// Copyright 2018-2020 the Deno authors. All rights reserved. MIT license. use rusty_v8 as v8; use crate::bindings; use crate::error::attach_handle_to_error; use crate::error::AnyError; use crate::error::ErrWithV8Handle; use crate::error::JsError; use crate::futures::FutureExt; use crate::module_specifier::ModuleSpecifier; use crate::modules::LoadState; use crate::modules::ModuleId; use crate::modules::ModuleLoadId; use crate::modules::ModuleLoader; use crate::modules::ModuleSource; use crate::modules::Modules; use crate::modules::NoopModuleLoader; use crate::modules::PrepareLoadFuture; use crate::modules::RecursiveModuleLoad; use crate::ops::*; use crate::shared_queue::SharedQueue; use crate::shared_queue::RECOMMENDED_SIZE; use crate::BufVec; use crate::OpState; use futures::future::poll_fn; use futures::stream::FuturesUnordered; use futures::stream::StreamExt; use futures::stream::StreamFuture; use futures::task::AtomicWaker; use futures::Future; use std::any::Any; use std::cell::Cell; use std::cell::RefCell; use std::collections::HashMap; use std::convert::TryFrom; use std::ffi::c_void; use std::mem::forget; use std::option::Option; use std::pin::Pin; use std::rc::Rc; use std::sync::Once; use std::task::Context; use std::task::Poll; type PendingOpFuture = Pin)>>>; pub enum Snapshot { Static(&'static [u8]), JustCreated(v8::StartupData), Boxed(Box<[u8]>), } type JsErrorCreateFn = dyn Fn(JsError) -> AnyError; pub type GetErrorClassFn = &'static dyn for<'e> Fn(&'e AnyError) -> &'static str; /// Objects that need to live as long as the isolate #[derive(Default)] struct IsolateAllocations { near_heap_limit_callback_data: Option<(Box>, v8::NearHeapLimitCallback)>, } /// A single execution context of JavaScript. Corresponds roughly to the "Web /// Worker" concept in the DOM. A JsRuntime is a Future that can be used with /// an event loop (Tokio, async_std). //// /// The JsRuntime future completes when there is an error or when all /// pending ops have completed. /// /// Ops are created in JavaScript by calling Deno.core.dispatch(), and in Rust /// by implementing dispatcher function that takes control buffer and optional zero copy buffer /// as arguments. An async Op corresponds exactly to a Promise in JavaScript. pub struct JsRuntime { // This is an Option instead of just OwnedIsolate to workaround // an safety issue with SnapshotCreator. See JsRuntime::drop. v8_isolate: Option, snapshot_creator: Option, has_snapshotted: bool, needs_init: bool, allocations: IsolateAllocations, } /// Internal state for JsRuntime which is stored in one of v8::Isolate's /// embedder slots. pub(crate) struct JsRuntimeState { pub global_context: Option>, pub(crate) shared_ab: Option>, pub(crate) js_recv_cb: Option>, pub(crate) js_macrotask_cb: Option>, pub(crate) pending_promise_exceptions: HashMap>, pub(crate) js_error_create_fn: Box, pub(crate) shared: SharedQueue, pub(crate) pending_ops: FuturesUnordered, pub(crate) pending_unref_ops: FuturesUnordered, pub(crate) have_unpolled_ops: Cell, //pub(crate) op_table: OpTable, pub(crate) op_state: Rc>, loader: Rc, pub modules: Modules, pub(crate) dyn_import_map: HashMap>, preparing_dyn_imports: FuturesUnordered>>, pending_dyn_imports: FuturesUnordered>, waker: AtomicWaker, } impl Drop for JsRuntime { fn drop(&mut self) { if let Some(creator) = self.snapshot_creator.take() { // TODO(ry): in rusty_v8, `SnapShotCreator::get_owned_isolate()` returns // a `struct OwnedIsolate` which is not actually owned, hence the need // here to leak the `OwnedIsolate` in order to avoid a double free and // the segfault that it causes. let v8_isolate = self.v8_isolate.take().unwrap(); forget(v8_isolate); // TODO(ry) V8 has a strange assert which prevents a SnapshotCreator from // being deallocated if it hasn't created a snapshot yet. // https://github.com/v8/v8/blob/73212783fbd534fac76cc4b66aac899c13f71fc8/src/api.cc#L603 // If that assert is removed, this if guard could be removed. // WARNING: There may be false positive LSAN errors here. if self.has_snapshotted { drop(creator); } } } } #[allow(clippy::missing_safety_doc)] pub unsafe fn v8_init() { let platform = v8::new_default_platform().unwrap(); v8::V8::initialize_platform(platform); v8::V8::initialize(); // TODO(ry) This makes WASM compile synchronously. Eventually we should // remove this to make it work asynchronously too. But that requires getting // PumpMessageLoop and RunMicrotasks setup correctly. // See https://github.com/denoland/deno/issues/2544 let argv = vec![ "".to_string(), "--wasm-test-streaming".to_string(), "--no-wasm-async-compilation".to_string(), "--harmony-top-level-await".to_string(), ]; v8::V8::set_flags_from_command_line(argv); } /// Minimum and maximum bytes of heap used in an isolate pub struct HeapLimits { /// By default V8 starts with a small heap and dynamically grows it to match /// the set of live objects. This may lead to ineffective garbage collections /// at startup if the live set is large. Setting the initial heap size avoids /// such garbage collections. Note that this does not affect young generation /// garbage collections. pub initial: usize, /// When the heap size approaches `max`, V8 will perform series of /// garbage collections and invoke the /// [NearHeapLimitCallback](TODO). /// If the garbage collections do not help and the callback does not /// increase the limit, then V8 will crash with V8::FatalProcessOutOfMemory. pub max: usize, } #[derive(Default)] pub struct RuntimeOptions { /// Allows a callback to be set whenever a V8 exception is made. This allows /// the caller to wrap the JsError into an error. By default this callback /// is set to `JsError::create()`. pub js_error_create_fn: Option>, /// Implementation of `ModuleLoader` which will be /// called when V8 requests to load ES modules. /// /// If not provided runtime will error if code being /// executed tries to load modules. pub module_loader: Option>, /// V8 snapshot that should be loaded on startup. /// /// Currently can't be used with `will_snapshot`. pub startup_snapshot: Option, /// Prepare runtime to take snapshot of loaded code. /// /// Currently can't be used with `startup_snapshot`. pub will_snapshot: bool, /// This is useful for controlling memory usage of scripts. /// /// See [`HeapLimits`](struct.HeapLimits.html) for more details. /// /// Make sure to use [`add_near_heap_limit_callback`](#method.add_near_heap_limit_callback) /// to prevent v8 from crashing when reaching the upper limit. pub heap_limits: Option, } impl JsRuntime { pub fn new(options: RuntimeOptions) -> Self { static DENO_INIT: Once = Once::new(); DENO_INIT.call_once(|| { unsafe { v8_init() }; }); let global_context; let (mut isolate, maybe_snapshot_creator) = if options.will_snapshot { // TODO(ry) Support loading snapshots before snapshotting. assert!(options.startup_snapshot.is_none()); let mut creator = v8::SnapshotCreator::new(Some(&bindings::EXTERNAL_REFERENCES)); let isolate = unsafe { creator.get_owned_isolate() }; let mut isolate = JsRuntime::setup_isolate(isolate); { let scope = &mut v8::HandleScope::new(&mut isolate); let context = bindings::initialize_context(scope); global_context = v8::Global::new(scope, context); creator.set_default_context(context); } (isolate, Some(creator)) } else { let mut params = v8::Isolate::create_params() .external_references(&**bindings::EXTERNAL_REFERENCES); let snapshot_loaded = if let Some(snapshot) = options.startup_snapshot { params = match snapshot { Snapshot::Static(data) => params.snapshot_blob(data), Snapshot::JustCreated(data) => params.snapshot_blob(data), Snapshot::Boxed(data) => params.snapshot_blob(data), }; true } else { false }; if let Some(heap_limits) = options.heap_limits { params = params.heap_limits(heap_limits.initial, heap_limits.max) } let isolate = v8::Isolate::new(params); let mut isolate = JsRuntime::setup_isolate(isolate); { let scope = &mut v8::HandleScope::new(&mut isolate); let context = if snapshot_loaded { v8::Context::new(scope) } else { // If no snapshot is provided, we initialize the context with empty // main source code and source maps. bindings::initialize_context(scope) }; global_context = v8::Global::new(scope, context); } (isolate, None) }; let loader = options .module_loader .unwrap_or_else(|| Rc::new(NoopModuleLoader)); let js_error_create_fn = options .js_error_create_fn .unwrap_or_else(|| Box::new(JsError::create)); let op_state = OpState::default(); isolate.set_slot(Rc::new(RefCell::new(JsRuntimeState { global_context: Some(global_context), pending_promise_exceptions: HashMap::new(), shared_ab: None, js_recv_cb: None, js_macrotask_cb: None, js_error_create_fn, shared: SharedQueue::new(RECOMMENDED_SIZE), pending_ops: FuturesUnordered::new(), pending_unref_ops: FuturesUnordered::new(), op_state: Rc::new(RefCell::new(op_state)), have_unpolled_ops: Cell::new(false), modules: Modules::new(), loader, dyn_import_map: HashMap::new(), preparing_dyn_imports: FuturesUnordered::new(), pending_dyn_imports: FuturesUnordered::new(), waker: AtomicWaker::new(), }))); Self { v8_isolate: Some(isolate), snapshot_creator: maybe_snapshot_creator, has_snapshotted: false, needs_init: true, allocations: IsolateAllocations::default(), } } pub fn global_context(&mut self) -> v8::Global { let state = Self::state(self.v8_isolate()); let state = state.borrow(); state.global_context.clone().unwrap() } pub fn v8_isolate(&mut self) -> &mut v8::OwnedIsolate { self.v8_isolate.as_mut().unwrap() } fn setup_isolate(mut isolate: v8::OwnedIsolate) -> v8::OwnedIsolate { isolate.set_capture_stack_trace_for_uncaught_exceptions(true, 10); isolate.set_promise_reject_callback(bindings::promise_reject_callback); isolate.set_host_initialize_import_meta_object_callback( bindings::host_initialize_import_meta_object_callback, ); isolate.set_host_import_module_dynamically_callback( bindings::host_import_module_dynamically_callback, ); isolate } pub(crate) fn state(isolate: &v8::Isolate) -> Rc> { let s = isolate.get_slot::>>().unwrap(); s.clone() } /// Executes a bit of built-in JavaScript to provide Deno.sharedQueue. fn shared_init(&mut self) { if self.needs_init { self.needs_init = false; self.execute("core.js", include_str!("core.js")).unwrap(); } } pub fn op_state(&mut self) -> Rc> { let state_rc = Self::state(self.v8_isolate()); let state = state_rc.borrow(); state.op_state.clone() } /// Executes traditional JavaScript code (traditional = not ES modules) /// /// `AnyError` can be downcast to a type that exposes additional information /// about the V8 exception. By default this type is `JsError`, however it may /// be a different type if `RuntimeOptions::js_error_create_fn` has been set. pub fn execute( &mut self, js_filename: &str, js_source: &str, ) -> Result<(), AnyError> { self.shared_init(); let context = self.global_context(); let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context); let source = v8::String::new(scope, js_source).unwrap(); let name = v8::String::new(scope, js_filename).unwrap(); let origin = bindings::script_origin(scope, name); let tc_scope = &mut v8::TryCatch::new(scope); let script = match v8::Script::compile(tc_scope, source, Some(&origin)) { Some(script) => script, None => { let exception = tc_scope.exception().unwrap(); return exception_to_err_result(tc_scope, exception); } }; match script.run(tc_scope) { Some(_) => Ok(()), None => { assert!(tc_scope.has_caught()); let exception = tc_scope.exception().unwrap(); exception_to_err_result(tc_scope, exception) } } } /// Takes a snapshot. The isolate should have been created with will_snapshot /// set to true. /// /// `AnyError` can be downcast to a type that exposes additional information /// about the V8 exception. By default this type is `JsError`, however it may /// be a different type if `RuntimeOptions::js_error_create_fn` has been set. pub fn snapshot(&mut self) -> v8::StartupData { assert!(self.snapshot_creator.is_some()); let state = Self::state(self.v8_isolate()); // Note: create_blob() method must not be called from within a HandleScope. // TODO(piscisaureus): The rusty_v8 type system should enforce this. state.borrow_mut().global_context.take(); std::mem::take(&mut state.borrow_mut().modules); let snapshot_creator = self.snapshot_creator.as_mut().unwrap(); let snapshot = snapshot_creator .create_blob(v8::FunctionCodeHandling::Keep) .unwrap(); self.has_snapshotted = true; snapshot } pub fn register_op(&mut self, name: &str, op_fn: F) -> OpId where F: Fn(Rc>, BufVec) -> Op + 'static, { Self::state(self.v8_isolate()) .borrow_mut() .op_state .borrow_mut() .op_table .register_op(name, op_fn) } /// Registers a callback on the isolate when the memory limits are approached. /// Use this to prevent V8 from crashing the process when reaching the limit. /// /// Calls the closure with the current heap limit and the initial heap limit. /// The return value of the closure is set as the new limit. pub fn add_near_heap_limit_callback(&mut self, cb: C) where C: FnMut(usize, usize) -> usize + 'static, { let boxed_cb = Box::new(RefCell::new(cb)); let data = boxed_cb.as_ptr() as *mut c_void; let prev = self .allocations .near_heap_limit_callback_data .replace((boxed_cb, near_heap_limit_callback::)); if let Some((_, prev_cb)) = prev { self .v8_isolate() .remove_near_heap_limit_callback(prev_cb, 0); } self .v8_isolate() .add_near_heap_limit_callback(near_heap_limit_callback::, data); } pub fn remove_near_heap_limit_callback(&mut self, heap_limit: usize) { if let Some((_, cb)) = self.allocations.near_heap_limit_callback_data.take() { self .v8_isolate() .remove_near_heap_limit_callback(cb, heap_limit); } } /// Runs event loop to completion /// /// This future resolves when: /// - there are no more pending dynamic imports /// - there are no more pending ops pub async fn run_event_loop(&mut self) -> Result<(), AnyError> { poll_fn(|cx| self.poll_event_loop(cx)).await } /// Runs a single tick of event loop pub fn poll_event_loop( &mut self, cx: &mut Context, ) -> Poll> { self.shared_init(); let state_rc = Self::state(self.v8_isolate()); { let state = state_rc.borrow(); state.waker.register(cx.waker()); } // Dynamic module loading - ie. modules loaded using "import()" { let poll_imports = self.prepare_dyn_imports(cx)?; assert!(poll_imports.is_ready()); let poll_imports = self.poll_dyn_imports(cx)?; assert!(poll_imports.is_ready()); self.check_promise_exceptions()?; } // Ops { let overflow_response = self.poll_pending_ops(cx); self.async_op_response(overflow_response)?; self.drain_macrotasks()?; self.check_promise_exceptions()?; } let state = state_rc.borrow(); let is_idle = { state.pending_ops.is_empty() && state.pending_dyn_imports.is_empty() && state.preparing_dyn_imports.is_empty() }; if is_idle { return Poll::Ready(Ok(())); } // Check if more async ops have been dispatched // during this turn of event loop. if state.have_unpolled_ops.get() { state.waker.wake(); } Poll::Pending } } extern "C" fn near_heap_limit_callback( data: *mut c_void, current_heap_limit: usize, initial_heap_limit: usize, ) -> usize where F: FnMut(usize, usize) -> usize, { let callback = unsafe { &mut *(data as *mut F) }; callback(current_heap_limit, initial_heap_limit) } impl JsRuntimeState { // Called by V8 during `Isolate::mod_instantiate`. pub fn module_resolve_cb( &mut self, specifier: &str, referrer_id: ModuleId, ) -> ModuleId { let referrer = self.modules.get_name(referrer_id).unwrap(); let specifier = self .loader .resolve(self.op_state.clone(), specifier, referrer, false) .expect("Module should have been already resolved"); self.modules.get_id(specifier.as_str()).unwrap_or(0) } // Called by V8 during `Isolate::mod_instantiate`. pub fn dyn_import_cb( &mut self, resolver_handle: v8::Global, specifier: &str, referrer: &str, ) { debug!("dyn_import specifier {} referrer {} ", specifier, referrer); let load = RecursiveModuleLoad::dynamic_import( self.op_state.clone(), specifier, referrer, self.loader.clone(), ); self.dyn_import_map.insert(load.id, resolver_handle); self.waker.wake(); let fut = load.prepare().boxed_local(); self.preparing_dyn_imports.push(fut); } } pub(crate) fn exception_to_err_result<'s, T>( scope: &mut v8::HandleScope<'s>, exception: v8::Local, ) -> Result { // TODO(piscisaureus): in rusty_v8, `is_execution_terminating()` should // also be implemented on `struct Isolate`. let is_terminating_exception = scope.thread_safe_handle().is_execution_terminating(); let mut exception = exception; if is_terminating_exception { // TerminateExecution was called. Cancel exception termination so that the // exception can be created.. // TODO(piscisaureus): in rusty_v8, `cancel_terminate_execution()` should // also be implemented on `struct Isolate`. scope.thread_safe_handle().cancel_terminate_execution(); // Maybe make a new exception object. if exception.is_null_or_undefined() { let message = v8::String::new(scope, "execution terminated").unwrap(); exception = v8::Exception::error(scope, message); } } let js_error = JsError::from_v8_exception(scope, exception); let state_rc = JsRuntime::state(scope); let state = state_rc.borrow(); let js_error = (state.js_error_create_fn)(js_error); if is_terminating_exception { // Re-enable exception termination. // TODO(piscisaureus): in rusty_v8, `terminate_execution()` should also // be implemented on `struct Isolate`. scope.thread_safe_handle().terminate_execution(); } Err(js_error) } // Related to module loading impl JsRuntime { /// Low-level module creation. /// /// Called during module loading or dynamic import loading. fn mod_new( &mut self, main: bool, name: &str, source: &str, ) -> Result { let state_rc = Self::state(self.v8_isolate()); let context = self.global_context(); let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context); let name_str = v8::String::new(scope, name).unwrap(); let source_str = v8::String::new(scope, source).unwrap(); let origin = bindings::module_origin(scope, name_str); let source = v8::script_compiler::Source::new(source_str, &origin); let tc_scope = &mut v8::TryCatch::new(scope); let maybe_module = v8::script_compiler::compile_module(tc_scope, source); if tc_scope.has_caught() { assert!(maybe_module.is_none()); let e = tc_scope.exception().unwrap(); return exception_to_err_result(tc_scope, e); } let module = maybe_module.unwrap(); let id = module.get_identity_hash(); let mut import_specifiers: Vec = vec![]; for i in 0..module.get_module_requests_length() { let import_specifier = module.get_module_request(i).to_rust_string_lossy(tc_scope); let state = state_rc.borrow(); let module_specifier = state.loader.resolve( state.op_state.clone(), &import_specifier, name, false, )?; import_specifiers.push(module_specifier); } state_rc.borrow_mut().modules.register( id, name, main, v8::Global::::new(tc_scope, module), import_specifiers, ); Ok(id) } /// Instantiates a ES module /// /// `AnyError` can be downcast to a type that exposes additional information /// about the V8 exception. By default this type is `JsError`, however it may /// be a different type if `RuntimeOptions::js_error_create_fn` has been set. fn mod_instantiate(&mut self, id: ModuleId) -> Result<(), AnyError> { let state_rc = Self::state(self.v8_isolate()); let context = self.global_context(); let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context); let tc_scope = &mut v8::TryCatch::new(scope); let state = state_rc.borrow(); let module = match state.modules.get_info(id) { Some(info) => v8::Local::new(tc_scope, &info.handle), None if id == 0 => return Ok(()), _ => panic!("module id {} not found in module table", id), }; drop(state); if module.get_status() == v8::ModuleStatus::Errored { exception_to_err_result(tc_scope, module.get_exception())? } let result = module.instantiate_module(tc_scope, bindings::module_resolve_callback); match result { Some(_) => Ok(()), None => { let exception = tc_scope.exception().unwrap(); exception_to_err_result(tc_scope, exception) } } } /// Evaluates an already instantiated ES module. /// /// `AnyError` can be downcast to a type that exposes additional information /// about the V8 exception. By default this type is `JsError`, however it may /// be a different type if `RuntimeOptions::js_error_create_fn` has been set. pub fn mod_evaluate(&mut self, id: ModuleId) -> Result<(), AnyError> { self.shared_init(); let state_rc = Self::state(self.v8_isolate()); let context = self.global_context(); let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context); let module = state_rc .borrow() .modules .get_info(id) .map(|info| v8::Local::new(scope, &info.handle)) .expect("ModuleInfo not found"); let mut status = module.get_status(); if status == v8::ModuleStatus::Instantiated { // IMPORTANT: Top-level-await is enabled, which means that return value // of module evaluation is a promise. // // Because that promise is created internally by V8, when error occurs during // module evaluation the promise is rejected, and since the promise has no rejection // handler it will result in call to `bindings::promise_reject_callback` adding // the promise to pending promise rejection table - meaning JsRuntime will return // error on next poll(). // // This situation is not desirable as we want to manually return error at the // end of this function to handle it further. It means we need to manually // remove this promise from pending promise rejection table. // // For more details see: // https://github.com/denoland/deno/issues/4908 // https://v8.dev/features/top-level-await#module-execution-order let maybe_value = module.evaluate(scope); // Update status after evaluating. status = module.get_status(); if let Some(value) = maybe_value { assert!( status == v8::ModuleStatus::Evaluated || status == v8::ModuleStatus::Errored ); let promise = v8::Local::::try_from(value) .expect("Expected to get promise as module evaluation result"); let promise_id = promise.get_identity_hash(); let mut state = state_rc.borrow_mut(); state.pending_promise_exceptions.remove(&promise_id); } else { assert!(status == v8::ModuleStatus::Errored); } } match status { v8::ModuleStatus::Evaluated => Ok(()), v8::ModuleStatus::Errored => { let exception = module.get_exception(); exception_to_err_result(scope, exception) .map_err(|err| attach_handle_to_error(scope, err, exception)) } other => panic!("Unexpected module status {:?}", other), } } fn dyn_import_error( &mut self, id: ModuleLoadId, err: AnyError, ) -> Result<(), AnyError> { let state_rc = Self::state(self.v8_isolate()); let context = self.global_context(); let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context); let resolver_handle = state_rc .borrow_mut() .dyn_import_map .remove(&id) .expect("Invalid dyn import id"); let resolver = resolver_handle.get(scope); let exception = err .downcast_ref::() .map(|err| err.get_handle(scope)) .unwrap_or_else(|| { let message = err.to_string(); let message = v8::String::new(scope, &message).unwrap(); v8::Exception::type_error(scope, message) }); resolver.reject(scope, exception).unwrap(); scope.perform_microtask_checkpoint(); Ok(()) } fn dyn_import_done( &mut self, id: ModuleLoadId, mod_id: ModuleId, ) -> Result<(), AnyError> { let state_rc = Self::state(self.v8_isolate()); let context = self.global_context(); debug!("dyn_import_done {} {:?}", id, mod_id); assert!(mod_id != 0); let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context); let resolver_handle = state_rc .borrow_mut() .dyn_import_map .remove(&id) .expect("Invalid dyn import id"); let resolver = resolver_handle.get(scope); let module = { let state = state_rc.borrow(); state .modules .get_info(mod_id) .map(|info| v8::Local::new(scope, &info.handle)) .expect("Dyn import module info not found") }; // Resolution success assert_eq!(module.get_status(), v8::ModuleStatus::Evaluated); let module_namespace = module.get_module_namespace(); resolver.resolve(scope, module_namespace).unwrap(); scope.perform_microtask_checkpoint(); Ok(()) } fn prepare_dyn_imports( &mut self, cx: &mut Context, ) -> Poll> { let state_rc = Self::state(self.v8_isolate()); if state_rc.borrow().preparing_dyn_imports.is_empty() { return Poll::Ready(Ok(())); } loop { let r = { let mut state = state_rc.borrow_mut(); state.preparing_dyn_imports.poll_next_unpin(cx) }; match r { Poll::Pending | Poll::Ready(None) => { // There are no active dynamic import loaders, or none are ready. return Poll::Ready(Ok(())); } Poll::Ready(Some(prepare_poll)) => { let dyn_import_id = prepare_poll.0; let prepare_result = prepare_poll.1; match prepare_result { Ok(load) => { let state = state_rc.borrow_mut(); state.pending_dyn_imports.push(load.into_future()); } Err(err) => { self.dyn_import_error(dyn_import_id, err)?; } } } } } } fn poll_dyn_imports( &mut self, cx: &mut Context, ) -> Poll> { let state_rc = Self::state(self.v8_isolate()); if state_rc.borrow().pending_dyn_imports.is_empty() { return Poll::Ready(Ok(())); } loop { let poll_result = { let mut state = state_rc.borrow_mut(); state.pending_dyn_imports.poll_next_unpin(cx) }; match poll_result { Poll::Pending | Poll::Ready(None) => { // There are no active dynamic import loaders, or none are ready. return Poll::Ready(Ok(())); } Poll::Ready(Some(load_stream_poll)) => { let maybe_result = load_stream_poll.0; let mut load = load_stream_poll.1; let dyn_import_id = load.id; if let Some(load_stream_result) = maybe_result { match load_stream_result { Ok(info) => { // A module (not necessarily the one dynamically imported) has been // fetched. Create and register it, and if successful, poll for the // next recursive-load event related to this dynamic import. match self.register_during_load(info, &mut load) { Ok(()) => { // Keep importing until it's fully drained let state = state_rc.borrow_mut(); state.pending_dyn_imports.push(load.into_future()); } Err(err) => self.dyn_import_error(dyn_import_id, err)?, } } Err(err) => { // A non-javascript error occurred; this could be due to a an invalid // module specifier, or a problem with the source map, or a failure // to fetch the module source code. self.dyn_import_error(dyn_import_id, err)? } } } else { // The top-level module from a dynamic import has been instantiated. // Load is done. let module_id = load.root_module_id.unwrap(); self.mod_instantiate(module_id)?; match self.mod_evaluate(module_id) { Ok(()) => self.dyn_import_done(dyn_import_id, module_id)?, Err(err) => self.dyn_import_error(dyn_import_id, err)?, }; } } } } } fn register_during_load( &mut self, info: ModuleSource, load: &mut RecursiveModuleLoad, ) -> Result<(), AnyError> { let ModuleSource { code, module_url_specified, module_url_found, } = info; let is_main = load.state == LoadState::LoadingRoot && !load.is_dynamic_import(); let referrer_specifier = ModuleSpecifier::resolve_url(&module_url_found).unwrap(); let state_rc = Self::state(self.v8_isolate()); // #A There are 3 cases to handle at this moment: // 1. Source code resolved result have the same module name as requested // and is not yet registered // -> register // 2. Source code resolved result have a different name as requested: // 2a. The module with resolved module name has been registered // -> alias // 2b. The module with resolved module name has not yet been registered // -> register & alias // If necessary, register an alias. if module_url_specified != module_url_found { let mut state = state_rc.borrow_mut(); state .modules .alias(&module_url_specified, &module_url_found); } let maybe_mod_id = { let state = state_rc.borrow(); state.modules.get_id(&module_url_found) }; let module_id = match maybe_mod_id { Some(id) => { // Module has already been registered. debug!( "Already-registered module fetched again: {}", module_url_found ); id } // Module not registered yet, do it now. None => self.mod_new(is_main, &module_url_found, &code)?, }; // Now we must iterate over all imports of the module and load them. let imports = { let state_rc = Self::state(self.v8_isolate()); let state = state_rc.borrow(); state.modules.get_children(module_id).unwrap().clone() }; for module_specifier in imports { let is_registered = { let state_rc = Self::state(self.v8_isolate()); let state = state_rc.borrow(); state.modules.is_registered(&module_specifier) }; if !is_registered { load .add_import(module_specifier.to_owned(), referrer_specifier.clone()); } } // If we just finished loading the root module, store the root module id. if load.state == LoadState::LoadingRoot { load.root_module_id = Some(module_id); load.state = LoadState::LoadingImports; } if load.pending.is_empty() { load.state = LoadState::Done; } Ok(()) } /// Asynchronously load specified module and all of it's dependencies /// /// User must call `JsRuntime::mod_evaluate` with returned `ModuleId` /// manually after load is finished. pub async fn load_module( &mut self, specifier: &ModuleSpecifier, code: Option, ) -> Result { self.shared_init(); let loader = { let state_rc = Self::state(self.v8_isolate()); let state = state_rc.borrow(); state.loader.clone() }; let load = RecursiveModuleLoad::main( self.op_state(), &specifier.to_string(), code, loader, ); let (_load_id, prepare_result) = load.prepare().await; let mut load = prepare_result?; while let Some(info_result) = load.next().await { let info = info_result?; self.register_during_load(info, &mut load)?; } let root_id = load.root_module_id.expect("Root module id empty"); self.mod_instantiate(root_id).map(|_| root_id) } fn poll_pending_ops( &mut self, cx: &mut Context, ) -> Option<(OpId, Box<[u8]>)> { let state_rc = Self::state(self.v8_isolate()); let mut overflow_response: Option<(OpId, Box<[u8]>)> = None; loop { let mut state = state_rc.borrow_mut(); // Now handle actual ops. state.have_unpolled_ops.set(false); let pending_r = state.pending_ops.poll_next_unpin(cx); match pending_r { Poll::Ready(None) => break, Poll::Pending => break, Poll::Ready(Some((op_id, buf))) => { let successful_push = state.shared.push(op_id, &buf); if !successful_push { // If we couldn't push the response to the shared queue, because // there wasn't enough size, we will return the buffer via the // legacy route, using the argument of deno_respond. overflow_response = Some((op_id, buf)); break; } } }; } loop { let mut state = state_rc.borrow_mut(); let unref_r = state.pending_unref_ops.poll_next_unpin(cx); #[allow(clippy::match_wild_err_arm)] match unref_r { Poll::Ready(None) => break, Poll::Pending => break, Poll::Ready(Some((op_id, buf))) => { let successful_push = state.shared.push(op_id, &buf); if !successful_push { // If we couldn't push the response to the shared queue, because // there wasn't enough size, we will return the buffer via the // legacy route, using the argument of deno_respond. overflow_response = Some((op_id, buf)); break; } } }; } overflow_response } fn check_promise_exceptions(&mut self) -> Result<(), AnyError> { let state_rc = Self::state(self.v8_isolate()); let mut state = state_rc.borrow_mut(); if state.pending_promise_exceptions.is_empty() { return Ok(()); } let key = { *state.pending_promise_exceptions.keys().next().unwrap() }; let handle = state.pending_promise_exceptions.remove(&key).unwrap(); drop(state); let context = self.global_context(); let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context); let exception = v8::Local::new(scope, handle); exception_to_err_result(scope, exception) } // Respond using shared queue and optionally overflown response fn async_op_response( &mut self, maybe_overflown_response: Option<(OpId, Box<[u8]>)>, ) -> Result<(), AnyError> { let state_rc = Self::state(self.v8_isolate()); let shared_queue_size = state_rc.borrow().shared.size(); if shared_queue_size == 0 && maybe_overflown_response.is_none() { return Ok(()); } // FIXME(bartlomieju): without check above this call would panic // because of lazy initialization in core.js. It seems this lazy initialization // hides unnecessary complexity. let js_recv_cb_handle = state_rc .borrow() .js_recv_cb .clone() .expect("Deno.core.recv has not been called."); let context = self.global_context(); let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context); let context = scope.get_current_context(); let global: v8::Local = context.global(scope).into(); let js_recv_cb = js_recv_cb_handle.get(scope); let tc_scope = &mut v8::TryCatch::new(scope); if shared_queue_size > 0 { js_recv_cb.call(tc_scope, global, &[]); // The other side should have shifted off all the messages. let shared_queue_size = state_rc.borrow().shared.size(); assert_eq!(shared_queue_size, 0); } if let Some(overflown_response) = maybe_overflown_response { let (op_id, buf) = overflown_response; let op_id: v8::Local = v8::Integer::new(tc_scope, op_id as i32).into(); let ui8: v8::Local = bindings::boxed_slice_to_uint8array(tc_scope, buf).into(); js_recv_cb.call(tc_scope, global, &[op_id, ui8]); } match tc_scope.exception() { None => Ok(()), Some(exception) => exception_to_err_result(tc_scope, exception), } } fn drain_macrotasks(&mut self) -> Result<(), AnyError> { let js_macrotask_cb_handle = match &Self::state(self.v8_isolate()).borrow().js_macrotask_cb { Some(handle) => handle.clone(), None => return Ok(()), }; let context = self.global_context(); let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context); let context = scope.get_current_context(); let global: v8::Local = context.global(scope).into(); let js_macrotask_cb = js_macrotask_cb_handle.get(scope); // Repeatedly invoke macrotask callback until it returns true (done), // such that ready microtasks would be automatically run before // next macrotask is processed. let tc_scope = &mut v8::TryCatch::new(scope); loop { let is_done = js_macrotask_cb.call(tc_scope, global, &[]); if let Some(exception) = tc_scope.exception() { return exception_to_err_result(tc_scope, exception); } let is_done = is_done.unwrap(); if is_done.is_true() { break; } } Ok(()) } } #[cfg(test)] pub mod tests { use super::*; use crate::modules::ModuleSourceFuture; use crate::BufVec; use futures::future::lazy; use futures::FutureExt; use std::io; use std::ops::FnOnce; use std::rc::Rc; use std::sync::atomic::{AtomicUsize, Ordering}; use std::sync::Arc; pub fn run_in_task(f: F) where F: FnOnce(&mut Context) + Send + 'static, { futures::executor::block_on(lazy(move |cx| f(cx))); } fn poll_until_ready( runtime: &mut JsRuntime, max_poll_count: usize, ) -> Result<(), AnyError> { let mut cx = Context::from_waker(futures::task::noop_waker_ref()); for _ in 0..max_poll_count { match runtime.poll_event_loop(&mut cx) { Poll::Pending => continue, Poll::Ready(val) => return val, } } panic!( "JsRuntime still not ready after polling {} times.", max_poll_count ) } enum Mode { Async, AsyncUnref, AsyncZeroCopy(u8), OverflowReqSync, OverflowResSync, OverflowReqAsync, OverflowResAsync, } struct TestState { mode: Mode, dispatch_count: Arc, } fn dispatch(op_state: Rc>, bufs: BufVec) -> Op { let op_state_ = op_state.borrow(); let test_state = op_state_.borrow::(); test_state.dispatch_count.fetch_add(1, Ordering::Relaxed); match test_state.mode { Mode::Async => { assert_eq!(bufs.len(), 1); assert_eq!(bufs[0].len(), 1); assert_eq!(bufs[0][0], 42); let buf = vec![43u8].into_boxed_slice(); Op::Async(futures::future::ready(buf).boxed()) } Mode::AsyncUnref => { assert_eq!(bufs.len(), 1); assert_eq!(bufs[0].len(), 1); assert_eq!(bufs[0][0], 42); let fut = async { // This future never finish. futures::future::pending::<()>().await; vec![43u8].into_boxed_slice() }; Op::AsyncUnref(fut.boxed()) } Mode::AsyncZeroCopy(count) => { assert_eq!(bufs.len(), count as usize); bufs.iter().enumerate().for_each(|(idx, buf)| { assert_eq!(buf.len(), 1); assert_eq!(idx, buf[0] as usize); }); let buf = vec![43u8].into_boxed_slice(); Op::Async(futures::future::ready(buf).boxed()) } Mode::OverflowReqSync => { assert_eq!(bufs.len(), 1); assert_eq!(bufs[0].len(), 100 * 1024 * 1024); let buf = vec![43u8].into_boxed_slice(); Op::Sync(buf) } Mode::OverflowResSync => { assert_eq!(bufs.len(), 1); assert_eq!(bufs[0].len(), 1); assert_eq!(bufs[0][0], 42); let mut vec = Vec::::new(); vec.resize(100 * 1024 * 1024, 0); vec[0] = 99; let buf = vec.into_boxed_slice(); Op::Sync(buf) } Mode::OverflowReqAsync => { assert_eq!(bufs.len(), 1); assert_eq!(bufs[0].len(), 100 * 1024 * 1024); let buf = vec![43u8].into_boxed_slice(); Op::Async(futures::future::ready(buf).boxed()) } Mode::OverflowResAsync => { assert_eq!(bufs.len(), 1); assert_eq!(bufs[0].len(), 1); assert_eq!(bufs[0][0], 42); let mut vec = Vec::::new(); vec.resize(100 * 1024 * 1024, 0); vec[0] = 4; let buf = vec.into_boxed_slice(); Op::Async(futures::future::ready(buf).boxed()) } } } fn setup(mode: Mode) -> (JsRuntime, Arc) { let dispatch_count = Arc::new(AtomicUsize::new(0)); let mut runtime = JsRuntime::new(Default::default()); let op_state = runtime.op_state(); op_state.borrow_mut().put(TestState { mode, dispatch_count: dispatch_count.clone(), }); runtime.register_op("test", dispatch); runtime .execute( "setup.js", r#" function assert(cond) { if (!cond) { throw Error("assert"); } } "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); (runtime, dispatch_count) } #[test] fn test_dispatch() { let (mut runtime, dispatch_count) = setup(Mode::Async); runtime .execute( "filename.js", r#" let control = new Uint8Array([42]); Deno.core.send(1, control); async function main() { Deno.core.send(1, control); } main(); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); } #[test] fn test_dispatch_no_zero_copy_buf() { let (mut runtime, dispatch_count) = setup(Mode::AsyncZeroCopy(0)); runtime .execute( "filename.js", r#" Deno.core.send(1); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn test_dispatch_stack_zero_copy_bufs() { let (mut runtime, dispatch_count) = setup(Mode::AsyncZeroCopy(2)); runtime .execute( "filename.js", r#" let zero_copy_a = new Uint8Array([0]); let zero_copy_b = new Uint8Array([1]); Deno.core.send(1, zero_copy_a, zero_copy_b); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn test_dispatch_heap_zero_copy_bufs() { let (mut runtime, dispatch_count) = setup(Mode::AsyncZeroCopy(5)); runtime.execute( "filename.js", r#" let zero_copy_a = new Uint8Array([0]); let zero_copy_b = new Uint8Array([1]); let zero_copy_c = new Uint8Array([2]); let zero_copy_d = new Uint8Array([3]); let zero_copy_e = new Uint8Array([4]); Deno.core.send(1, zero_copy_a, zero_copy_b, zero_copy_c, zero_copy_d, zero_copy_e); "#, ).unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn test_poll_async_delayed_ops() { run_in_task(|cx| { let (mut runtime, dispatch_count) = setup(Mode::Async); runtime .execute( "setup2.js", r#" let nrecv = 0; Deno.core.setAsyncHandler(1, (buf) => { nrecv++; }); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); runtime .execute( "check1.js", r#" assert(nrecv == 0); let control = new Uint8Array([42]); Deno.core.send(1, control); assert(nrecv == 0); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); assert!(matches!(runtime.poll_event_loop(cx), Poll::Ready(Ok(_)))); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); runtime .execute( "check2.js", r#" assert(nrecv == 1); Deno.core.send(1, control); assert(nrecv == 1); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); assert!(matches!(runtime.poll_event_loop(cx), Poll::Ready(Ok(_)))); runtime.execute("check3.js", "assert(nrecv == 2)").unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); // We are idle, so the next poll should be the last. assert!(matches!(runtime.poll_event_loop(cx), Poll::Ready(Ok(_)))); }); } #[test] fn test_poll_async_optional_ops() { run_in_task(|cx| { let (mut runtime, dispatch_count) = setup(Mode::AsyncUnref); runtime .execute( "check1.js", r#" Deno.core.setAsyncHandler(1, (buf) => { // This handler will never be called assert(false); }); let control = new Uint8Array([42]); Deno.core.send(1, control); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); // The above op never finish, but runtime can finish // because the op is an unreffed async op. assert!(matches!(runtime.poll_event_loop(cx), Poll::Ready(Ok(_)))); }) } #[test] fn terminate_execution() { let (mut isolate, _dispatch_count) = setup(Mode::Async); // TODO(piscisaureus): in rusty_v8, the `thread_safe_handle()` method // should not require a mutable reference to `struct rusty_v8::Isolate`. let v8_isolate_handle = isolate.v8_isolate().thread_safe_handle(); let terminator_thread = std::thread::spawn(move || { // allow deno to boot and run std::thread::sleep(std::time::Duration::from_millis(100)); // terminate execution let ok = v8_isolate_handle.terminate_execution(); assert!(ok); }); // Rn an infinite loop, which should be terminated. match isolate.execute("infinite_loop.js", "for(;;) {}") { Ok(_) => panic!("execution should be terminated"), Err(e) => { assert_eq!(e.to_string(), "Uncaught Error: execution terminated\n") } }; // Cancel the execution-terminating exception in order to allow script // execution again. // TODO(piscisaureus): in rusty_v8, `cancel_terminate_execution()` should // also be implemented on `struct Isolate`. let ok = isolate .v8_isolate() .thread_safe_handle() .cancel_terminate_execution(); assert!(ok); // Verify that the isolate usable again. isolate .execute("simple.js", "1 + 1") .expect("execution should be possible again"); terminator_thread.join().unwrap(); } #[test] fn dangling_shared_isolate() { let v8_isolate_handle = { // isolate is dropped at the end of this block let (mut runtime, _dispatch_count) = setup(Mode::Async); // TODO(piscisaureus): in rusty_v8, the `thread_safe_handle()` method // should not require a mutable reference to `struct rusty_v8::Isolate`. runtime.v8_isolate().thread_safe_handle() }; // this should not SEGFAULT v8_isolate_handle.terminate_execution(); } #[test] fn overflow_req_sync() { let (mut runtime, dispatch_count) = setup(Mode::OverflowReqSync); runtime .execute( "overflow_req_sync.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler(1, (buf) => { asyncRecv++ }); // Large message that will overflow the shared space. let control = new Uint8Array(100 * 1024 * 1024); let response = Deno.core.dispatch(1, control); assert(response instanceof Uint8Array); assert(response.length == 1); assert(response[0] == 43); assert(asyncRecv == 0); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn overflow_res_sync() { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. let (mut runtime, dispatch_count) = setup(Mode::OverflowResSync); runtime .execute( "overflow_res_sync.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler(1, (buf) => { asyncRecv++ }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = Deno.core.dispatch(1, control); assert(response instanceof Uint8Array); assert(response.length == 100 * 1024 * 1024); assert(response[0] == 99); assert(asyncRecv == 0); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn overflow_req_async() { run_in_task(|cx| { let (mut runtime, dispatch_count) = setup(Mode::OverflowReqAsync); runtime .execute( "overflow_req_async.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler(1, (buf) => { assert(buf.byteLength === 1); assert(buf[0] === 43); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array(100 * 1024 * 1024); let response = Deno.core.dispatch(1, control); // Async messages always have null response. assert(response == null); assert(asyncRecv == 0); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); assert!(matches!(runtime.poll_event_loop(cx), Poll::Ready(Ok(_)))); runtime .execute("check.js", "assert(asyncRecv == 1);") .unwrap(); }); } #[test] fn overflow_res_async() { run_in_task(|_cx| { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. let (mut runtime, dispatch_count) = setup(Mode::OverflowResAsync); runtime .execute( "overflow_res_async.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler(1, (buf) => { assert(buf.byteLength === 100 * 1024 * 1024); assert(buf[0] === 4); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = Deno.core.dispatch(1, control); assert(response == null); assert(asyncRecv == 0); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); poll_until_ready(&mut runtime, 3).unwrap(); runtime .execute("check.js", "assert(asyncRecv == 1);") .unwrap(); }); } #[test] fn overflow_res_multiple_dispatch_async() { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. run_in_task(|_cx| { let (mut runtime, dispatch_count) = setup(Mode::OverflowResAsync); runtime .execute( "overflow_res_multiple_dispatch_async.js", r#" let asyncRecv = 0; Deno.core.setAsyncHandler(1, (buf) => { assert(buf.byteLength === 100 * 1024 * 1024); assert(buf[0] === 4); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = Deno.core.dispatch(1, control); assert(response == null); assert(asyncRecv == 0); // Dispatch another message to verify that pending ops // are done even if shared space overflows Deno.core.dispatch(1, control); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 2); poll_until_ready(&mut runtime, 3).unwrap(); runtime .execute("check.js", "assert(asyncRecv == 2);") .unwrap(); }); } #[test] fn test_pre_dispatch() { run_in_task(|mut cx| { let (mut runtime, _dispatch_count) = setup(Mode::OverflowResAsync); runtime .execute( "bad_op_id.js", r#" let thrown; try { Deno.core.dispatch(100); } catch (e) { thrown = e; } assert(String(thrown) === "TypeError: Unknown op id: 100"); "#, ) .unwrap(); if let Poll::Ready(Err(_)) = runtime.poll_event_loop(&mut cx) { unreachable!(); } }); } #[test] fn core_test_js() { run_in_task(|mut cx| { let (mut runtime, _dispatch_count) = setup(Mode::Async); runtime .execute("core_test.js", include_str!("core_test.js")) .unwrap(); if let Poll::Ready(Err(_)) = runtime.poll_event_loop(&mut cx) { unreachable!(); } }); } #[test] fn syntax_error() { let mut runtime = JsRuntime::new(Default::default()); let src = "hocuspocus("; let r = runtime.execute("i.js", src); let e = r.unwrap_err(); let js_error = e.downcast::().unwrap(); assert_eq!(js_error.end_column, Some(11)); } #[test] fn test_encode_decode() { run_in_task(|mut cx| { let (mut runtime, _dispatch_count) = setup(Mode::Async); runtime .execute( "encode_decode_test.js", include_str!("encode_decode_test.js"), ) .unwrap(); if let Poll::Ready(Err(_)) = runtime.poll_event_loop(&mut cx) { unreachable!(); } }); } #[test] fn will_snapshot() { let snapshot = { let mut runtime = JsRuntime::new(RuntimeOptions { will_snapshot: true, ..Default::default() }); runtime.execute("a.js", "a = 1 + 2").unwrap(); runtime.snapshot() }; let snapshot = Snapshot::JustCreated(snapshot); let mut runtime2 = JsRuntime::new(RuntimeOptions { startup_snapshot: Some(snapshot), ..Default::default() }); runtime2 .execute("check.js", "if (a != 3) throw Error('x')") .unwrap(); } #[test] fn test_from_boxed_snapshot() { let snapshot = { let mut runtime = JsRuntime::new(RuntimeOptions { will_snapshot: true, ..Default::default() }); runtime.execute("a.js", "a = 1 + 2").unwrap(); let snap: &[u8] = &*runtime.snapshot(); Vec::from(snap).into_boxed_slice() }; let snapshot = Snapshot::Boxed(snapshot); let mut runtime2 = JsRuntime::new(RuntimeOptions { startup_snapshot: Some(snapshot), ..Default::default() }); runtime2 .execute("check.js", "if (a != 3) throw Error('x')") .unwrap(); } #[test] fn test_heap_limits() { let heap_limits = HeapLimits { initial: 0, max: 20 * 1024, // 20 kB }; let mut runtime = JsRuntime::new(RuntimeOptions { heap_limits: Some(heap_limits), ..Default::default() }); let cb_handle = runtime.v8_isolate().thread_safe_handle(); let callback_invoke_count = Rc::new(AtomicUsize::default()); let inner_invoke_count = Rc::clone(&callback_invoke_count); runtime.add_near_heap_limit_callback( move |current_limit, _initial_limit| { inner_invoke_count.fetch_add(1, Ordering::SeqCst); cb_handle.terminate_execution(); current_limit * 2 }, ); let err = runtime .execute( "script name", r#"let s = ""; while(true) { s += "Hello"; }"#, ) .expect_err("script should fail"); assert_eq!( "Uncaught Error: execution terminated", err.downcast::().unwrap().message ); assert!(callback_invoke_count.load(Ordering::SeqCst) > 0) } #[test] fn test_heap_limit_cb_remove() { let mut runtime = JsRuntime::new(Default::default()); runtime.add_near_heap_limit_callback(|current_limit, _initial_limit| { current_limit * 2 }); runtime.remove_near_heap_limit_callback(20 * 1024); assert!(runtime.allocations.near_heap_limit_callback_data.is_none()); } #[test] fn test_heap_limit_cb_multiple() { let heap_limits = HeapLimits { initial: 0, max: 20 * 1024, // 20 kB }; let mut runtime = JsRuntime::new(RuntimeOptions { heap_limits: Some(heap_limits), ..Default::default() }); let cb_handle = runtime.v8_isolate().thread_safe_handle(); let callback_invoke_count_first = Rc::new(AtomicUsize::default()); let inner_invoke_count_first = Rc::clone(&callback_invoke_count_first); runtime.add_near_heap_limit_callback( move |current_limit, _initial_limit| { inner_invoke_count_first.fetch_add(1, Ordering::SeqCst); current_limit * 2 }, ); let callback_invoke_count_second = Rc::new(AtomicUsize::default()); let inner_invoke_count_second = Rc::clone(&callback_invoke_count_second); runtime.add_near_heap_limit_callback( move |current_limit, _initial_limit| { inner_invoke_count_second.fetch_add(1, Ordering::SeqCst); cb_handle.terminate_execution(); current_limit * 2 }, ); let err = runtime .execute( "script name", r#"let s = ""; while(true) { s += "Hello"; }"#, ) .expect_err("script should fail"); assert_eq!( "Uncaught Error: execution terminated", err.downcast::().unwrap().message ); assert_eq!(0, callback_invoke_count_first.load(Ordering::SeqCst)); assert!(callback_invoke_count_second.load(Ordering::SeqCst) > 0); } #[test] fn test_mods() { #[derive(Default)] struct ModsLoader { pub count: Arc, } impl ModuleLoader for ModsLoader { fn resolve( &self, _op_state: Rc>, specifier: &str, referrer: &str, _is_main: bool, ) -> Result { self.count.fetch_add(1, Ordering::Relaxed); assert_eq!(specifier, "./b.js"); assert_eq!(referrer, "file:///a.js"); let s = ModuleSpecifier::resolve_import(specifier, referrer).unwrap(); Ok(s) } fn load( &self, _op_state: Rc>, _module_specifier: &ModuleSpecifier, _maybe_referrer: Option, _is_dyn_import: bool, ) -> Pin> { unreachable!() } } let loader = Rc::new(ModsLoader::default()); let resolve_count = loader.count.clone(); let dispatch_count = Arc::new(AtomicUsize::new(0)); let dispatch_count_ = dispatch_count.clone(); let dispatcher = move |_state: Rc>, bufs: BufVec| -> Op { dispatch_count_.fetch_add(1, Ordering::Relaxed); assert_eq!(bufs.len(), 1); assert_eq!(bufs[0].len(), 1); assert_eq!(bufs[0][0], 42); let buf = [43u8, 0, 0, 0][..].into(); Op::Async(futures::future::ready(buf).boxed()) }; let mut runtime = JsRuntime::new(RuntimeOptions { module_loader: Some(loader), ..Default::default() }); runtime.register_op("test", dispatcher); runtime .execute( "setup.js", r#" function assert(cond) { if (!cond) { throw Error("assert"); } } "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); let specifier_a = "file:///a.js".to_string(); let mod_a = runtime .mod_new( true, &specifier_a, r#" import { b } from './b.js' if (b() != 'b') throw Error(); let control = new Uint8Array([42]); Deno.core.send(1, control); "#, ) .unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); let state_rc = JsRuntime::state(runtime.v8_isolate()); { let state = state_rc.borrow(); let imports = state.modules.get_children(mod_a); assert_eq!( imports, Some(&vec![ModuleSpecifier::resolve_url("file:///b.js").unwrap()]) ); } let mod_b = runtime .mod_new(false, "file:///b.js", "export function b() { return 'b' }") .unwrap(); { let state = state_rc.borrow(); let imports = state.modules.get_children(mod_b).unwrap(); assert_eq!(imports.len(), 0); } runtime.mod_instantiate(mod_b).unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); assert_eq!(resolve_count.load(Ordering::SeqCst), 1); runtime.mod_instantiate(mod_a).unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 0); runtime.mod_evaluate(mod_a).unwrap(); assert_eq!(dispatch_count.load(Ordering::Relaxed), 1); } #[test] fn dyn_import_err() { #[derive(Clone, Default)] struct DynImportErrLoader { pub count: Arc, } impl ModuleLoader for DynImportErrLoader { fn resolve( &self, _op_state: Rc>, specifier: &str, referrer: &str, _is_main: bool, ) -> Result { self.count.fetch_add(1, Ordering::Relaxed); assert_eq!(specifier, "/foo.js"); assert_eq!(referrer, "file:///dyn_import2.js"); let s = ModuleSpecifier::resolve_import(specifier, referrer).unwrap(); Ok(s) } fn load( &self, _op_state: Rc>, _module_specifier: &ModuleSpecifier, _maybe_referrer: Option, _is_dyn_import: bool, ) -> Pin> { async { Err(io::Error::from(io::ErrorKind::NotFound).into()) }.boxed() } } // Test an erroneous dynamic import where the specified module isn't found. run_in_task(|cx| { let loader = Rc::new(DynImportErrLoader::default()); let count = loader.count.clone(); let mut runtime = JsRuntime::new(RuntimeOptions { module_loader: Some(loader), ..Default::default() }); runtime .execute( "file:///dyn_import2.js", r#" (async () => { await import("/foo.js"); })(); "#, ) .unwrap(); assert_eq!(count.load(Ordering::Relaxed), 0); // We should get an error here. let result = runtime.poll_event_loop(cx); if let Poll::Ready(Ok(_)) = result { unreachable!(); } assert_eq!(count.load(Ordering::Relaxed), 2); }) } #[derive(Clone, Default)] struct DynImportOkLoader { pub prepare_load_count: Arc, pub resolve_count: Arc, pub load_count: Arc, } impl ModuleLoader for DynImportOkLoader { fn resolve( &self, _op_state: Rc>, specifier: &str, referrer: &str, _is_main: bool, ) -> Result { let c = self.resolve_count.fetch_add(1, Ordering::Relaxed); assert!(c < 4); assert_eq!(specifier, "./b.js"); assert_eq!(referrer, "file:///dyn_import3.js"); let s = ModuleSpecifier::resolve_import(specifier, referrer).unwrap(); Ok(s) } fn load( &self, _op_state: Rc>, specifier: &ModuleSpecifier, _maybe_referrer: Option, _is_dyn_import: bool, ) -> Pin> { self.load_count.fetch_add(1, Ordering::Relaxed); let info = ModuleSource { module_url_specified: specifier.to_string(), module_url_found: specifier.to_string(), code: "export function b() { return 'b' }".to_owned(), }; async move { Ok(info) }.boxed() } fn prepare_load( &self, _op_state: Rc>, _load_id: ModuleLoadId, _module_specifier: &ModuleSpecifier, _maybe_referrer: Option, _is_dyn_import: bool, ) -> Pin>>> { self.prepare_load_count.fetch_add(1, Ordering::Relaxed); async { Ok(()) }.boxed_local() } } #[test] fn dyn_import_ok() { run_in_task(|cx| { let loader = Rc::new(DynImportOkLoader::default()); let prepare_load_count = loader.prepare_load_count.clone(); let resolve_count = loader.resolve_count.clone(); let load_count = loader.load_count.clone(); let mut runtime = JsRuntime::new(RuntimeOptions { module_loader: Some(loader), ..Default::default() }); // Dynamically import mod_b runtime .execute( "file:///dyn_import3.js", r#" (async () => { let mod = await import("./b.js"); if (mod.b() !== 'b') { throw Error("bad1"); } // And again! mod = await import("./b.js"); if (mod.b() !== 'b') { throw Error("bad2"); } })(); "#, ) .unwrap(); // First poll runs `prepare_load` hook. assert!(matches!(runtime.poll_event_loop(cx), Poll::Pending)); assert_eq!(prepare_load_count.load(Ordering::Relaxed), 1); // Second poll actually loads modules into the isolate. assert!(matches!(runtime.poll_event_loop(cx), Poll::Ready(Ok(_)))); assert_eq!(resolve_count.load(Ordering::Relaxed), 4); assert_eq!(load_count.load(Ordering::Relaxed), 2); assert!(matches!(runtime.poll_event_loop(cx), Poll::Ready(Ok(_)))); assert_eq!(resolve_count.load(Ordering::Relaxed), 4); assert_eq!(load_count.load(Ordering::Relaxed), 2); }) } #[test] fn dyn_import_borrow_mut_error() { // https://github.com/denoland/deno/issues/6054 run_in_task(|cx| { let loader = Rc::new(DynImportOkLoader::default()); let prepare_load_count = loader.prepare_load_count.clone(); let mut runtime = JsRuntime::new(RuntimeOptions { module_loader: Some(loader), ..Default::default() }); runtime .execute( "file:///dyn_import3.js", r#" (async () => { let mod = await import("./b.js"); if (mod.b() !== 'b') { throw Error("bad"); } // Now do any op Deno.core.ops(); })(); "#, ) .unwrap(); // First poll runs `prepare_load` hook. let _ = runtime.poll_event_loop(cx); assert_eq!(prepare_load_count.load(Ordering::Relaxed), 1); // Second poll triggers error let _ = runtime.poll_event_loop(cx); }) } #[test] fn es_snapshot() { #[derive(Default)] struct ModsLoader; impl ModuleLoader for ModsLoader { fn resolve( &self, _op_state: Rc>, specifier: &str, referrer: &str, _is_main: bool, ) -> Result { assert_eq!(specifier, "file:///main.js"); assert_eq!(referrer, "."); let s = ModuleSpecifier::resolve_import(specifier, referrer).unwrap(); Ok(s) } fn load( &self, _op_state: Rc>, _module_specifier: &ModuleSpecifier, _maybe_referrer: Option, _is_dyn_import: bool, ) -> Pin> { unreachable!() } } let loader = std::rc::Rc::new(ModsLoader::default()); let mut runtime = JsRuntime::new(RuntimeOptions { module_loader: Some(loader), will_snapshot: true, ..Default::default() }); let specifier = ModuleSpecifier::resolve_url("file:///main.js").unwrap(); let source_code = "Deno.core.print('hello\\n')".to_string(); let module_id = futures::executor::block_on( runtime.load_module(&specifier, Some(source_code)), ) .unwrap(); runtime.mod_evaluate(module_id).unwrap(); let _snapshot = runtime.snapshot(); } #[test] fn test_error_without_stack() { let mut runtime = JsRuntime::new(RuntimeOptions::default()); // SyntaxError let result = runtime.execute( "error_without_stack.js", r#" function main() { console.log("asdf); } main(); "#, ); let expected_error = r#"Uncaught SyntaxError: Invalid or unexpected token at error_without_stack.js:3:14 "#; assert_eq!(result.unwrap_err().to_string(), expected_error); } #[test] fn test_error_stack() { let mut runtime = JsRuntime::new(RuntimeOptions::default()); let result = runtime.execute( "error_stack.js", r#" function assert(cond) { if (!cond) { throw Error("assert"); } } function main() { assert(false); } main(); "#, ); let expected_error = r#"Error: assert at assert (error_stack.js:4:11) at main (error_stack.js:9:3) at error_stack.js:12:1 "#; assert_eq!(result.unwrap_err().to_string(), expected_error); } #[test] fn test_error_async_stack() { run_in_task(|cx| { let mut runtime = JsRuntime::new(RuntimeOptions::default()); runtime .execute( "error_async_stack.js", r#" (async () => { const p = (async () => { await Promise.resolve().then(() => { throw new Error("async"); }); })(); try { await p; } catch (error) { console.log(error.stack); throw error; } })();"#, ) .unwrap(); let expected_error = r#"Error: async at error_async_stack.js:5:13 at async error_async_stack.js:4:5 at async error_async_stack.js:10:5 "#; match runtime.poll_event_loop(cx) { Poll::Ready(Err(e)) => { assert_eq!(e.to_string(), expected_error); } _ => panic!(), }; }) } }