_on(runtime.run_event_loop(false)).unwrap(); ModuleInfo { id, main, name: specifier.into(), requests: vec![crate::modules::ModuleRequest { specifier: format!("file:///{prev}.js"), asserted_module_type: AssertedModuleType::JavaScriptOrWasm, }], module_type: ModuleType::JavaScript, } } fn assert_module_map( runtime: &mut JsRuntimeImpl, modules: &Vec, ) { let module_map = runtime.module_map.borrow(); assert_eq!(module_map.handles.len(), modules.len()); assert_eq!(module_map.info.len(), modules.len()); assert_eq!( module_map.by_name(AssertedModuleType::Json).len() + module_map .by_name(AssertedModuleType::JavaScriptOrWasm) .len(), modules.len() ); assert_eq!(module_map.next_load_id, (modules.len() + 1) as ModuleLoadId); for info in modules { assert!(module_map.handles.get(info.id).is_some()); assert_eq!(module_map.info.get(info.id).unwrap(), info); assert_eq!( module_map .by_name(AssertedModuleType::JavaScriptOrWasm) .get(&info.name) .unwrap(), &SymbolicModule::Mod(info.id) ); } } #[op] fn op_test() -> Result { Ok(String::from("test")) } let loader = Rc::new(ModsLoader::default()); let mut runtime = JsRuntimeForSnapshot::new( RuntimeOptions { module_loader: Some(loader.clone()), extensions: vec![Extension::builder("text_ext") .ops(vec![op_test::decl()]) .build()], ..Default::default() }, Default::default(), ); let specifier = crate::resolve_url("file:///0.js").unwrap(); let source_code = ascii_str!(r#"export function f0() { return "hello world" }"#); let id = futures::executor::block_on( runtime.load_side_module(&specifier, Some(source_code)), ) .unwrap(); #[allow(clippy::let_underscore_future)] let _ = runtime.mod_evaluate(id); futures::executor::block_on(runtime.run_event_loop(false)).unwrap(); let mut modules = vec![]; modules.push(ModuleInfo { id, main: false, name: specifier.into(), requests: vec![], module_type: ModuleType::JavaScript, }); modules.extend((1..200).map(|i| create_module(&mut runtime, i, false))); assert_module_map(&mut runtime, &modules); let snapshot = runtime.snapshot(); let mut runtime2 = JsRuntimeForSnapshot::new( RuntimeOptions { module_loader: Some(loader.clone()), startup_snapshot: Some(Snapshot::JustCreated(snapshot)), extensions: vec![Extension::builder("text_ext") .ops(vec![op_test::decl()]) .build()], ..Default::default() }, Default::default(), ); assert_module_map(&mut runtime2, &modules); modules.extend((200..400).map(|i| create_module(&mut runtime2, i, false))); modules.push(create_module(&mut runtime2, 400, true)); assert_module_map(&mut runtime2, &modules); let snapshot2 = runtime2.snapshot(); let mut runtime3 = JsRuntime::new(RuntimeOptions { module_loader: Some(loader), startup_snapshot: Some(Snapshot::JustCreated(snapshot2)), extensions: vec![Extension::builder("text_ext") .ops(vec![op_test::decl()]) .build()], ..Default::default() }); assert_module_map(&mut runtime3, &modules); let source_code = r#"(async () => { const mod = await import("file:///400.js"); return mod.f400() + " " + Deno.core.ops.op_test(); })();"#; let val = runtime3.execute_script_static(".", source_code).unwrap(); let val = futures::executor::block_on(runtime3.resolve_value(val)).unwrap(); { let scope = &mut runtime3.handle_scope(); let value = v8::Local::new(scope, val); let str_ = value.to_string(scope).unwrap().to_rust_string_lossy(scope); assert_eq!(str_, "hello world test"); } } #[test] fn test_error_without_stack() { let mut runtime = JsRuntime::new(RuntimeOptions::default()); // SyntaxError let result = runtime.execute_script_static( "error_without_stack.js", r#" function main() { console.log("asdf); } main(); "#, ); let expected_error = r#"Uncaught SyntaxError: Invalid or unexpected token at error_without_stack.js:3:15"#; assert_eq!(result.unwrap_err().to_string(), expected_error); } #[test] fn test_error_stack() { let mut runtime = JsRuntime::new(RuntimeOptions::default()); let result = runtime.execute_script_static( "error_stack.js", r#" function assert(cond) { if (!cond) { throw Error("assert"); } } function main() { assert(false); } main(); "#, ); let expected_error = r#"Error: assert at assert (error_stack.js:4:11) at main (error_stack.js:8:3) at error_stack.js:10:1"#; assert_eq!(result.unwrap_err().to_string(), expected_error); } #[tokio::test] async fn test_error_async_stack() { let mut runtime = JsRuntime::new(RuntimeOptions::default()); poll_fn(move |cx| { runtime .execute_script_static( "error_async_stack.js", r#" (async () => { const p = (async () => { await Promise.resolve().then(() => { throw new Error("async"); }); })(); try { await p; } catch (error) { console.log(error.stack); throw error; } })();"#, ) .unwrap(); let expected_error = r#"Error: async at error_async_stack.js:5:13 at async error_async_stack.js:4:5 at async error_async_stack.js:9:5"#; match runtime.poll_event_loop(cx, false) { Poll::Ready(Err(e)) => { assert_eq!(e.to_string(), expected_error); } _ => panic!(), }; Poll::Ready(()) }) .await; } #[tokio::test] async fn test_error_context() { use anyhow::anyhow; #[op] fn op_err_sync() -> Result<(), Error> { Err(anyhow!("original sync error").context("higher-level sync error")) } #[op] async fn op_err_async() -> Result<(), Error> { Err(anyhow!("original async error").context("higher-level async error")) } deno_core::extension!(test_ext, ops = [op_err_sync, op_err_async]); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); poll_fn(move |cx| { runtime .execute_script_static( "test_error_context_sync.js", r#" let errMessage; try { Deno.core.ops.op_err_sync(); } catch (err) { errMessage = err.message; } if (errMessage !== "higher-level sync error: original sync error") { throw new Error("unexpected error message from op_err_sync: " + errMessage); } "#, ) .unwrap(); let promise = runtime .execute_script_static( "test_error_context_async.js", r#" (async () => { let errMessage; try { await Deno.core.opAsync("op_err_async"); } catch (err) { errMessage = err.message; } if (errMessage !== "higher-level async error: original async error") { throw new Error("unexpected error message from op_err_async: " + errMessage); } })() "#, ) .unwrap(); match runtime.poll_value(&promise, cx) { Poll::Ready(Ok(_)) => {} Poll::Ready(Err(err)) => panic!("{err:?}"), _ => panic!(), } Poll::Ready(()) }).await; } #[tokio::test] async fn test_pump_message_loop() { let mut runtime = JsRuntime::new(RuntimeOptions::default()); poll_fn(move |cx| { runtime .execute_script_static( "pump_message_loop.js", r#" function assertEquals(a, b) { if (a === b) return; throw a + " does not equal " + b; } const sab = new SharedArrayBuffer(16); const i32a = new Int32Array(sab); globalThis.resolved = false; (function() { const result = Atomics.waitAsync(i32a, 0, 0); result.value.then( (value) => { assertEquals("ok", value); globalThis.resolved = true; }, () => { assertUnreachable(); }); })(); const notify_return_value = Atomics.notify(i32a, 0, 1); assertEquals(1, notify_return_value); "#, ) .unwrap(); match runtime.poll_event_loop(cx, false) { Poll::Ready(Ok(())) => {} _ => panic!(), }; // noop script, will resolve promise from first script runtime .execute_script_static( "pump_message_loop2.js", r#"assertEquals(1, 1);"#, ) .unwrap(); // check that promise from `Atomics.waitAsync` has been resolved runtime .execute_script_static( "pump_message_loop3.js", r#"assertEquals(globalThis.resolved, true);"#, ) .unwrap(); Poll::Ready(()) }) .await; } #[test] fn test_v8_platform() { let options = RuntimeOptions { v8_platform: Some(v8::new_default_platform(0, false).make_shared()), ..Default::default() }; let mut runtime = JsRuntime::new(options); runtime.execute_script_static("", "").unwrap(); } #[ignore] // TODO(@littledivy): Fast API ops when snapshot is not loaded. #[test] fn test_is_proxy() { let mut runtime = JsRuntime::new(RuntimeOptions::default()); let all_true: v8::Global = runtime .execute_script_static( "is_proxy.js", r#" (function () { const o = { a: 1, b: 2}; const p = new Proxy(o, {}); return Deno.core.ops.op_is_proxy(p) && !Deno.core.ops.op_is_proxy(o) && !Deno.core.ops.op_is_proxy(42); })() "#, ) .unwrap(); let mut scope = runtime.handle_scope(); let all_true = v8::Local::::new(&mut scope, &all_true); assert!(all_true.is_true()); } #[tokio::test] async fn test_async_opstate_borrow() { struct InnerState(u64); #[op] async fn op_async_borrow( op_state: Rc>, ) -> Result<(), Error> { let n = { let op_state = op_state.borrow(); let inner_state = op_state.borrow::(); inner_state.0 }; // Future must be Poll::Pending on first call tokio::time::sleep(std::time::Duration::from_millis(1)).await; if n != 42 { unreachable!(); } Ok(()) } deno_core::extension!( test_ext, ops = [op_async_borrow], state = |state| state.put(InnerState(42)) ); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); runtime .execute_script_static( "op_async_borrow.js", "Deno.core.opAsync(\"op_async_borrow\")", ) .unwrap(); runtime.run_event_loop(false).await.unwrap(); } #[tokio::test] async fn test_sync_op_serialize_object_with_numbers_as_keys() { #[op] fn op_sync_serialize_object_with_numbers_as_keys( value: serde_json::Value, ) -> Result<(), Error> { assert_eq!( value.to_string(), r#"{"lines":{"100":{"unit":"m"},"200":{"unit":"cm"}}}"# ); Ok(()) } deno_core::extension!( test_ext, ops = [op_sync_serialize_object_with_numbers_as_keys] ); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); runtime .execute_script_static( "op_sync_serialize_object_with_numbers_as_keys.js", r#" Deno.core.ops.op_sync_serialize_object_with_numbers_as_keys({ lines: { 100: { unit: "m" }, 200: { unit: "cm" } } }) "#, ) .unwrap(); runtime.run_event_loop(false).await.unwrap(); } #[tokio::test] async fn test_async_op_serialize_object_with_numbers_as_keys() { #[op] async fn op_async_serialize_object_with_numbers_as_keys( value: serde_json::Value, ) -> Result<(), Error> { assert_eq!( value.to_string(), r#"{"lines":{"100":{"unit":"m"},"200":{"unit":"cm"}}}"# ); Ok(()) } deno_core::extension!( test_ext, ops = [op_async_serialize_object_with_numbers_as_keys] ); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); runtime .execute_script_static( "op_async_serialize_object_with_numbers_as_keys.js", r#" Deno.core.opAsync("op_async_serialize_object_with_numbers_as_keys", { lines: { 100: { unit: "m" }, 200: { unit: "cm" } } }) "#, ) .unwrap(); runtime.run_event_loop(false).await.unwrap(); } #[tokio::test] async fn test_set_macrotask_callback_set_next_tick_callback() { #[op] async fn op_async_sleep() -> Result<(), Error> { // Future must be Poll::Pending on first call tokio::time::sleep(std::time::Duration::from_millis(1)).await; Ok(()) } deno_core::extension!(test_ext, ops = [op_async_sleep]); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); runtime .execute_script_static( "macrotasks_and_nextticks.js", r#" (async function () { const results = []; Deno.core.setMacrotaskCallback(() => { results.push("macrotask"); return true; }); Deno.core.setNextTickCallback(() => { results.push("nextTick"); Deno.core.ops.op_set_has_tick_scheduled(false); }); Deno.core.ops.op_set_has_tick_scheduled(true); await Deno.core.opAsync('op_async_sleep'); if (results[0] != "nextTick") { throw new Error(`expected nextTick, got: ${results[0]}`); } if (results[1] != "macrotask") { throw new Error(`expected macrotask, got: ${results[1]}`); } })(); "#, ) .unwrap(); runtime.run_event_loop(false).await.unwrap(); } #[test] fn test_has_tick_scheduled() { use futures::task::ArcWake; static MACROTASK: AtomicUsize = AtomicUsize::new(0); static NEXT_TICK: AtomicUsize = AtomicUsize::new(0); #[op] fn op_macrotask() -> Result<(), AnyError> { MACROTASK.fetch_add(1, Ordering::Relaxed); Ok(()) } #[op] fn op_next_tick() -> Result<(), AnyError> { NEXT_TICK.fetch_add(1, Ordering::Relaxed); Ok(()) } deno_core::extension!(test_ext, ops = [op_macrotask, op_next_tick]); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); runtime .execute_script_static( "has_tick_scheduled.js", r#" Deno.core.setMacrotaskCallback(() => { Deno.core.ops.op_macrotask(); return true; // We're done. }); Deno.core.setNextTickCallback(() => Deno.core.ops.op_next_tick()); Deno.core.ops.op_set_has_tick_scheduled(true); "#, ) .unwrap(); struct ArcWakeImpl(Arc); impl ArcWake for ArcWakeImpl { fn wake_by_ref(arc_self: &Arc) { arc_self.0.fetch_add(1, Ordering::Relaxed); } } let awoken_times = Arc::new(AtomicUsize::new(0)); let waker = futures::task::waker(Arc::new(ArcWakeImpl(awoken_times.clone()))); let cx = &mut Context::from_waker(&waker); assert!(matches!(runtime.poll_event_loop(cx, false), Poll::Pending)); assert_eq!(1, MACROTASK.load(Ordering::Relaxed)); assert_eq!(1, NEXT_TICK.load(Ordering::Relaxed)); assert_eq!(awoken_times.swap(0, Ordering::Relaxed), 1); assert!(matches!(runtime.poll_event_loop(cx, false), Poll::Pending)); assert_eq!(awoken_times.swap(0, Ordering::Relaxed), 1); assert!(matches!(runtime.poll_event_loop(cx, false), Poll::Pending)); assert_eq!(awoken_times.swap(0, Ordering::Relaxed), 1); assert!(matches!(runtime.poll_event_loop(cx, false), Poll::Pending)); assert_eq!(awoken_times.swap(0, Ordering::Relaxed), 1); runtime.inner.state.borrow_mut().has_tick_scheduled = false; assert!(matches!( runtime.poll_event_loop(cx, false), Poll::Ready(Ok(())) )); assert_eq!(awoken_times.load(Ordering::Relaxed), 0); assert!(matches!( runtime.poll_event_loop(cx, false), Poll::Ready(Ok(())) )); assert_eq!(awoken_times.load(Ordering::Relaxed), 0); } #[test] fn terminate_during_module_eval() { #[derive(Default)] struct ModsLoader; impl ModuleLoader for ModsLoader { fn resolve( &self, specifier: &str, referrer: &str, _kind: ResolutionKind, ) -> Result { assert_eq!(specifier, "file:///main.js"); assert_eq!(referrer, "."); let s = crate::resolve_import(specifier, referrer).unwrap(); Ok(s) } fn load( &self, _module_specifier: &ModuleSpecifier, _maybe_referrer: Option<&ModuleSpecifier>, _is_dyn_import: bool, ) -> Pin> { async move { Ok(ModuleSource::for_test( "console.log('hello world');", "file:///main.js", )) } .boxed_local() } } let loader = std::rc::Rc::new(ModsLoader::default()); let mut runtime = JsRuntime::new(RuntimeOptions { module_loader: Some(loader), ..Default::default() }); let specifier = crate::resolve_url("file:///main.js").unwrap(); let source_code = ascii_str!("Deno.core.print('hello\\n')"); let module_id = futures::executor::block_on( runtime.load_main_module(&specifier, Some(source_code)), ) .unwrap(); runtime.v8_isolate().terminate_execution(); let mod_result = futures::executor::block_on(runtime.mod_evaluate(module_id)).unwrap(); assert!(mod_result .unwrap_err() .to_string() .contains("JavaScript execution has been terminated")); } #[tokio::test] async fn test_unhandled_rejection_order() { let mut runtime = JsRuntime::new(Default::default()); runtime .execute_script_static( "", r#" for (let i = 0; i < 100; i++) { Promise.reject(i); } "#, ) .unwrap(); let err = runtime.run_event_loop(false).await.unwrap_err(); assert_eq!(err.to_string(), "Uncaught (in promise) 0"); } #[tokio::test] async fn test_set_promise_reject_callback() { static PROMISE_REJECT: AtomicUsize = AtomicUsize::new(0); #[op] fn op_promise_reject() -> Result<(), AnyError> { PROMISE_REJECT.fetch_add(1, Ordering::Relaxed); Ok(()) } deno_core::extension!(test_ext, ops = [op_promise_reject]); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); runtime .execute_script_static( "promise_reject_callback.js", r#" // Note: |promise| is not the promise created below, it's a child. Deno.core.ops.op_set_promise_reject_callback((type, promise, reason) => { if (type !== /* PromiseRejectWithNoHandler */ 0) { throw Error("unexpected type: " + type); } if (reason.message !== "reject") { throw Error("unexpected reason: " + reason); } Deno.core.ops.op_store_pending_promise_rejection(promise); Deno.core.ops.op_promise_reject(); }); new Promise((_, reject) => reject(Error("reject"))); "#, ) .unwrap(); runtime.run_event_loop(false).await.unwrap_err(); assert_eq!(1, PROMISE_REJECT.load(Ordering::Relaxed)); runtime .execute_script_static( "promise_reject_callback.js", r#" { const prev = Deno.core.ops.op_set_promise_reject_callback((...args) => { prev(...args); }); } new Promise((_, reject) => reject(Error("reject"))); "#, ) .unwrap(); runtime.run_event_loop(false).await.unwrap_err(); assert_eq!(2, PROMISE_REJECT.load(Ordering::Relaxed)); } #[tokio::test] async fn test_set_promise_reject_callback_realms() { let mut runtime = JsRuntime::new(RuntimeOptions::default()); let global_realm = runtime.global_realm(); let realm1 = runtime.create_realm().unwrap(); let realm2 = runtime.create_realm().unwrap(); let realm_expectations = &[ (&global_realm, "global_realm", 42), (&realm1, "realm1", 140), (&realm2, "realm2", 720), ]; // Set up promise reject callbacks. for (realm, realm_name, number) in realm_expectations { realm .execute_script( runtime.v8_isolate(), "", format!( r#" globalThis.rejectValue = undefined; Deno.core.setPromiseRejectCallback((_type, _promise, reason) => {{ globalThis.rejectValue = `{realm_name}/${{reason}}`; }}); Deno.core.opAsync("op_void_async").then(() => Promise.reject({number})); "# ).into() ) .unwrap(); } runtime.run_event_loop(false).await.unwrap(); for (realm, realm_name, number) in realm_expectations { let reject_value = realm .execute_script_static( runtime.v8_isolate(), "", "globalThis.rejectValue", ) .unwrap(); let scope = &mut realm.handle_scope(runtime.v8_isolate()); let reject_value = v8::Local::new(scope, reject_value); assert!(reject_value.is_string()); let reject_value_string = reject_value.to_rust_string_lossy(scope); assert_eq!(reject_value_string, format!("{realm_name}/{number}")); } } #[tokio::test] async fn test_set_promise_reject_callback_top_level_await() { static PROMISE_REJECT: AtomicUsize = AtomicUsize::new(0); #[op] fn op_promise_reject() -> Result<(), AnyError> { PROMISE_REJECT.fetch_add(1, Ordering::Relaxed); Ok(()) } deno_core::extension!(test_ext, ops = [op_promise_reject]); #[derive(Default)] struct ModsLoader; impl ModuleLoader for ModsLoader { fn resolve( &self, specifier: &str, referrer: &str, _kind: ResolutionKind, ) -> Result { assert_eq!(specifier, "file:///main.js"); assert_eq!(referrer, "."); let s = crate::resolve_import(specifier, referrer).unwrap(); Ok(s) } fn load( &self, _module_specifier: &ModuleSpecifier, _maybe_referrer: Option<&ModuleSpecifier>, _is_dyn_import: bool, ) -> Pin> { let code = r#" Deno.core.ops.op_set_promise_reject_callback((type, promise, reason) => { Deno.core.ops.op_promise_reject(); }); throw new Error('top level throw'); "#; async move { Ok(ModuleSource::for_test(code, "file:///main.js")) } .boxed_local() } } let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], module_loader: Some(Rc::new(ModsLoader)), ..Default::default() }); let id = runtime .load_main_module(&crate::resolve_url("file:///main.js").unwrap(), None) .await .unwrap(); let receiver = runtime.mod_evaluate(id); runtime.run_event_loop(false).await.unwrap(); receiver.await.unwrap().unwrap_err(); assert_eq!(1, PROMISE_REJECT.load(Ordering::Relaxed)); } #[test] fn test_op_return_serde_v8_error() { #[op] fn op_err() -> Result, anyhow::Error> { Ok([(1, 2), (3, 4)].into_iter().collect()) // Maps can't have non-string keys in serde_v8 } deno_core::extension!(test_ext, ops = [op_err]); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); assert!(runtime .execute_script_static( "test_op_return_serde_v8_error.js", "Deno.core.ops.op_err()" ) .is_err()); } #[test] fn test_op_high_arity() { #[op] fn op_add_4( x1: i64, x2: i64, x3: i64, x4: i64, ) -> Result { Ok(x1 + x2 + x3 + x4) } deno_core::extension!(test_ext, ops = [op_add_4]); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); let r = runtime .execute_script_static("test.js", "Deno.core.ops.op_add_4(1, 2, 3, 4)") .unwrap(); let scope = &mut runtime.handle_scope(); assert_eq!(r.open(scope).integer_value(scope), Some(10)); } #[test] fn test_op_disabled() { #[op] fn op_foo() -> Result { Ok(42) } fn ops() -> Vec { vec![op_foo::decl().disable()] } deno_core::extension!(test_ext, ops_fn = ops); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); let err = runtime .execute_script_static("test.js", "Deno.core.ops.op_foo()") .unwrap_err(); assert!(err .to_string() .contains("TypeError: Deno.core.ops.op_foo is not a function")); } #[test] fn test_op_detached_buffer() { use serde_v8::DetachedBuffer; #[op] fn op_sum_take(b: DetachedBuffer) -> Result { Ok(b.as_ref().iter().clone().map(|x| *x as u64).sum()) } #[op] fn op_boomerang( b: DetachedBuffer, ) -> Result { Ok(b) } deno_core::extension!(test_ext, ops = [op_sum_take, op_boomerang]); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); runtime .execute_script_static( "test.js", r#" const a1 = new Uint8Array([1,2,3]); const a1b = a1.subarray(0, 3); const a2 = new Uint8Array([5,10,15]); const a2b = a2.subarray(0, 3); if (!(a1.length > 0 && a1b.length > 0)) { throw new Error("a1 & a1b should have a length"); } let sum = Deno.core.ops.op_sum_take(a1b); if (sum !== 6) { throw new Error(`Bad sum: ${sum}`); } if (a1.length > 0 || a1b.length > 0) { throw new Error("expecting a1 & a1b to be detached"); } const a3 = Deno.core.ops.op_boomerang(a2b); if (a3.byteLength != 3) { throw new Error(`Expected a3.byteLength === 3, got ${a3.byteLength}`); } if (a3[0] !== 5 || a3[1] !== 10) { throw new Error(`Invalid a3: ${a3[0]}, ${a3[1]}`); } if (a2.byteLength > 0 || a2b.byteLength > 0) { throw new Error("expecting a2 & a2b to be detached, a3 re-attached"); } const wmem = new WebAssembly.Memory({ initial: 1, maximum: 2 }); const w32 = new Uint32Array(wmem.buffer); w32[0] = 1; w32[1] = 2; w32[2] = 3; const assertWasmThrow = (() => { try { let sum = Deno.core.ops.op_sum_take(w32.subarray(0, 2)); return false; } catch(e) { return e.message.includes('invalid type; expected: detachable'); } }); if (!assertWasmThrow()) { throw new Error("expected wasm mem to not be detachable"); } "#, ) .unwrap(); } #[test] fn test_op_unstable_disabling() { #[op] fn op_foo() -> Result { Ok(42) } #[op(unstable)] fn op_bar() -> Result { Ok(42) } deno_core::extension!( test_ext, ops = [op_foo, op_bar], middleware = |op| if op.is_unstable { op.disable() } else { op } ); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); runtime .execute_script_static( "test.js", r#" if (Deno.core.ops.op_foo() !== 42) { throw new Error("Exptected op_foo() === 42"); } if (typeof Deno.core.ops.op_bar !== "undefined") { throw new Error("Expected op_bar to be disabled") } "#, ) .unwrap(); } #[test] fn js_realm_simple() { let mut runtime = JsRuntime::new(Default::default()); let main_context = runtime.global_context(); let main_global = { let scope = &mut runtime.handle_scope(); let local_global = main_context.open(scope).global(scope); v8::Global::new(scope, local_global) }; let realm = runtime.create_realm().unwrap(); assert_ne!(realm.context(), &main_context); assert_ne!(realm.global_object(runtime.v8_isolate()), main_global); let main_object = runtime.execute_script_static("", "Object").unwrap(); let realm_object = realm .execute_script_static(runtime.v8_isolate(), "", "Object") .unwrap(); assert_ne!(main_object, realm_object); } #[test] fn js_realm_init() { #[op] fn op_test() -> Result { Ok(String::from("Test")) } deno_core::extension!(test_ext, ops = [op_test]); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); let realm = runtime.create_realm().unwrap(); let ret = realm .execute_script_static( runtime.v8_isolate(), "", "Deno.core.ops.op_test()", ) .unwrap(); let scope = &mut realm.handle_scope(runtime.v8_isolate()); assert_eq!(ret, serde_v8::to_v8(scope, "Test").unwrap()); } #[test] fn js_realm_init_snapshot() { let snapshot = { let runtime = JsRuntimeForSnapshot::new(Default::default(), Default::default()); let snap: &[u8] = &runtime.snapshot(); Vec::from(snap).into_boxed_slice() }; #[op] fn op_test() -> Result { Ok(String::from("Test")) } deno_core::extension!( test_ext, ops = [op_test], customizer = |ext: &mut deno_core::ExtensionBuilder| { ext.force_op_registration(); }, ); let mut runtime = JsRuntime::new(RuntimeOptions { startup_snapshot: Some(Snapshot::Boxed(snapshot)), extensions: vec![test_ext::init_ops()], ..Default::default() }); let realm = runtime.create_realm().unwrap(); let ret = realm .execute_script_static( runtime.v8_isolate(), "", "Deno.core.ops.op_test()", ) .unwrap(); let scope = &mut realm.handle_scope(runtime.v8_isolate()); assert_eq!(ret, serde_v8::to_v8(scope, "Test").unwrap()); } #[test] fn js_realm_sync_ops() { // Test that returning a ZeroCopyBuf and throwing an exception from a sync // op result in objects with prototypes from the right realm. Note that we // don't test the result of returning structs, because they will be // serialized to objects with null prototype. #[op] fn op_test(fail: bool) -> Result { if !fail { Ok(ZeroCopyBuf::empty()) } else { Err(crate::error::type_error("Test")) } } deno_core::extension!(test_ext, ops = [op_test]); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], get_error_class_fn: Some(&|error| { crate::error::get_custom_error_class(error).unwrap() }), ..Default::default() }); let new_realm = runtime.create_realm().unwrap(); // Test in both realms for realm in [runtime.global_realm(), new_realm].into_iter() { let ret = realm .execute_script_static( runtime.v8_isolate(), "", r#" const buf = Deno.core.ops.op_test(false); try { Deno.core.ops.op_test(true); } catch(e) { err = e; } buf instanceof Uint8Array && buf.byteLength === 0 && err instanceof TypeError && err.message === "Test" "#, ) .unwrap(); assert!(ret.open(runtime.v8_isolate()).is_true()); } } #[tokio::test] async fn js_realm_async_ops() { // Test that returning a ZeroCopyBuf and throwing an exception from a async // op result in objects with prototypes from the right realm. Note that we // don't test the result of returning structs, because they will be // serialized to objects with null prototype. #[op] async fn op_test(fail: bool) -> Result { if !fail { Ok(ZeroCopyBuf::empty()) } else { Err(crate::error::type_error("Test")) } } deno_core::extension!(test_ext, ops = [op_test]); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], get_error_class_fn: Some(&|error| { crate::error::get_custom_error_class(error).unwrap() }), ..Default::default() }); let global_realm = runtime.global_realm(); let new_realm = runtime.create_realm().unwrap(); let mut rets = vec![]; // Test in both realms for realm in [global_realm, new_realm].into_iter() { let ret = realm .execute_script_static( runtime.v8_isolate(), "", r#" (async function () { const buf = await Deno.core.opAsync("op_test", false); let err; try { await Deno.core.opAsync("op_test", true); } catch(e) { err = e; } return buf instanceof Uint8Array && buf.byteLength === 0 && err instanceof TypeError && err.message === "Test" ; })(); "#, ) .unwrap(); rets.push((realm, ret)); } runtime.run_event_loop(false).await.unwrap(); for ret in rets { let scope = &mut ret.0.handle_scope(runtime.v8_isolate()); let value = v8::Local::new(scope, ret.1); let promise = v8::Local::::try_from(value).unwrap(); let result = promise.result(scope); assert!(result.is_boolean() && result.is_true()); } } #[tokio::test] async fn js_realm_gc() { static INVOKE_COUNT: AtomicUsize = AtomicUsize::new(0); struct PendingFuture {} impl Future for PendingFuture { type Output = (); fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<()> { Poll::Pending } } impl Drop for PendingFuture { fn drop(&mut self) { assert_eq!(INVOKE_COUNT.fetch_sub(1, Ordering::SeqCst), 1); } } // Never resolves. #[op] async fn op_pending() { assert_eq!(INVOKE_COUNT.fetch_add(1, Ordering::SeqCst), 0); PendingFuture {}.await } deno_core::extension!(test_ext, ops = [op_pending]); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); // Detect a drop in OpState let opstate_drop_detect = Rc::new(()); runtime .op_state() .borrow_mut() .put(opstate_drop_detect.clone()); assert_eq!(Rc::strong_count(&opstate_drop_detect), 2); let other_realm = runtime.create_realm().unwrap(); other_realm .execute_script( runtime.v8_isolate(), "future", ModuleCode::from_static("Deno.core.opAsync('op_pending')"), ) .unwrap(); while INVOKE_COUNT.load(Ordering::SeqCst) == 0 { poll_fn(|cx: &mut Context| runtime.poll_event_loop(cx, false)) .await .unwrap(); } drop(other_realm); while INVOKE_COUNT.load(Ordering::SeqCst) == 1 { poll_fn(|cx| runtime.poll_event_loop(cx, false)) .await .unwrap(); } drop(runtime); // Make sure the OpState was dropped properly when the runtime dropped assert_eq!(Rc::strong_count(&opstate_drop_detect), 1); } #[tokio::test] async fn js_realm_ref_unref_ops() { // Never resolves. #[op] async fn op_pending() { futures::future::pending().await } deno_core::extension!(test_ext, ops = [op_pending]); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); poll_fn(move |cx| { let main_realm = runtime.global_realm(); let other_realm = runtime.create_realm().unwrap(); main_realm .execute_script_static( runtime.v8_isolate(), "", r#" var promise = Deno.core.opAsync("op_pending"); "#, ) .unwrap(); other_realm .execute_script_static( runtime.v8_isolate(), "", r#" var promise = Deno.core.opAsync("op_pending"); "#, ) .unwrap(); assert!(matches!(runtime.poll_event_loop(cx, false), Poll::Pending)); main_realm .execute_script_static( runtime.v8_isolate(), "", r#" let promiseIdSymbol = Symbol.for("Deno.core.internalPromiseId"); Deno.core.unrefOp(promise[promiseIdSymbol]); "#, ) .unwrap(); assert!(matches!(runtime.poll_event_loop(cx, false), Poll::Pending)); other_realm .execute_script_static( runtime.v8_isolate(), "", r#" let promiseIdSymbol = Symbol.for("Deno.core.internalPromiseId"); Deno.core.unrefOp(promise[promiseIdSymbol]); "#, ) .unwrap(); assert!(matches!( runtime.poll_event_loop(cx, false), Poll::Ready(Ok(())) )); Poll::Ready(()) }) .await; } #[test] fn test_array_by_copy() { // Verify that "array by copy" proposal is enabled (https://github.com/tc39/proposal-change-array-by-copy) let mut runtime = JsRuntime::new(Default::default()); assert!(runtime .execute_script_static( "test_array_by_copy.js", "const a = [1, 2, 3]; const b = a.toReversed(); if (!(a[0] === 1 && a[1] === 2 && a[2] === 3)) { throw new Error('Expected a to be intact'); } if (!(b[0] === 3 && b[1] === 2 && b[2] === 1)) { throw new Error('Expected b to be reversed'); }", ) .is_ok()); } #[cfg(debug_assertions)] #[test] #[should_panic(expected = "Found ops with duplicate names:")] fn duplicate_op_names() { mod a { use super::*; #[op] fn op_test() -> Result { Ok(String::from("Test")) } } #[op] fn op_test() -> Result { Ok(String::from("Test")) } deno_core::extension!(test_ext, ops = [a::op_test, op_test]); JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); } #[test] fn ops_in_js_have_proper_names() { #[op] fn op_test_sync() -> Result { Ok(String::from("Test")) } #[op] async fn op_test_async() -> Result { Ok(String::from("Test")) } deno_core::extension!(test_ext, ops = [op_test_sync, op_test_async]); let mut runtime = JsRuntime::new(RuntimeOptions { extensions: vec![test_ext::init_ops()], ..Default::default() }); let src = r#" if (Deno.core.ops.op_test_sync.name !== "op_test_sync") { throw new Error(); } if (Deno.core.ops.op_test_async.name !== "op_test_async") { throw new Error(); } const { op_test_async } = Deno.core.generateAsyncOpHandler("op_test_async"); if (op_test_async.name !== "op_test_async") { throw new Error(); } "#; runtime.execute_script_static("test", src).unwrap(); } }