// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license. use std::ops::Deref; use std::ops::DerefMut; use std::ops::Range; use std::rc::Rc; use super::rawbytes; use super::transl8::FromV8; /// A V8Slice encapsulates a slice that's been borrowed from a JavaScript /// ArrayBuffer object. JavaScript objects can normally be garbage collected, /// but the existence of a V8Slice inhibits this until it is dropped. It /// behaves much like an Arc<[u8]>. /// /// # Cloning /// Cloning a V8Slice does not clone the contents of the buffer, /// it creates a new reference to that buffer. /// /// To actually clone the contents of the buffer do /// `let copy = Vec::from(&*zero_copy_buf);` #[derive(Clone)] pub struct V8Slice { pub(crate) store: v8::SharedRef, pub(crate) range: Range, } // SAFETY: unsafe trait must have unsafe implementation unsafe impl Send for V8Slice {} impl V8Slice { pub fn from_buffer( buffer: v8::Local, range: Range, ) -> Result { let store = buffer.get_backing_store(); if store.is_shared() { return Err(v8::DataError::BadType { actual: "shared ArrayBufferView", expected: "non-shared ArrayBufferView", }); } Ok(Self { store, range }) } fn as_slice(&self) -> &[u8] { // SAFETY: v8::SharedRef is similar to Arc<[u8]>, // it points to a fixed continuous slice of bytes on the heap. // We assume it's initialized and thus safe to read (though may not contain meaningful data) unsafe { &*(&self.store[self.range.clone()] as *const _ as *const [u8]) } } fn as_slice_mut(&mut self) -> &mut [u8] { #[allow(clippy::cast_ref_to_mut)] // SAFETY: v8::SharedRef is similar to Arc<[u8]>, // it points to a fixed continuous slice of bytes on the heap. // It's safe-ish to mutate concurrently because it can not be // shrunk/grown/moved/reallocated, thus avoiding dangling refs (unlike a Vec). // Concurrent writes can't lead to meaningful structural invalidation // since we treat them as opaque buffers / "bags of bytes", // concurrent mutation is simply an accepted fact of life. // And in practice V8Slices also do not have overallping read/write phases. // TLDR: permissive interior mutability on slices of bytes is "fine" unsafe { &mut *(&self.store[self.range.clone()] as *const _ as *mut [u8]) } } } pub(crate) fn to_ranged_buffer<'s>( scope: &mut v8::HandleScope<'s>, value: v8::Local, ) -> Result<(v8::Local<'s, v8::ArrayBuffer>, Range), v8::DataError> { if let Ok(view) = v8::Local::::try_from(value) { let (offset, len) = (view.byte_offset(), view.byte_length()); let buffer = view.buffer(scope).ok_or(v8::DataError::NoData { expected: "view to have a buffer", })?; let buffer = v8::Local::new(scope, buffer); // recreate handle to avoid lifetime issues return Ok((buffer, offset..offset + len)); } let b: v8::Local = value.try_into()?; let b = v8::Local::new(scope, b); // recreate handle to avoid lifetime issues Ok((b, 0..b.byte_length())) } impl FromV8 for V8Slice { fn from_v8( scope: &mut v8::HandleScope, value: v8::Local, ) -> Result { to_ranged_buffer(scope, value) .and_then(|(b, r)| Self::from_buffer(b, r)) .map_err(|_| crate::Error::ExpectedBuffer) } } impl Deref for V8Slice { type Target = [u8]; fn deref(&self) -> &[u8] { self.as_slice() } } impl DerefMut for V8Slice { fn deref_mut(&mut self) -> &mut [u8] { self.as_slice_mut() } } impl AsRef<[u8]> for V8Slice { fn as_ref(&self) -> &[u8] { self.as_slice() } } impl AsMut<[u8]> for V8Slice { fn as_mut(&mut self) -> &mut [u8] { self.as_slice_mut() } } // Implement V8Slice -> bytes::Bytes impl V8Slice { fn rc_into_byte_parts(self: Rc) -> (*const u8, usize, *mut V8Slice) { let (ptr, len) = { let slice = self.as_ref(); (slice.as_ptr(), slice.len()) }; let rc_raw = Rc::into_raw(self); let data = rc_raw as *mut V8Slice; (ptr, len, data) } } impl From for bytes::Bytes { fn from(v8slice: V8Slice) -> Self { let (ptr, len, data) = Rc::new(v8slice).rc_into_byte_parts(); rawbytes::RawBytes::new_raw(ptr, len, data.cast(), &V8SLICE_VTABLE) } } // NOTE: in the limit we could avoid extra-indirection and use the C++ shared_ptr // but we can't store both the underlying data ptr & ctrl ptr ... so instead we // use a shared rust ptr (Rc/Arc) that itself controls the C++ shared_ptr const V8SLICE_VTABLE: rawbytes::Vtable = rawbytes::Vtable { clone: v8slice_clone, drop: v8slice_drop, to_vec: v8slice_to_vec, }; unsafe fn v8slice_clone( data: &rawbytes::AtomicPtr<()>, ptr: *const u8, len: usize, ) -> bytes::Bytes { let rc = Rc::from_raw(*data as *const V8Slice); let (_, _, data) = rc.clone().rc_into_byte_parts(); std::mem::forget(rc); // NOTE: `bytes::Bytes` does bounds checking so we trust its ptr, len inputs // and must use them to allow cloning Bytes it has sliced rawbytes::RawBytes::new_raw(ptr, len, data.cast(), &V8SLICE_VTABLE) } unsafe fn v8slice_to_vec( data: &rawbytes::AtomicPtr<()>, ptr: *const u8, len: usize, ) -> Vec { let rc = Rc::from_raw(*data as *const V8Slice); std::mem::forget(rc); // NOTE: `bytes::Bytes` does bounds checking so we trust its ptr, len inputs // and must use them to allow cloning Bytes it has sliced Vec::from_raw_parts(ptr as _, len, len) } unsafe fn v8slice_drop( data: &mut rawbytes::AtomicPtr<()>, _: *const u8, _: usize, ) { drop(Rc::from_raw(*data as *const V8Slice)) }