// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license. use crate::extract_network_stream; use crate::network_buffered_stream::NetworkStreamPrefixCheck; use crate::request_body::HttpRequestBody; use crate::request_properties::DefaultHttpRequestProperties; use crate::request_properties::HttpConnectionProperties; use crate::request_properties::HttpListenProperties; use crate::request_properties::HttpPropertyExtractor; use crate::response_body::CompletionHandle; use crate::response_body::ResponseBytes; use crate::response_body::ResponseBytesInner; use crate::response_body::V8StreamHttpResponseBody; use crate::websocket_upgrade::WebSocketUpgrade; use crate::LocalExecutor; use deno_core::error::AnyError; use deno_core::futures::TryFutureExt; use deno_core::op; use deno_core::AsyncRefCell; use deno_core::AsyncResult; use deno_core::BufView; use deno_core::ByteString; use deno_core::CancelFuture; use deno_core::CancelHandle; use deno_core::CancelTryFuture; use deno_core::OpState; use deno_core::RcRef; use deno_core::Resource; use deno_core::ResourceId; use deno_core::ZeroCopyBuf; use deno_net::ops_tls::TlsStream; use deno_net::raw::put_network_stream_resource; use deno_net::raw::NetworkStream; use deno_net::raw::NetworkStreamAddress; use http::request::Parts; use hyper1::body::Incoming; use hyper1::header::COOKIE; use hyper1::http::HeaderName; use hyper1::http::HeaderValue; use hyper1::server::conn::http1; use hyper1::server::conn::http2; use hyper1::service::service_fn; use hyper1::service::HttpService; use hyper1::upgrade::OnUpgrade; use hyper1::StatusCode; use pin_project::pin_project; use pin_project::pinned_drop; use slab::Slab; use std::borrow::Cow; use std::cell::RefCell; use std::future::Future; use std::io; use std::net::Ipv4Addr; use std::net::SocketAddr; use std::net::SocketAddrV4; use std::pin::Pin; use std::rc::Rc; use tokio::io::AsyncReadExt; use tokio::io::AsyncWriteExt; use tokio::task::spawn_local; use tokio::task::JoinHandle; type Request = hyper1::Request; type Response = hyper1::Response; /// All HTTP/2 connections start with this byte string. /// /// In HTTP/2, each endpoint is required to send a connection preface as a final confirmation /// of the protocol in use and to establish the initial settings for the HTTP/2 connection. The /// client and server each send a different connection preface. /// /// The client connection preface starts with a sequence of 24 octets, which in hex notation is: /// /// 0x505249202a20485454502f322e300d0a0d0a534d0d0a0d0a /// /// That is, the connection preface starts with the string PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n). This sequence /// MUST be followed by a SETTINGS frame (Section 6.5), which MAY be empty. const HTTP2_PREFIX: &[u8] = b"PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"; /// ALPN negotation for "h2" const TLS_ALPN_HTTP_2: &[u8] = b"h2"; /// ALPN negotation for "http/1.1" const TLS_ALPN_HTTP_11: &[u8] = b"http/1.1"; /// Name a trait for streams we can serve HTTP over. trait HttpServeStream: tokio::io::AsyncRead + tokio::io::AsyncWrite + Unpin + Send + 'static { } impl< S: tokio::io::AsyncRead + tokio::io::AsyncWrite + Unpin + Send + 'static, > HttpServeStream for S { } pub struct HttpSlabRecord { request_info: HttpConnectionProperties, request_parts: Parts, request_body: Option, // The response may get taken before we tear this down response: Option, body: Option>, promise: CompletionHandle, #[cfg(__zombie_http_tracking)] alive: bool, } thread_local! { pub static SLAB: RefCell> = RefCell::new(Slab::with_capacity(1024)); } /// Generates getters and setters for the [`SLAB`]. For example, /// `with!(with_req, with_req_mut, Parts, http, http.request_parts);` expands to: /// /// ```ignore /// #[inline(always)] /// #[allow(dead_code)] /// pub(crate) fn with_req_mut(key: usize, f: impl FnOnce(&mut Parts) -> T) -> T { /// SLAB.with(|slab| { /// let mut borrow = slab.borrow_mut(); /// let mut http = borrow.get_mut(key).unwrap(); /// #[cfg(__zombie_http_tracking)] /// if !http.alive { /// panic!("Attempted to access a dead HTTP object") /// } /// f(&mut http.expr) /// }) /// } /// #[inline(always)] /// #[allow(dead_code)] /// pub(crate) fn with_req(key: usize, f: impl FnOnce(&Parts) -> T) -> T { /// SLAB.with(|slab| { /// let mut borrow = slab.borrow(); /// let mut http = borrow.get(key).unwrap(); /// #[cfg(__zombie_http_tracking)] /// if !http.alive { /// panic!("Attempted to access a dead HTTP object") /// } /// f(&http.expr) /// }) /// } /// ``` macro_rules! with { ($ref:ident, $mut:ident, $type:ty, $http:ident, $expr:expr) => { #[inline(always)] #[allow(dead_code)] pub(crate) fn $mut(key: u32, f: impl FnOnce(&mut $type) -> T) -> T { SLAB.with(|slab| { let mut borrow = slab.borrow_mut(); #[allow(unused_mut)] // TODO(mmastrac): compiler issue? let mut $http = match borrow.get_mut(key as usize) { Some(http) => http, None => panic!( "Attemped to access invalid request {} ({} in total available)", key, borrow.len() ), }; #[cfg(__zombie_http_tracking)] if !$http.alive { panic!("Attempted to access a dead HTTP object") } f(&mut $expr) }) } #[inline(always)] #[allow(dead_code)] pub(crate) fn $ref(key: u32, f: impl FnOnce(&$type) -> T) -> T { SLAB.with(|slab| { let borrow = slab.borrow(); let $http = borrow.get(key as usize).unwrap(); #[cfg(__zombie_http_tracking)] if !$http.alive { panic!("Attempted to access a dead HTTP object") } f(&$expr) }) } }; } with!(with_req, with_req_mut, Parts, http, http.request_parts); with!( with_req_body, with_req_body_mut, Option, http, http.request_body ); with!( with_resp, with_resp_mut, Option, http, http.response ); with!( with_body, with_body_mut, Option>, http, http.body ); with!( with_promise, with_promise_mut, CompletionHandle, http, http.promise ); with!(with_http, with_http_mut, HttpSlabRecord, http, http); fn slab_insert( request: Request, request_info: HttpConnectionProperties, ) -> u32 { SLAB.with(|slab| { let (request_parts, request_body) = request.into_parts(); slab.borrow_mut().insert(HttpSlabRecord { request_info, request_parts, request_body: Some(request_body), response: Some(Response::new(ResponseBytes::default())), body: None, promise: CompletionHandle::default(), #[cfg(__zombie_http_tracking)] alive: true, }) }) as u32 } #[op] pub fn op_upgrade_raw( state: &mut OpState, index: u32, ) -> Result { // Stage 1: extract the upgrade future let upgrade = with_http_mut(index, |http| { // Manually perform the upgrade. We're peeking into hyper's underlying machinery here a bit http .request_parts .extensions .remove::() .ok_or_else(|| AnyError::msg("upgrade unavailable")) })?; let (read, write) = tokio::io::duplex(1024); let (read_rx, write_tx) = tokio::io::split(read); let (mut write_rx, mut read_tx) = tokio::io::split(write); spawn_local(async move { let mut upgrade_stream = WebSocketUpgrade::::default(); // Stage 2: Extract the Upgraded connection let mut buf = [0; 1024]; let upgraded = loop { let read = Pin::new(&mut write_rx).read(&mut buf).await?; match upgrade_stream.write(&buf[..read]) { Ok(None) => continue, Ok(Some((response, bytes))) => { with_resp_mut(index, |resp| *resp = Some(response)); with_promise_mut(index, |promise| promise.complete(true)); let mut upgraded = upgrade.await?; upgraded.write_all(&bytes).await?; break upgraded; } Err(err) => return Err(err), } }; // Stage 3: Pump the data let (mut upgraded_rx, mut upgraded_tx) = tokio::io::split(upgraded); spawn_local(async move { let mut buf = [0; 1024]; loop { let read = upgraded_rx.read(&mut buf).await?; if read == 0 { break; } read_tx.write_all(&buf[..read]).await?; } Ok::<_, AnyError>(()) }); spawn_local(async move { let mut buf = [0; 1024]; loop { let read = write_rx.read(&mut buf).await?; if read == 0 { break; } upgraded_tx.write_all(&buf[..read]).await?; } Ok::<_, AnyError>(()) }); Ok(()) }); Ok( state .resource_table .add(UpgradeStream::new(read_rx, write_tx)), ) } #[op] pub async fn op_upgrade( state: Rc>, index: u32, headers: Vec<(ByteString, ByteString)>, ) -> Result<(ResourceId, ZeroCopyBuf), AnyError> { // Stage 1: set the respnse to 101 Switching Protocols and send it let upgrade = with_http_mut(index, |http| { // Manually perform the upgrade. We're peeking into hyper's underlying machinery here a bit let upgrade = http .request_parts .extensions .remove::() .ok_or_else(|| AnyError::msg("upgrade unavailable"))?; let response = http.response.as_mut().unwrap(); *response.status_mut() = StatusCode::SWITCHING_PROTOCOLS; for (name, value) in headers { response.headers_mut().append( HeaderName::from_bytes(&name).unwrap(), HeaderValue::from_bytes(&value).unwrap(), ); } http.promise.complete(true); Ok::<_, AnyError>(upgrade) })?; // Stage 2: wait for the request to finish upgrading let upgraded = upgrade.await?; // Stage 3: return the extracted raw network stream let (stream, bytes) = extract_network_stream(upgraded); // We're allocating for those extra bytes, but they are probably going to be empty most of the time Ok(( put_network_stream_resource( &mut state.borrow_mut().resource_table, stream, )?, ZeroCopyBuf::from(bytes.to_vec()), )) } #[op(fast)] pub fn op_set_promise_complete(index: u32, status: u16) { with_resp_mut(index, |resp| { // The Javascript code will never provide a status that is invalid here (see 23_response.js) *resp.as_mut().unwrap().status_mut() = StatusCode::from_u16(status).unwrap(); }); with_promise_mut(index, |promise| { promise.complete(true); }); } #[op] pub fn op_get_request_method_and_url( index: u32, ) -> (String, Option, String, String, Option) { // TODO(mmastrac): Passing method can be optimized with_http(index, |http| { let request_properties = DefaultHttpRequestProperties::request_properties( &http.request_info, &http.request_parts.uri, &http.request_parts.headers, ); // Only extract the path part - we handle authority elsewhere let path = match &http.request_parts.uri.path_and_query() { Some(path_and_query) => path_and_query.to_string(), None => "".to_owned(), }; ( http.request_parts.method.as_str().to_owned(), request_properties.authority, path, String::from(http.request_info.peer_address.as_ref()), http.request_info.peer_port, ) }) } #[op] pub fn op_get_request_header(index: u32, name: String) -> Option { with_req(index, |req| { let value = req.headers.get(name); value.map(|value| value.as_bytes().into()) }) } #[op] pub fn op_get_request_headers(index: u32) -> Vec<(ByteString, ByteString)> { with_req(index, |req| { let headers = &req.headers; let mut vec = Vec::with_capacity(headers.len()); let mut cookies: Option> = None; for (name, value) in headers { if name == COOKIE { if let Some(ref mut cookies) = cookies { cookies.push(value.as_bytes()); } else { cookies = Some(vec![value.as_bytes()]); } } else { let name: &[u8] = name.as_ref(); vec.push((name.into(), value.as_bytes().into())) } } // We treat cookies specially, because we don't want them to get them // mangled by the `Headers` object in JS. What we do is take all cookie // headers and concat them into a single cookie header, separated by // semicolons. // TODO(mmastrac): This should probably happen on the JS side on-demand if let Some(cookies) = cookies { let cookie_sep = "; ".as_bytes(); vec.push(( ByteString::from(COOKIE.as_str()), ByteString::from(cookies.join(cookie_sep)), )); } vec }) } #[op(fast)] pub fn op_read_request_body(state: &mut OpState, index: u32) -> ResourceId { let incoming = with_req_body_mut(index, |body| body.take().unwrap()); let body_resource = Rc::new(HttpRequestBody::new(incoming)); let res = state.resource_table.add_rc(body_resource.clone()); with_body_mut(index, |body| { *body = Some(body_resource); }); res } #[op(fast)] pub fn op_set_response_header(index: u32, name: &str, value: &str) { with_resp_mut(index, |resp| { let resp_headers = resp.as_mut().unwrap().headers_mut(); // These are valid latin-1 strings let name = HeaderName::from_bytes(name.as_bytes()).unwrap(); let value = HeaderValue::from_bytes(value.as_bytes()).unwrap(); resp_headers.append(name, value); }); } #[op] pub fn op_set_response_headers( index: u32, headers: Vec<(ByteString, ByteString)>, ) { // TODO(mmastrac): Invalid headers should be handled? with_resp_mut(index, |resp| { let resp_headers = resp.as_mut().unwrap().headers_mut(); resp_headers.reserve(headers.len()); for (name, value) in headers { // These are valid latin-1 strings let name = HeaderName::from_bytes(&name).unwrap(); let value = HeaderValue::from_bytes(&value).unwrap(); resp_headers.append(name, value); } }) } #[op(fast)] pub fn op_set_response_body_resource( state: &mut OpState, index: u32, stream_rid: ResourceId, auto_close: bool, ) -> Result<(), AnyError> { // If the stream is auto_close, we will hold the last ref to it until the response is complete. let resource = if auto_close { state.resource_table.take_any(stream_rid)? } else { state.resource_table.get_any(stream_rid)? }; with_resp_mut(index, move |response| { let future = resource.clone().read(64 * 1024); response .as_mut() .unwrap() .body_mut() .initialize(ResponseBytesInner::Resource(auto_close, resource, future)); }); Ok(()) } #[op(fast)] pub fn op_set_response_body_stream( state: &mut OpState, index: u32, ) -> Result { // TODO(mmastrac): what should this channel size be? let (tx, rx) = tokio::sync::mpsc::channel(1); let (tx, rx) = ( V8StreamHttpResponseBody::new(tx), ResponseBytesInner::V8Stream(rx), ); with_resp_mut(index, move |response| { response.as_mut().unwrap().body_mut().initialize(rx); }); Ok(state.resource_table.add(tx)) } #[op(fast)] pub fn op_set_response_body_text(index: u32, text: String) { if !text.is_empty() { with_resp_mut(index, move |response| { response .as_mut() .unwrap() .body_mut() .initialize(ResponseBytesInner::Bytes(BufView::from(text.into_bytes()))) }); } } #[op(fast)] pub fn op_set_response_body_bytes(index: u32, buffer: &[u8]) { if !buffer.is_empty() { with_resp_mut(index, |response| { response .as_mut() .unwrap() .body_mut() .initialize(ResponseBytesInner::Bytes(BufView::from(buffer.to_vec()))) }); }; } #[op] pub async fn op_http_track( state: Rc>, index: u32, server_rid: ResourceId, ) -> Result<(), AnyError> { let handle = with_resp(index, |resp| { resp.as_ref().unwrap().body().completion_handle() }); let join_handle = state .borrow_mut() .resource_table .get::(server_rid)?; match handle.or_cancel(join_handle.cancel_handle()).await { Ok(true) => Ok(()), Ok(false) => { Err(AnyError::msg("connection closed before message completed")) } Err(_e) => Ok(()), } } #[pin_project(PinnedDrop)] pub struct SlabFuture>(u32, #[pin] F); pub fn new_slab_future( request: Request, request_info: HttpConnectionProperties, tx: tokio::sync::mpsc::Sender, ) -> SlabFuture> { let index = slab_insert(request, request_info); let rx = with_promise(index, |promise| promise.clone()); SlabFuture(index, async move { if tx.send(index).await.is_ok() { // We only need to wait for completion if we aren't closed rx.await; } }) } impl> SlabFuture {} #[pinned_drop] impl> PinnedDrop for SlabFuture { fn drop(self: Pin<&mut Self>) { SLAB.with(|slab| { #[cfg(__zombie_http_tracking)] { slab.borrow_mut().get_mut(self.0 as usize).unwrap().alive = false; } #[cfg(not(__zombie_http_tracking))] { slab.borrow_mut().remove(self.0 as usize); } }); } } impl> Future for SlabFuture { type Output = Result; fn poll( self: Pin<&mut Self>, cx: &mut std::task::Context<'_>, ) -> std::task::Poll { let index = self.0; self .project() .1 .poll(cx) .map(|_| Ok(with_resp_mut(index, |resp| resp.take().unwrap()))) } } fn serve_http11_unconditional( io: impl HttpServeStream, svc: impl HttpService + 'static, cancel: RcRef, ) -> impl Future> + 'static { let conn = http1::Builder::new() .keep_alive(true) .serve_connection(io, svc); conn .with_upgrades() .map_err(AnyError::from) .try_or_cancel(cancel) } fn serve_http2_unconditional( io: impl HttpServeStream, svc: impl HttpService + 'static, cancel: RcRef, ) -> impl Future> + 'static { let conn = http2::Builder::new(LocalExecutor).serve_connection(io, svc); conn.map_err(AnyError::from).try_or_cancel(cancel) } async fn serve_http2_autodetect( io: impl HttpServeStream, svc: impl HttpService + 'static, cancel: RcRef, ) -> Result<(), AnyError> { let prefix = NetworkStreamPrefixCheck::new(io, HTTP2_PREFIX); let (matches, io) = prefix.match_prefix().await?; if matches { serve_http2_unconditional(io, svc, cancel).await } else { serve_http11_unconditional(io, svc, cancel).await } } fn serve_https( mut io: TlsStream, request_info: HttpConnectionProperties, cancel: RcRef, tx: tokio::sync::mpsc::Sender, ) -> JoinHandle> { // TODO(mmastrac): This is faster if we can use tokio::spawn but then the send bounds get us let svc = service_fn(move |req: Request| { new_slab_future(req, request_info.clone(), tx.clone()) }); spawn_local(async { io.handshake().await?; // If the client specifically negotiates a protocol, we will use it. If not, we'll auto-detect // based on the prefix bytes let handshake = io.get_ref().1.alpn_protocol(); if handshake == Some(TLS_ALPN_HTTP_2) { serve_http2_unconditional(io, svc, cancel).await } else if handshake == Some(TLS_ALPN_HTTP_11) { serve_http11_unconditional(io, svc, cancel).await } else { serve_http2_autodetect(io, svc, cancel).await } }) } fn serve_http( io: impl HttpServeStream, request_info: HttpConnectionProperties, cancel: RcRef, tx: tokio::sync::mpsc::Sender, ) -> JoinHandle> { // TODO(mmastrac): This is faster if we can use tokio::spawn but then the send bounds get us let svc = service_fn(move |req: Request| { new_slab_future(req, request_info.clone(), tx.clone()) }); spawn_local(serve_http2_autodetect(io, svc, cancel)) } fn serve_http_on( network_stream: NetworkStream, listen_properties: &HttpListenProperties, cancel: RcRef, tx: tokio::sync::mpsc::Sender, ) -> JoinHandle> { // We always want some sort of peer address. If we can't get one, just make up one. let peer_address = network_stream.peer_address().unwrap_or_else(|_| { NetworkStreamAddress::Ip(SocketAddr::V4(SocketAddrV4::new( Ipv4Addr::new(0, 0, 0, 0), 0, ))) }); let connection_properties: HttpConnectionProperties = DefaultHttpRequestProperties::connection_properties( listen_properties, &peer_address, ); match network_stream { NetworkStream::Tcp(conn) => { serve_http(conn, connection_properties, cancel, tx) } NetworkStream::Tls(conn) => { serve_https(conn, connection_properties, cancel, tx) } #[cfg(unix)] NetworkStream::Unix(conn) => { serve_http(conn, connection_properties, cancel, tx) } } } struct HttpJoinHandle( AsyncRefCell>>>, CancelHandle, AsyncRefCell>, ); impl HttpJoinHandle { fn cancel_handle(self: &Rc) -> RcRef { RcRef::map(self, |this| &this.1) } } impl Resource for HttpJoinHandle { fn name(&self) -> Cow { "http".into() } fn close(self: Rc) { self.1.cancel() } } #[op(v8)] pub fn op_serve_http( state: Rc>, listener_rid: ResourceId, ) -> Result<(ResourceId, &'static str, String), AnyError> { let listener = DefaultHttpRequestProperties::get_network_stream_listener_for_rid( &mut state.borrow_mut(), listener_rid, )?; let local_address = listener.listen_address()?; let listen_properties = DefaultHttpRequestProperties::listen_properties( listener.stream(), &local_address, ); let (tx, rx) = tokio::sync::mpsc::channel(10); let resource: Rc = Rc::new(HttpJoinHandle( AsyncRefCell::new(None), CancelHandle::new(), AsyncRefCell::new(rx), )); let cancel_clone = resource.cancel_handle(); let listen_properties_clone = listen_properties.clone(); let handle = spawn_local(async move { loop { let conn = listener .accept() .try_or_cancel(cancel_clone.clone()) .await?; serve_http_on( conn, &listen_properties_clone, cancel_clone.clone(), tx.clone(), ); } #[allow(unreachable_code)] Ok::<_, AnyError>(()) }); // Set the handle after we start the future *RcRef::map(&resource, |this| &this.0) .try_borrow_mut() .unwrap() = Some(handle); Ok(( state.borrow_mut().resource_table.add_rc(resource), listen_properties.scheme, listen_properties.fallback_host, )) } #[op(v8)] pub fn op_serve_http_on( state: Rc>, conn: ResourceId, ) -> Result<(ResourceId, &'static str, String), AnyError> { let network_stream = DefaultHttpRequestProperties::get_network_stream_for_rid( &mut state.borrow_mut(), conn, )?; let local_address = network_stream.local_address()?; let listen_properties = DefaultHttpRequestProperties::listen_properties( network_stream.stream(), &local_address, ); let (tx, rx) = tokio::sync::mpsc::channel(10); let resource: Rc = Rc::new(HttpJoinHandle( AsyncRefCell::new(None), CancelHandle::new(), AsyncRefCell::new(rx), )); let handle: JoinHandle> = serve_http_on( network_stream, &listen_properties, resource.cancel_handle(), tx, ); // Set the handle after we start the future *RcRef::map(&resource, |this| &this.0) .try_borrow_mut() .unwrap() = Some(handle); Ok(( state.borrow_mut().resource_table.add_rc(resource), listen_properties.scheme, listen_properties.fallback_host, )) } #[op] pub async fn op_http_wait( state: Rc>, rid: ResourceId, ) -> Result { // We will get the join handle initially, as we might be consuming requests still let join_handle = state .borrow_mut() .resource_table .get::(rid)?; let cancel = join_handle.clone().cancel_handle(); let next = async { let mut recv = RcRef::map(&join_handle, |this| &this.2).borrow_mut().await; recv.recv().await } .or_cancel(cancel) .unwrap_or_else(|_| None) .await; // Do we have a request? if let Some(req) = next { return Ok(req); } // No - we're shutting down let res = RcRef::map(join_handle, |this| &this.0) .borrow_mut() .await .take() .unwrap() .await?; // Drop the cancel and join handles state .borrow_mut() .resource_table .take::(rid)?; // Filter out shutdown (ENOTCONN) errors if let Err(err) = res { if let Some(err) = err.source() { if let Some(err) = err.downcast_ref::() { if err.kind() == io::ErrorKind::NotConnected { return Ok(u32::MAX); } } } return Err(err); } Ok(u32::MAX) } struct UpgradeStream { read: AsyncRefCell>, write: AsyncRefCell>, cancel_handle: CancelHandle, } impl UpgradeStream { pub fn new( read: tokio::io::ReadHalf, write: tokio::io::WriteHalf, ) -> Self { Self { read: AsyncRefCell::new(read), write: AsyncRefCell::new(write), cancel_handle: CancelHandle::new(), } } async fn read(self: Rc, buf: &mut [u8]) -> Result { let cancel_handle = RcRef::map(self.clone(), |this| &this.cancel_handle); async { let read = RcRef::map(self, |this| &this.read); let mut read = read.borrow_mut().await; Ok(Pin::new(&mut *read).read(buf).await?) } .try_or_cancel(cancel_handle) .await } async fn write(self: Rc, buf: &[u8]) -> Result { let cancel_handle = RcRef::map(self.clone(), |this| &this.cancel_handle); async { let write = RcRef::map(self, |this| &this.write); let mut write = write.borrow_mut().await; Ok(Pin::new(&mut *write).write(buf).await?) } .try_or_cancel(cancel_handle) .await } } impl Resource for UpgradeStream { fn name(&self) -> Cow { "httpRawUpgradeStream".into() } deno_core::impl_readable_byob!(); deno_core::impl_writable!(); fn close(self: Rc) { self.cancel_handle.cancel(); } }