# Automatically generated. See mods.gni. # Copyright (c) 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import("mods.gni") import("//build/config/clang/clang.gni") import("//build/config/compiler/compiler.gni") import("//build/config/sanitizers/sanitizers.gni") import("//build/config/win/visual_studio_version.gni") import("//build/toolchain/clang_static_analyzer.gni") import("//build/toolchain/goma.gni") import("//build/toolchain/toolchain.gni") # Should only be running on Windows. assert(is_win) # Setup the Visual Studio state. # # Its arguments are the VS path and the compiler wrapper tool. It will write # "environment.x86" and "environment.x64" to the build directory and return a # list to us. # This tool will is used as a wrapper for various commands below. tool_wrapper_path = rebase_path("tool_wrapper.py", root_build_dir) if (use_goma) { if (host_os == "win") { goma_prefix = "$goma_dir/gomacc.exe " } else { goma_prefix = "$goma_dir/gomacc " } } else { goma_prefix = "" } # Copy the VS runtime DLL for the default toolchain to the root build directory # so things will run. if (current_toolchain == default_toolchain) { if (is_debug) { configuration_name = "Debug" } else { configuration_name = "Release" } exec_script("$base_toolchain_dir/../../vs_toolchain.py", [ "copy_dlls", rebase_path(root_build_dir), configuration_name, target_cpu, ]) } # Parameters: # environment: File name of environment file. # # You would also define a toolchain_args variable with at least these set: # current_cpu: current_cpu to pass as a build arg # current_os: current_os to pass as a build arg template("msvc_toolchain") { toolchain(target_name) { # When invoking this toolchain not as the default one, these args will be # passed to the build. They are ignored when this is the default toolchain. assert(defined(invoker.toolchain_args)) toolchain_args = { if (defined(invoker.toolchain_args)) { forward_variables_from(invoker.toolchain_args, "*") } # This value needs to be passed through unchanged. host_toolchain = host_toolchain } # Make these apply to all tools below. lib_switch = "" lib_dir_switch = "/LIBPATH:" # Object files go in this directory. object_subdir = "{{target_out_dir}}/{{label_name}}" env = invoker.environment # When the invoker has explicitly overridden use_goma or cc_wrapper in the # toolchain args, use those values, otherwise default to the global one. # This works because the only reasonable override that toolchains might # supply for these values are to force-disable them. if (defined(toolchain_args.is_clang)) { toolchain_uses_clang = toolchain_args.is_clang } else { toolchain_uses_clang = is_clang } cl = invoker.cl if (toolchain_uses_clang && use_clang_static_analyzer) { analyzer_prefix = "$python_path " + rebase_path("//build/toolchain/clang_static_analyzer_wrapper.py", root_build_dir) + " --mode=cl" cl = "${analyzer_prefix} ${cl}" } if (use_lld) { if (host_os == "win") { lld_link = "lld-link.exe" } else { lld_link = "lld-link" } prefix = rebase_path("$clang_base_path/bin", root_build_dir) # lld-link includes a replacement for lib.exe that can produce thin # archives and understands bitcode (for lto builds). lib = "$prefix/$lld_link /lib /llvmlibthin" link = "$prefix/$lld_link" if (host_os != "win") { # See comment adding --rsp-quoting to $cl above for more information. link = "$link --rsp-quoting=posix" } } else { lib = "lib.exe" link = "link.exe" } # If possible, pass system includes as flags to the compiler. When that's # not possible, load a full environment file (containing %INCLUDE% and # %PATH%) -- e.g. 32-bit MSVS builds require %PATH% to be set and just # passing in a list of include directories isn't enough. if (defined(invoker.sys_include_flags)) { env_wrapper = "" sys_include_flags = "${invoker.sys_include_flags} " # Note trailing space. } else { # clang-cl doesn't need this env hoop, so omit it there. assert(!toolchain_uses_clang) env_wrapper = "ninja -t msvc -e $env -- " # Note trailing space. sys_include_flags = "" } # ninja does not have -t msvc other than windows, and lld doesn't depend on # mt.exe in PATH on non-Windows, so it's not needed there anyways. if (defined(invoker.sys_lib_flags)) { linker_wrapper = "" sys_lib_flags = "${invoker.sys_lib_flags} " # Note trailing space } else if (use_lld) { # Invoke ninja as wrapper instead of tool wrapper, because python # invocation requires higher cpu usage compared to ninja invocation, and # the python wrapper is only needed to work around link.exe problems. # TODO(thakis): Remove wrapper once lld-link can merge manifests without # relying on mt.exe being in %PATH% on Windows, https://crbug.com/872740 linker_wrapper = "ninja -t msvc -e $env -- " # Note trailing space. sys_lib_flags = "" } else { linker_wrapper = "$python_path $tool_wrapper_path link-wrapper $env False " # Note trailing space. sys_lib_flags = "" } clflags = "" # Pass /FC flag to the compiler if needed. if (msvc_use_absolute_paths) { clflags += "/FC " } tool("cc") { precompiled_header_type = "msvc" pdbname = "{{target_out_dir}}/{{label_name}}_c.pdb" # Label names may have spaces in them so the pdbname must be quoted. The # source and output don't need to be quoted because GN knows they're a # full file name and will quote automatically when necessary. depsformat = "msvc" description = "CC {{output}}" outputs = [ "$object_subdir/{{source_name_part}}.obj", ] command = "$env_wrapper$cl /nologo /showIncludes ${clflags} $sys_include_flags{{defines}} {{include_dirs}} {{cflags}} {{cflags_c}} /c {{source}} /Fo{{output}} /Fd\"$pdbname\"" } tool("cxx") { precompiled_header_type = "msvc" # The PDB name needs to be different between C and C++ compiled files. pdbname = "{{target_out_dir}}/{{label_name}}_cc.pdb" # See comment in CC tool about quoting. depsformat = "msvc" description = "CXX {{output}}" outputs = [ "$object_subdir/{{source_name_part}}.obj", ] command = "$env_wrapper$cl /nologo /showIncludes ${clflags} $sys_include_flags{{defines}} {{include_dirs}} {{cflags}} {{cflags_cc}} /c {{source}} /Fo{{output}} /Fd\"$pdbname\"" } tool("rc") { command = "$python_path $tool_wrapper_path rc-wrapper $env rc.exe {{defines}} {{include_dirs}} /fo{{output}} {{source}}" depsformat = "msvc" outputs = [ "$object_subdir/{{source_name_part}}.res", ] description = "RC {{output}}" } tool("asm") { if (toolchain_args.current_cpu == "x64") { ml = "ml64.exe" } else { ml = "ml.exe" } command = "$python_path $tool_wrapper_path asm-wrapper $env $ml {{defines}} {{include_dirs}} {{asmflags}} /c /Fo{{output}} {{source}}" description = "ASM {{output}}" outputs = [ "$object_subdir/{{source_name_part}}.obj", ] } tool("alink") { rspfile = "{{output}}.rsp" command = "$linker_wrapper$lib /nologo ${sys_lib_flags}{{arflags}} /OUT:{{output}} @$rspfile" description = "LIB {{output}}" outputs = [ # Ignore {{output_extension}} and always use .lib, there's no reason to # allow targets to override this extension on Windows. "{{output_dir}}/{{target_output_name}}.lib", ] default_output_extension = ".lib" default_output_dir = "{{target_out_dir}}" # The use of inputs_newline is to work around a fixed per-line buffer # size in the linker. rspfile_content = "{{inputs_newline}}" } tool("solink") { dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}" # e.g. foo.dll libname = "${dllname}.lib" # e.g. foo.dll.lib pdbname = "${dllname}.pdb" rspfile = "${dllname}.rsp" pool = "//build/toolchain:link_pool($default_toolchain)" command = "$linker_wrapper$link /nologo ${sys_lib_flags}/IMPLIB:$libname /DLL /OUT:$dllname /PDB:$pdbname @$rspfile" default_output_extension = ".dll" default_output_dir = "{{root_out_dir}}" description = "LINK(DLL) {{output}}" outputs = [ dllname, libname, ] link_output = libname depend_output = libname runtime_outputs = [ dllname ] if (symbol_level != 0) { outputs += [ pdbname ] runtime_outputs += [ pdbname ] } # Since the above commands only updates the .lib file when it changes, ask # Ninja to check if the timestamp actually changed to know if downstream # dependencies should be recompiled. restat = true # The use of inputs_newline is to work around a fixed per-line buffer # size in the linker. rspfile_content = "{{libs}} {{solibs}} {{inputs_newline}} {{ldflags}}" } tool("solink_module") { dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}" # e.g. foo.dll pdbname = "${dllname}.pdb" rspfile = "${dllname}.rsp" pool = "//build/toolchain:link_pool($default_toolchain)" command = "$linker_wrapper$link /nologo ${sys_lib_flags}/DLL /OUT:$dllname /PDB:$pdbname @$rspfile" default_output_extension = ".dll" default_output_dir = "{{root_out_dir}}" description = "LINK_MODULE(DLL) {{output}}" outputs = [ dllname, ] if (symbol_level != 0) { outputs += [ pdbname ] } runtime_outputs = outputs # The use of inputs_newline is to work around a fixed per-line buffer # size in the linker. rspfile_content = "{{libs}} {{solibs}} {{inputs_newline}} {{ldflags}}" } tool("link") { exename = "{{output_dir}}/{{target_output_name}}{{output_extension}}" pdbname = "$exename.pdb" rspfile = "$exename.rsp" pool = "//build/toolchain:link_pool($default_toolchain)" command = "$linker_wrapper$link /nologo ${sys_lib_flags}/OUT:$exename /PDB:$pdbname @$rspfile" default_output_extension = ".exe" default_output_dir = "{{root_out_dir}}" description = "LINK {{output}}" outputs = [ exename, ] if (symbol_level != 0) { outputs += [ pdbname ] } runtime_outputs = outputs # The use of inputs_newline is to work around a fixed per-line buffer # size in the linker. rspfile_content = "{{inputs_newline}} {{libs}} {{solibs}} {{ldflags}}" } # These two are really entirely generic, but have to be repeated in # each toolchain because GN doesn't allow a template to be used here. # See //build/toolchain/toolchain.gni for details. tool("stamp") { command = stamp_command description = stamp_description pool = "//build/toolchain:action_pool($default_toolchain)" } tool("copy") { command = copy_command description = copy_description pool = "//build/toolchain:action_pool($default_toolchain)" } tool("action") { pool = "//build/toolchain:action_pool($default_toolchain)" } } } if (host_os == "win") { clang_cl = "clang-cl.exe" } else { clang_cl = "clang-cl" } if (target_cpu == "x86" || target_cpu == "x64") { win_build_host_cpu = target_cpu } else { win_build_host_cpu = host_cpu } # x86, arm and arm64 build cpu toolchains for Windows (not WinUWP). Only # define when the build cpu is one of these architectures since we don't # do any cross compiles when targeting x64-bit (the build does generate # some 64-bit stuff from x86/arm/arm64 target builds). if (win_build_host_cpu != "x64") { build_cpu_toolchain_data = exec_script("$base_toolchain_dir/setup_toolchain.py", [ visual_studio_path, windows_sdk_path, visual_studio_runtime_dirs, host_os, win_build_host_cpu, "environment." + win_build_host_cpu, ], "scope") msvc_toolchain(win_build_host_cpu) { environment = "environment." + win_build_host_cpu cl = "${goma_prefix}${cc_wrapper_prefix}\"${build_cpu_toolchain_data.vc_bin_dir}/cl.exe\"" if (host_os != "win") { # For win cross build. sys_lib_flags = "${build_cpu_toolchain_data.libpath_flags}" } toolchain_args = { current_os = "win" current_cpu = win_build_host_cpu is_clang = false } } msvc_toolchain("win_clang_" + win_build_host_cpu) { environment = "environment." + win_build_host_cpu prefix = rebase_path("$clang_base_path/bin", root_build_dir) cl = "${goma_prefix}${cc_wrapper_prefix}$prefix/${clang_cl}" sys_include_flags = "${build_cpu_toolchain_data.include_flags_imsvc}" if (host_os != "win") { # For win cross build. sys_lib_flags = "${build_cpu_toolchain_data.libpath_flags}" } toolchain_args = { current_os = "win" current_cpu = win_build_host_cpu is_clang = true } } } # 64-bit toolchains. x64_toolchain_data = exec_script("$base_toolchain_dir/setup_toolchain.py", [ visual_studio_path, windows_sdk_path, visual_studio_runtime_dirs, "win", "x64", "environment.x64", ], "scope") template("win_x64_toolchains") { msvc_toolchain(target_name) { environment = "environment.x64" cl = "${goma_prefix}${cc_wrapper_prefix}\"${x64_toolchain_data.vc_bin_dir}/cl.exe\"" if (host_os != "win") { # For win cross build sys_lib_flags = "${x64_toolchain_data.libpath_flags}" } toolchain_args = { if (defined(invoker.toolchain_args)) { forward_variables_from(invoker.toolchain_args, "*") } is_clang = false current_os = "win" current_cpu = "x64" } } msvc_toolchain("win_clang_" + target_name) { environment = "environment.x64" prefix = rebase_path("$clang_base_path/bin", root_build_dir) cl = "${goma_prefix}${cc_wrapper_prefix}$prefix/${clang_cl}" sys_include_flags = "${x64_toolchain_data.include_flags_imsvc}" if (host_os != "win") { # For win cross build sys_lib_flags = "${x64_toolchain_data.libpath_flags}" } toolchain_args = { if (defined(invoker.toolchain_args)) { forward_variables_from(invoker.toolchain_args, "*") } is_clang = true current_os = "win" current_cpu = "x64" } } } win_x64_toolchains("x64") { toolchain_args = { # Use the defaults. } } # The nacl_win64 toolchain is nearly identical to the plain x64 toolchain. # It's used solely for building nacl64.exe (//components/nacl/broker:nacl64). # The only reason it's a separate toolchain is so that it can force # is_component_build to false in the toolchain_args() block, because # building nacl64.exe in component style does not work. win_x64_toolchains("nacl_win64") { toolchain_args = { is_component_build = false } } # WinUWP toolchains. Only define these when targeting them. if (target_os == "winuwp") { assert(target_cpu == "x64" || target_cpu == "x86" || target_cpu == "arm" || target_cpu == "arm64") store_cpu_toolchain_data = exec_script("$base_toolchain_dir/setup_toolchain.py", [ visual_studio_path, windows_sdk_path, visual_studio_runtime_dirs, target_os, target_cpu, "environment.store_" + target_cpu, ], "scope") msvc_toolchain("uwp_" + target_cpu) { environment = "environment.store_" + target_cpu cl = "${goma_prefix}${cc_wrapper_prefix}\"${store_cpu_toolchain_data.vc_bin_dir}/cl.exe\"" toolchain_args = { current_os = "winuwp" current_cpu = target_cpu is_clang = false } } }