// Copyright 2018 the Deno authors. All rights reserved. MIT license. // Implementation note: one could imagine combining this module with Isolate to // provide a more intuitive high-level API. However, due to the complexity // inherent in asynchronous module loading, we would like the Isolate to remain // small and simple for users who do not use modules or if they do can load them // synchronously. The isolate.rs module should never depend on this module. use crate::isolate::Isolate; use crate::js_errors::JSError; use crate::libdeno::deno_mod; use futures::Async; use futures::Future; use futures::Poll; use std::collections::HashMap; use std::collections::HashSet; use std::error::Error; use std::fmt; use std::marker::PhantomData; /// Represent result of fetching the source code of a module. /// Contains both module name and code. /// Module name might be different from initial URL used for loading /// due to redirections. /// e.g. Both https://example.com/a.ts and https://example.com/b.ts /// may point to https://example.com/c.ts. By specifying module_name /// all be https://example.com/c.ts in module_name (for aliasing), /// we avoid recompiling the same code for 3 different times. pub struct SourceCodeInfo { pub module_name: String, pub code: String, } pub type SourceCodeInfoFuture = dyn Future + Send; pub trait Loader { type Error: std::error::Error + 'static; /// Returns an absolute URL. /// When implementing an spec-complaint VM, this should be exactly the /// algorithm described here: /// https://html.spec.whatwg.org/multipage/webappapis.html#resolve-a-module-specifier fn resolve(specifier: &str, referrer: &str) -> Result; /// Given an absolute url, load its source code. fn load(&mut self, url: &str) -> Box>; fn isolate_and_modules<'a: 'b + 'c, 'b, 'c>( &'a mut self, ) -> (&'b mut Isolate, &'c mut Modules); fn isolate<'a: 'b, 'b>(&'a mut self) -> &'b mut Isolate { let (isolate, _) = self.isolate_and_modules(); isolate } fn modules<'a: 'b, 'b>(&'a mut self) -> &'b mut Modules { let (_, modules) = self.isolate_and_modules(); modules } } struct PendingLoad { url: String, is_root: bool, source_code_info_future: Box>, } /// This future is used to implement parallel async module loading without /// complicating the Isolate API. Note that RecursiveLoad will take ownership of /// an Isolate during load. pub struct RecursiveLoad { loader: Option, pending: Vec>, is_pending: HashSet, phantom: PhantomData, // TODO(ry) The following can all be combined into a single enum State type. root: Option, // Empty before polled. root_specifier: Option, // Empty after first poll root_id: Option, } impl RecursiveLoad { /// Starts a new parallel load of the given URL. pub fn new(url: &str, loader: L) -> Self { Self { loader: Some(loader), root: None, root_specifier: Some(url.to_string()), root_id: None, pending: Vec::new(), is_pending: HashSet::new(), phantom: PhantomData, } } fn take_loader(&mut self) -> L { self.loader.take().unwrap() } fn add( &mut self, specifier: &str, referrer: &str, parent_id: Option, ) -> Result { let url = L::resolve(specifier, referrer)?; let is_root = if let Some(parent_id) = parent_id { let loader = self.loader.as_mut().unwrap(); let modules = loader.modules(); modules.add_child(parent_id, &url); false } else { true }; { let loader = self.loader.as_mut().unwrap(); let modules = loader.modules(); // #B We only add modules that have not yet been resolved for RecursiveLoad. // Only short circuit after add_child(). // This impacts possible conditions in #A. if modules.is_registered(&url) { return Ok(url); } } if !self.is_pending.contains(&url) { self.is_pending.insert(url.clone()); let source_code_info_future = { let loader = self.loader.as_mut().unwrap(); loader.load(&url) }; self.pending.push(PendingLoad { url: url.clone(), source_code_info_future, is_root, }); } Ok(url) } } // TODO(ry) This is basically the same thing as RustOrJsError. They should be // combined into one type. #[derive(Debug, PartialEq)] pub enum JSErrorOr { JSError(JSError), Other(E), } impl Future for RecursiveLoad { type Item = (deno_mod, L); type Error = (JSErrorOr, L); fn poll(&mut self) -> Poll { if self.root.is_none() && self.root_specifier.is_some() { let s = self.root_specifier.take().unwrap(); match self.add(&s, ".", None) { Err(err) => { return Err((JSErrorOr::Other(err), self.take_loader())); } Ok(root) => { self.root = Some(root); } } } assert!(self.root_specifier.is_none()); assert!(self.root.is_some()); let mut i = 0; while i < self.pending.len() { let pending = &mut self.pending[i]; match pending.source_code_info_future.poll() { Err(err) => { return Err((JSErrorOr::Other(err), self.take_loader())); } Ok(Async::NotReady) => { i += 1; } Ok(Async::Ready(source_code_info)) => { // We have completed loaded one of the modules. let completed = self.pending.remove(i); // #A There are 3 cases to handle at this moment: // 1. Source code resolved result have the same module name as requested // and is not yet registered // -> register // 2. Source code resolved result have a different name as requested: // 2a. The module with resolved module name has been registered // -> alias // 2b. The module with resolved module name has not yet been registerd // -> register & alias let is_module_registered = { let loader = self.loader.as_mut().unwrap(); let modules = loader.modules(); modules.is_registered(&source_code_info.module_name) }; let need_alias = source_code_info.module_name != completed.url; if !is_module_registered { let module_name = &source_code_info.module_name; let result = { let loader = self.loader.as_mut().unwrap(); let isolate = loader.isolate(); isolate.mod_new( completed.is_root, module_name, &source_code_info.code, ) }; if let Err(err) = result { return Err((JSErrorOr::JSError(err), self.take_loader())); } let mod_id = result.unwrap(); if completed.is_root { assert!(self.root_id.is_none()); self.root_id = Some(mod_id); } // Register new module. { let loader = self.loader.as_mut().unwrap(); let modules = loader.modules(); modules.register(mod_id, module_name); // If necessary, register the alias. if need_alias { let module_alias = &completed.url; modules.alias(module_alias, module_name); } } // Now we must iterate over all imports of the module and load them. let imports = { let loader = self.loader.as_mut().unwrap(); let isolate = loader.isolate(); isolate.mod_get_imports(mod_id) }; let referrer = module_name; for specifier in imports { self .add(&specifier, referrer, Some(mod_id)) .map_err(|e| (JSErrorOr::Other(e), self.take_loader()))?; } } else if need_alias { let loader = self.loader.as_mut().unwrap(); let modules = loader.modules(); modules.alias(&completed.url, &source_code_info.module_name); } } } } if !self.pending.is_empty() { return Ok(Async::NotReady); } let root_id = self.root_id.unwrap(); let mut loader = self.take_loader(); let (isolate, modules) = loader.isolate_and_modules(); let result = { let mut resolve_cb = |specifier: &str, referrer_id: deno_mod| -> deno_mod { let referrer = modules.get_name(referrer_id).unwrap(); match L::resolve(specifier, &referrer) { Ok(url) => match modules.get_id(&url) { Some(id) => id, None => 0, }, // We should have already resolved and loaded this module, so // resolve() will not fail this time. Err(_err) => unreachable!(), } }; isolate.mod_instantiate(root_id, &mut resolve_cb) }; match result { Err(err) => Err((JSErrorOr::JSError(err), loader)), Ok(()) => Ok(Async::Ready((root_id, loader))), } } } struct ModuleInfo { name: String, children: Vec, } impl ModuleInfo { fn has_child(&self, child_name: &str) -> bool { for c in self.children.iter() { if c == child_name { return true; } } false } } /// A symbolic module entity. pub enum SymbolicModule { /// This module is an alias to another module. /// This is useful such that multiple names could point to /// the same underlying module (particularly due to redirects). Alias(String), /// This module associates with a V8 module by id. Mod(deno_mod), } #[derive(Default)] /// Alias-able module name map pub struct ModuleNameMap { inner: HashMap, } impl ModuleNameMap { pub fn new() -> Self { ModuleNameMap { inner: HashMap::new(), } } /// Get the id of a module. /// If this module is internally represented as an alias, /// follow the alias chain to get the final module id. pub fn get(&self, name: &str) -> Option { let mut mod_name = name; loop { let cond = self.inner.get(mod_name); match cond { Some(SymbolicModule::Alias(target)) => { mod_name = target; } Some(SymbolicModule::Mod(mod_id)) => { return Some(*mod_id); } _ => { return None; } } } } /// Insert a name assocated module id. pub fn insert(&mut self, name: String, id: deno_mod) { self.inner.insert(name, SymbolicModule::Mod(id)); } /// Create an alias to another module. pub fn alias(&mut self, name: String, target: String) { self.inner.insert(name, SymbolicModule::Alias(target)); } /// Check if a name is an alias to another module. pub fn is_alias(&self, name: &str) -> bool { let cond = self.inner.get(name); match cond { Some(SymbolicModule::Alias(_)) => true, _ => false, } } } /// A collection of JS modules. #[derive(Default)] pub struct Modules { info: HashMap, by_name: ModuleNameMap, } impl Modules { pub fn new() -> Modules { Self { info: HashMap::new(), by_name: ModuleNameMap::new(), } } pub fn get_id(&self, name: &str) -> Option { self.by_name.get(name) } pub fn get_children(&self, id: deno_mod) -> Option<&Vec> { self.info.get(&id).map(|i| &i.children) } pub fn get_children2(&self, name: &str) -> Option<&Vec> { self.get_id(name).and_then(|id| self.get_children(id)) } pub fn get_name(&self, id: deno_mod) -> Option<&String> { self.info.get(&id).map(|i| &i.name) } pub fn is_registered(&self, name: &str) -> bool { self.by_name.get(name).is_some() } pub fn add_child(&mut self, parent_id: deno_mod, child_name: &str) -> bool { self .info .get_mut(&parent_id) .map(move |i| { if !i.has_child(&child_name) { i.children.push(child_name.to_string()); } }).is_some() } pub fn register(&mut self, id: deno_mod, name: &str) { let name = String::from(name); debug!("register_complete {}", name); self.by_name.insert(name.clone(), id); self.info.insert( id, ModuleInfo { name, children: Vec::new(), }, ); } pub fn alias(&mut self, name: &str, target: &str) { self.by_name.alias(name.to_owned(), target.to_owned()); } pub fn is_alias(&self, name: &str) -> bool { self.by_name.is_alias(name) } pub fn deps(&self, url: &str) -> Option { Deps::new(self, url) } } /// This is a tree structure representing the dependencies of a given module. /// Use Modules::deps to construct it. The 'deps' member is None if this module /// was already seen elsewher in the tree. #[derive(Debug, PartialEq)] pub struct Deps { pub name: String, pub deps: Option>, prefix: String, is_last: bool, } impl Deps { fn new(modules: &Modules, module_name: &str) -> Option { let mut seen = HashSet::new(); Self::helper(&mut seen, "".to_string(), true, modules, module_name) } fn helper( seen: &mut HashSet, prefix: String, is_last: bool, modules: &Modules, name: &str, // TODO(ry) rename url ) -> Option { if seen.contains(name) { Some(Deps { name: name.to_string(), prefix, deps: None, is_last, }) } else { let children = modules.get_children2(name)?; seen.insert(name.to_string()); let child_count = children.len(); let deps: Vec = children .iter() .enumerate() .map(|(index, dep_name)| { let new_is_last = index == child_count - 1; let mut new_prefix = prefix.clone(); new_prefix.push(if is_last { ' ' } else { '│' }); new_prefix.push(' '); Self::helper(seen, new_prefix, new_is_last, modules, dep_name) }) // If any of the children are missing, return None. .collect::>()?; Some(Deps { name: name.to_string(), prefix, deps: Some(deps), is_last, }) } } pub fn to_json(&self) -> String { let mut children = "[".to_string(); if let Some(ref deps) = self.deps { for d in deps { children.push_str(&d.to_json()); if !d.is_last { children.push_str(","); } } } children.push_str("]"); format!("[\"{}\",{}]", self.name, children) } } impl fmt::Display for Deps { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut has_children = false; if let Some(ref deps) = self.deps { has_children = !deps.is_empty(); } write!( f, "{}{}─{} {}", self.prefix, if self.is_last { "└" } else { "├" }, if has_children { "┬" } else { "─" }, self.name )?; if let Some(ref deps) = self.deps { for d in deps { write!(f, "\n{}", d)?; } } Ok(()) } } #[cfg(test)] mod tests { use super::*; use crate::isolate::js_check; use crate::isolate::tests::*; use std::fmt; struct MockLoader { pub loads: Vec, pub isolate: Isolate, pub modules: Modules, } impl MockLoader { fn new() -> Self { let modules = Modules::new(); let (isolate, _dispatch_count) = setup(Mode::AsyncImmediate); Self { loads: Vec::new(), isolate, modules, } } } fn mock_source_code(url: &str) -> Option<(&'static str, &'static str)> { // (code, real_module_name) match url { "a.js" => Some((A_SRC, "a.js")), "b.js" => Some((B_SRC, "b.js")), "c.js" => Some((C_SRC, "c.js")), "d.js" => Some((D_SRC, "d.js")), "circular1.js" => Some((CIRCULAR1_SRC, "circular1.js")), "circular2.js" => Some((CIRCULAR2_SRC, "circular2.js")), "circular3.js" => Some((CIRCULAR3_SRC, "circular3.js")), "redirect1.js" => Some((REDIRECT1_SRC, "redirect1.js")), // pretend redirect "./redirect2.js" => Some((REDIRECT2_SRC, "./dir/redirect2.js")), "./dir/redirect3.js" => Some((REDIRECT3_SRC, "./redirect3.js")), "slow.js" => Some((SLOW_SRC, "slow.js")), "never_ready.js" => Some(("should never be loaded", "never_ready.js")), "main.js" => Some((MAIN_SRC, "main.js")), "bad_import.js" => Some((BAD_IMPORT_SRC, "bad_import.js")), _ => None, } } #[derive(Debug, PartialEq)] enum MockError { ResolveErr, LoadErr, } impl fmt::Display for MockError { fn fmt(&self, _f: &mut fmt::Formatter) -> fmt::Result { unimplemented!() } } impl Error for MockError { fn cause(&self) -> Option<&Error> { unimplemented!() } } struct DelayedSourceCodeFuture { url: String, counter: u32, } impl Future for DelayedSourceCodeFuture { type Item = SourceCodeInfo; type Error = MockError; fn poll(&mut self) -> Poll { self.counter += 1; if self.url == "never_ready.js" || (self.url == "slow.js" && self.counter < 2) { return Ok(Async::NotReady); } match mock_source_code(&self.url) { Some(src) => Ok(Async::Ready(SourceCodeInfo { code: src.0.to_owned(), module_name: src.1.to_owned(), })), None => Err(MockError::LoadErr), } } } impl Loader for MockLoader { type Error = MockError; fn resolve(specifier: &str, referrer: &str) -> Result { eprintln!(">> RESOLVING, S: {}, R: {}", specifier, referrer); let output_specifier = if specifier.starts_with("./") && referrer.starts_with("./") { // Special fake path resolving logic (for redirect test) // if both started with "./" eprintln!(">> SPECIAL!"); let prefix = { let mut iter = referrer.rsplitn(2, '/'); let _ = iter.next(); iter.next().unwrap() }; let suffix = { let mut iter = specifier.splitn(2, '/'); let _ = iter.next(); iter.next().unwrap() }; format!("{}/{}", &prefix, &suffix) } else { specifier.to_owned() }; if mock_source_code(&output_specifier).is_some() { Ok(output_specifier) } else { Err(MockError::ResolveErr) } } fn load(&mut self, url: &str) -> Box> { self.loads.push(url.to_string()); let url = url.to_string(); Box::new(DelayedSourceCodeFuture { url, counter: 0 }) } fn isolate_and_modules<'a: 'b + 'c, 'b, 'c>( &'a mut self, ) -> (&'b mut Isolate, &'c mut Modules) { (&mut self.isolate, &mut self.modules) } } const A_SRC: &str = r#" import { b } from "b.js"; import { c } from "c.js"; if (b() != 'b') throw Error(); if (c() != 'c') throw Error(); if (!import.meta.main) throw Error(); if (import.meta.url != 'a.js') throw Error(); "#; const B_SRC: &str = r#" import { c } from "c.js"; if (c() != 'c') throw Error(); export function b() { return 'b'; } if (import.meta.main) throw Error(); if (import.meta.url != 'b.js') throw Error(); "#; const C_SRC: &str = r#" import { d } from "d.js"; export function c() { return 'c'; } if (d() != 'd') throw Error(); if (import.meta.main) throw Error(); if (import.meta.url != 'c.js') throw Error(); "#; const D_SRC: &str = r#" export function d() { return 'd'; } if (import.meta.main) throw Error(); if (import.meta.url != 'd.js') throw Error(); "#; #[test] fn test_recursive_load() { let loader = MockLoader::new(); let mut recursive_load = RecursiveLoad::new("a.js", loader); let result = recursive_load.poll(); assert!(result.is_ok()); if let Async::Ready((a_id, mut loader)) = result.ok().unwrap() { js_check(loader.isolate.mod_evaluate(a_id)); assert_eq!(loader.loads, vec!["a.js", "b.js", "c.js", "d.js"]); let modules = &loader.modules; assert_eq!(modules.get_id("a.js"), Some(a_id)); let b_id = modules.get_id("b.js").unwrap(); let c_id = modules.get_id("c.js").unwrap(); let d_id = modules.get_id("d.js").unwrap(); assert_eq!( modules.get_children(a_id), Some(&vec!["b.js".to_string(), "c.js".to_string()]) ); assert_eq!(modules.get_children(b_id), Some(&vec!["c.js".to_string()])); assert_eq!(modules.get_children(c_id), Some(&vec!["d.js".to_string()])); assert_eq!(modules.get_children(d_id), Some(&vec![])); } else { unreachable!(); } } const CIRCULAR1_SRC: &str = r#" import "circular2.js"; Deno.core.print("circular1"); "#; const CIRCULAR2_SRC: &str = r#" import "circular3.js"; Deno.core.print("circular2"); "#; const CIRCULAR3_SRC: &str = r#" import "circular1.js"; import "circular2.js"; Deno.core.print("circular3"); "#; #[test] fn test_circular_load() { let loader = MockLoader::new(); let mut recursive_load = RecursiveLoad::new("circular1.js", loader); let result = recursive_load.poll(); assert!(result.is_ok()); if let Async::Ready((circular1_id, mut loader)) = result.ok().unwrap() { js_check(loader.isolate.mod_evaluate(circular1_id)); assert_eq!( loader.loads, vec!["circular1.js", "circular2.js", "circular3.js"] ); let modules = &loader.modules; assert_eq!(modules.get_id("circular1.js"), Some(circular1_id)); let circular2_id = modules.get_id("circular2.js").unwrap(); assert_eq!( modules.get_children(circular1_id), Some(&vec!["circular2.js".to_string()]) ); assert_eq!( modules.get_children(circular2_id), Some(&vec!["circular3.js".to_string()]) ); assert!(modules.get_id("circular3.js").is_some()); let circular3_id = modules.get_id("circular3.js").unwrap(); assert_eq!( modules.get_children(circular3_id), Some(&vec![ "circular1.js".to_string(), "circular2.js".to_string() ]) ); } else { unreachable!(); } } const REDIRECT1_SRC: &str = r#" import "./redirect2.js"; Deno.core.print("redirect1"); "#; const REDIRECT2_SRC: &str = r#" import "./redirect3.js"; Deno.core.print("redirect2"); "#; const REDIRECT3_SRC: &str = r#" Deno.core.print("redirect3"); "#; #[test] fn test_redirect_load() { let loader = MockLoader::new(); let mut recursive_load = RecursiveLoad::new("redirect1.js", loader); let result = recursive_load.poll(); assert!(result.is_ok()); if let Async::Ready((redirect1_id, mut loader)) = result.ok().unwrap() { js_check(loader.isolate.mod_evaluate(redirect1_id)); assert_eq!( loader.loads, vec!["redirect1.js", "./redirect2.js", "./dir/redirect3.js"] ); let modules = &loader.modules; assert_eq!(modules.get_id("redirect1.js"), Some(redirect1_id)); let redirect2_id = modules.get_id("./dir/redirect2.js").unwrap(); assert!(modules.is_alias("./redirect2.js")); assert!(!modules.is_alias("./dir/redirect2.js")); assert_eq!(modules.get_id("./redirect2.js").unwrap(), redirect2_id); let redirect3_id = modules.get_id("./redirect3.js").unwrap(); assert!(modules.is_alias("./dir/redirect3.js")); assert!(!modules.is_alias("./redirect3.js")); assert_eq!(modules.get_id("./dir/redirect3.js").unwrap(), redirect3_id); } else { unreachable!(); } } // main.js const MAIN_SRC: &str = r#" // never_ready.js never loads. import "never_ready.js"; // slow.js resolves after one tick. import "slow.js"; "#; // slow.js const SLOW_SRC: &str = r#" // Circular import of never_ready.js // Does this trigger two Loader calls? It shouldn't. import "never_ready.js"; import "a.js"; "#; #[test] fn slow_never_ready_modules() { let loader = MockLoader::new(); let mut recursive_load = RecursiveLoad::new("main.js", loader); let result = recursive_load.poll(); assert!(result.is_ok()); assert!(result.ok().unwrap().is_not_ready()); { let loader = recursive_load.loader.as_ref().unwrap(); assert_eq!(loader.loads, vec!["main.js", "never_ready.js", "slow.js"]); } for _ in 0..10 { let result = recursive_load.poll(); assert!(result.is_ok()); assert!(result.ok().unwrap().is_not_ready()); let loader = recursive_load.loader.as_ref().unwrap(); assert_eq!( loader.loads, vec![ "main.js", "never_ready.js", "slow.js", "a.js", "b.js", "c.js", "d.js" ] ); } } // bad_import.js const BAD_IMPORT_SRC: &str = r#" import "foo"; "#; #[test] fn loader_disappears_after_error() { let loader = MockLoader::new(); let mut recursive_load = RecursiveLoad::new("bad_import.js", loader); let result = recursive_load.poll(); assert!(result.is_err()); let (either_err, _loader) = result.err().unwrap(); assert_eq!(either_err, JSErrorOr::Other(MockError::ResolveErr)); assert!(recursive_load.loader.is_none()); } #[test] fn empty_deps() { let modules = Modules::new(); assert!(modules.deps("foo").is_none()); } #[test] fn deps() { // "foo" -> "bar" let mut modules = Modules::new(); modules.register(1, "foo"); modules.register(2, "bar"); modules.add_child(1, "bar"); let maybe_deps = modules.deps("foo"); assert!(maybe_deps.is_some()); let mut foo_deps = maybe_deps.unwrap(); assert_eq!(foo_deps.name, "foo"); assert!(foo_deps.deps.is_some()); let foo_children = foo_deps.deps.take().unwrap(); assert_eq!(foo_children.len(), 1); let bar_deps = &foo_children[0]; assert_eq!(bar_deps.name, "bar"); assert_eq!(bar_deps.deps, Some(vec![])); } #[test] fn test_deps_to_json() { let mut modules = Modules::new(); modules.register(1, "foo"); modules.register(2, "bar"); modules.register(3, "baz"); modules.register(4, "zuh"); modules.add_child(1, "bar"); modules.add_child(1, "baz"); modules.add_child(3, "zuh"); let maybe_deps = modules.deps("foo"); assert!(maybe_deps.is_some()); assert_eq!( "[\"foo\",[[\"bar\",[]],[\"baz\",[[\"zuh\",[]]]]]]", maybe_deps.unwrap().to_json() ); } }