// Copyright 2018 the Deno authors. All rights reserved. MIT license. // Do not use FlatBuffers in this module. // TODO Currently this module uses Tokio, but it would be nice if they were // decoupled. use deno_dir; use errors::DenoError; use flags; use libdeno; use futures::Future; use libc::c_void; use std; use std::ffi::CStr; use std::ffi::CString; use std::sync::mpsc; use std::sync::Arc; use std::sync::Mutex; use std::time::Duration; use std::time::Instant; use tokio; use tokio_util; type DenoException<'a> = &'a str; // Buf represents a byte array returned from a "Op". // The message might be empty (which will be translated into a null object on // the javascript side) or it is a heap allocated opaque sequence of bytes. // Usually a flatbuffer message. pub type Buf = Box<[u8]>; // JS promises in Deno map onto a specific Future // which yields either a DenoError or a byte array. pub type Op = Future + Send; // Returns (is_sync, op) pub type Dispatch = fn(isolate: &mut Isolate, buf: &[u8], data_buf: &'static mut [u8]) -> (bool, Box); pub struct Isolate { libdeno_isolate: *const libdeno::isolate, dispatch: Dispatch, rx: mpsc::Receiver<(i32, Buf)>, ntasks: i32, pub timeout_due: Option, pub state: Arc, } // Isolate cannot be passed between threads but IsolateState can. So any state that // needs to be accessed outside the main V8 thread should be inside IsolateState. pub struct IsolateState { pub dir: deno_dir::DenoDir, pub argv: Vec, pub flags: flags::DenoFlags, tx: Mutex>>, pub metrics: Mutex, } impl IsolateState { // Thread safe. fn send_to_js(&self, req_id: i32, buf: Buf) { let mut g = self.tx.lock().unwrap(); let maybe_tx = g.as_mut(); assert!(maybe_tx.is_some(), "Expected tx to not be deleted."); let tx = maybe_tx.unwrap(); tx.send((req_id, buf)).expect("tx.send error"); } fn metrics_op_dispatched( &self, bytes_sent_control: u64, bytes_sent_data: u64, ) { let mut metrics = self.metrics.lock().unwrap(); metrics.ops_dispatched += 1; metrics.bytes_sent_control += bytes_sent_control; metrics.bytes_sent_data += bytes_sent_data; } fn metrics_op_completed(&self, bytes_received: u64) { let mut metrics = self.metrics.lock().unwrap(); metrics.ops_completed += 1; metrics.bytes_received += bytes_received; } } #[derive(Default)] pub struct Metrics { pub ops_dispatched: u64, pub ops_completed: u64, pub bytes_sent_control: u64, pub bytes_sent_data: u64, pub bytes_received: u64, } static DENO_INIT: std::sync::Once = std::sync::ONCE_INIT; impl Isolate { pub fn new(argv: Vec, dispatch: Dispatch) -> Isolate { DENO_INIT.call_once(|| { unsafe { libdeno::deno_init() }; }); let (flags, argv_rest) = flags::set_flags(argv); let libdeno_isolate = unsafe { libdeno::deno_new(pre_dispatch) }; // This channel handles sending async messages back to the runtime. let (tx, rx) = mpsc::channel::<(i32, Buf)>(); Isolate { libdeno_isolate, dispatch, rx, ntasks: 0, timeout_due: None, state: Arc::new(IsolateState { dir: deno_dir::DenoDir::new(flags.reload, None).unwrap(), argv: argv_rest, flags, tx: Mutex::new(Some(tx)), metrics: Mutex::new(Metrics::default()), }), } } pub fn as_void_ptr(&mut self) -> *mut c_void { self as *mut _ as *mut c_void } pub fn from_void_ptr<'a>(ptr: *mut c_void) -> &'a mut Isolate { let ptr = ptr as *mut _; unsafe { &mut *ptr } } pub fn execute( &mut self, js_filename: &str, js_source: &str, ) -> Result<(), DenoException> { let filename = CString::new(js_filename).unwrap(); let source = CString::new(js_source).unwrap(); let r = unsafe { libdeno::deno_execute( self.libdeno_isolate, self.as_void_ptr(), filename.as_ptr(), source.as_ptr(), ) }; if r == 0 { let ptr = unsafe { libdeno::deno_last_exception(self.libdeno_isolate) }; let cstr = unsafe { CStr::from_ptr(ptr) }; return Err(cstr.to_str().unwrap()); } Ok(()) } pub fn respond(&mut self, req_id: i32, buf: Buf) { self.state.metrics_op_completed(buf.len() as u64); // TODO(zero-copy) Use Buf::leak(buf) to leak the heap allocated buf. And // don't do the memcpy in ImportBuf() (in libdeno/binding.cc) unsafe { libdeno::deno_respond( self.libdeno_isolate, self.as_void_ptr(), req_id, buf.into(), ) } } fn complete_op(&mut self, req_id: i32, buf: Buf) { // Receiving a message on rx exactly corresponds to an async task // completing. self.ntasks_decrement(); // Call into JS with the buf. self.respond(req_id, buf); } fn timeout(&mut self) { let dummy_buf = libdeno::deno_buf { alloc_ptr: 0 as *mut u8, alloc_len: 0, data_ptr: 0 as *mut u8, data_len: 0, }; unsafe { libdeno::deno_respond( self.libdeno_isolate, self.as_void_ptr(), -1, dummy_buf, ) } } // TODO Use Park abstraction? Note at time of writing Tokio default runtime // does not have new_with_park(). pub fn event_loop(&mut self) { // Main thread event loop. while !self.is_idle() { match recv_deadline(&self.rx, self.timeout_due) { Ok((req_id, buf)) => self.complete_op(req_id, buf), Err(mpsc::RecvTimeoutError::Timeout) => self.timeout(), Err(e) => panic!("recv_deadline() failed: {:?}", e), } } } fn ntasks_increment(&mut self) { assert!(self.ntasks >= 0); self.ntasks = self.ntasks + 1; } fn ntasks_decrement(&mut self) { self.ntasks = self.ntasks - 1; assert!(self.ntasks >= 0); } fn is_idle(&self) -> bool { self.ntasks == 0 && self.timeout_due.is_none() } } impl Drop for Isolate { fn drop(&mut self) { unsafe { libdeno::deno_delete(self.libdeno_isolate) } } } /// Converts Rust Buf to libdeno deno_buf. impl From for libdeno::deno_buf { fn from(x: Buf) -> libdeno::deno_buf { let len = x.len(); let ptr = Box::into_raw(x); libdeno::deno_buf { alloc_ptr: 0 as *mut u8, alloc_len: 0, data_ptr: ptr as *mut u8, data_len: len, } } } // Dereferences the C pointer into the Rust Isolate object. extern "C" fn pre_dispatch( user_data: *mut c_void, req_id: i32, control_buf: libdeno::deno_buf, data_buf: libdeno::deno_buf, ) { // for metrics let bytes_sent_control = control_buf.data_len as u64; let bytes_sent_data = data_buf.data_len as u64; // control_buf is only valid for the lifetime of this call, thus is // interpretted as a slice. let control_slice = unsafe { std::slice::from_raw_parts(control_buf.data_ptr, control_buf.data_len) }; // data_buf is valid for the lifetime of the promise, thus a mutable buf with // static lifetime. let data_slice = unsafe { std::slice::from_raw_parts_mut::<'static>( data_buf.data_ptr, data_buf.data_len, ) }; let isolate = Isolate::from_void_ptr(user_data); let dispatch = isolate.dispatch; let (is_sync, op) = dispatch(isolate, control_slice, data_slice); isolate .state .metrics_op_dispatched(bytes_sent_control, bytes_sent_data); if is_sync { // Execute op synchronously. let buf = tokio_util::block_on(op).unwrap(); let buf_size = buf.len(); if buf_size != 0 { // Set the synchronous response, the value returned from isolate.send(). isolate.respond(req_id, buf); } } else { // Execute op asynchronously. let state = Arc::clone(&isolate.state); // TODO Ideally Tokio would could tell us how many tasks are executing, but // it cannot currently. Therefore we track top-level promises/tasks // manually. isolate.ntasks_increment(); let task = op .and_then(move |buf| { state.send_to_js(req_id, buf); Ok(()) }).map_err(|_| ()); tokio::spawn(task); } } fn recv_deadline( rx: &mpsc::Receiver, maybe_due: Option, ) -> Result { match maybe_due { None => rx.recv().map_err(|e| e.into()), Some(due) => { // Subtracting two Instants causes a panic if the resulting duration // would become negative. Avoid this. let now = Instant::now(); let timeout = if due > now { due - now } else { Duration::new(0, 0) }; // TODO: use recv_deadline() instead of recv_timeout() when this // feature becomes stable/available. rx.recv_timeout(timeout) } } } #[cfg(test)] mod tests { use super::*; use futures; #[test] fn test_dispatch_sync() { let argv = vec![String::from("./deno"), String::from("hello.js")]; let mut isolate = Isolate::new(argv, dispatch_sync); tokio_util::init(|| { isolate .execute( "y.js", r#" const m = new Uint8Array([4, 5, 6]); let n = libdeno.send(m); if (!(n.byteLength === 3 && n[0] === 1 && n[1] === 2 && n[2] === 3)) { throw Error("assert error"); } "#, ).expect("execute error"); isolate.event_loop(); }); } fn dispatch_sync( _isolate: &mut Isolate, control: &[u8], data: &'static mut [u8], ) -> (bool, Box) { assert_eq!(control[0], 4); assert_eq!(control[1], 5); assert_eq!(control[2], 6); assert_eq!(data.len(), 0); // Send back some sync response. let vec: Vec = vec![1, 2, 3]; let control = vec.into_boxed_slice(); let op = Box::new(futures::future::ok(control)); (true, op) } #[test] fn test_metrics_sync() { let argv = vec![String::from("./deno"), String::from("hello.js")]; let mut isolate = Isolate::new(argv, metrics_dispatch_sync); tokio_util::init(|| { // Verify that metrics have been properly initialized. { let metrics = isolate.state.metrics.lock().unwrap(); assert_eq!(metrics.ops_dispatched, 0); assert_eq!(metrics.ops_completed, 0); assert_eq!(metrics.bytes_sent_control, 0); assert_eq!(metrics.bytes_sent_data, 0); assert_eq!(metrics.bytes_received, 0); } isolate .execute( "y.js", r#" const control = new Uint8Array([4, 5, 6]); const data = new Uint8Array([42, 43, 44, 45, 46]); libdeno.send(control, data); "#, ).expect("execute error"); isolate.event_loop(); let metrics = isolate.state.metrics.lock().unwrap(); assert_eq!(metrics.ops_dispatched, 1); assert_eq!(metrics.ops_completed, 1); assert_eq!(metrics.bytes_sent_control, 3); assert_eq!(metrics.bytes_sent_data, 5); assert_eq!(metrics.bytes_received, 4); }); } #[test] fn test_metrics_async() { let argv = vec![String::from("./deno"), String::from("hello.js")]; let mut isolate = Isolate::new(argv, metrics_dispatch_async); tokio_util::init(|| { // Verify that metrics have been properly initialized. { let metrics = isolate.state.metrics.lock().unwrap(); assert_eq!(metrics.ops_dispatched, 0); assert_eq!(metrics.ops_completed, 0); assert_eq!(metrics.bytes_sent_control, 0); assert_eq!(metrics.bytes_sent_data, 0); assert_eq!(metrics.bytes_received, 0); } isolate .execute( "y.js", r#" const control = new Uint8Array([4, 5, 6]); const data = new Uint8Array([42, 43, 44, 45, 46]); let r = libdeno.send(control, data); if (r != null) throw Error("expected null"); "#, ).expect("execute error"); // Make sure relevant metrics are updated before task is executed. { let metrics = isolate.state.metrics.lock().unwrap(); assert_eq!(metrics.ops_dispatched, 1); assert_eq!(metrics.bytes_sent_control, 3); assert_eq!(metrics.bytes_sent_data, 5); // Note we cannot check ops_completed nor bytes_received because that // would be a race condition. It might be nice to have use a oneshot // with metrics_dispatch_async() to properly validate them. } isolate.event_loop(); // Make sure relevant metrics are updated after task is executed. { let metrics = isolate.state.metrics.lock().unwrap(); assert_eq!(metrics.ops_dispatched, 1); assert_eq!(metrics.ops_completed, 1); assert_eq!(metrics.bytes_sent_control, 3); assert_eq!(metrics.bytes_sent_data, 5); assert_eq!(metrics.bytes_received, 4); } }); } fn metrics_dispatch_sync( _isolate: &mut Isolate, _control: &[u8], _data: &'static mut [u8], ) -> (bool, Box) { // Send back some sync response let vec: Vec = vec![1, 2, 3, 4]; let control = vec.into_boxed_slice(); let op = Box::new(futures::future::ok(control)); (true, op) } fn metrics_dispatch_async( _isolate: &mut Isolate, _control: &[u8], _data: &'static mut [u8], ) -> (bool, Box) { // Send back some sync response let vec: Vec = vec![1, 2, 3, 4]; let control = vec.into_boxed_slice(); let op = Box::new(futures::future::ok(control)); (false, op) } }