use super::dispatch_minimal::MinimalOp; use crate::http_util::HttpBody; use crate::op_error::OpError; use crate::state::State; use deno_core::CoreIsolate; use deno_core::CoreIsolateState; use deno_core::ResourceTable; use deno_core::ZeroCopyBuf; use futures::future::poll_fn; use futures::future::FutureExt; use futures::ready; use std::collections::HashMap; use std::pin::Pin; use std::sync::atomic::{AtomicUsize, Ordering}; use std::task::Context; use std::task::Poll; use tokio::io::{AsyncRead, AsyncWrite}; use tokio::net::TcpStream; use tokio_rustls::client::TlsStream as ClientTlsStream; use tokio_rustls::server::TlsStream as ServerTlsStream; #[cfg(not(windows))] use std::os::unix::io::FromRawFd; #[cfg(windows)] use std::os::windows::io::FromRawHandle; #[cfg(windows)] extern crate winapi; lazy_static! { /// Due to portability issues on Windows handle to stdout is created from raw /// file descriptor. The caveat of that approach is fact that when this /// handle is dropped underlying file descriptor is closed - that is highly /// not desirable in case of stdout. That's why we store this global handle /// that is then cloned when obtaining stdio for process. In turn when /// resource table is dropped storing reference to that handle, the handle /// itself won't be closed (so Deno.core.print) will still work. // TODO(ry) It should be possible to close stdout. static ref STDOUT_HANDLE: std::fs::File = { #[cfg(not(windows))] let stdout = unsafe { std::fs::File::from_raw_fd(1) }; #[cfg(windows)] let stdout = unsafe { std::fs::File::from_raw_handle(winapi::um::processenv::GetStdHandle( winapi::um::winbase::STD_OUTPUT_HANDLE, )) }; stdout }; static ref STDERR_HANDLE: std::fs::File = { #[cfg(not(windows))] let stderr = unsafe { std::fs::File::from_raw_fd(2) }; #[cfg(windows)] let stderr = unsafe { std::fs::File::from_raw_handle(winapi::um::processenv::GetStdHandle( winapi::um::winbase::STD_ERROR_HANDLE, )) }; stderr }; } pub fn init(i: &mut CoreIsolate, s: &State) { i.register_op("op_read", s.stateful_minimal_op2(op_read)); i.register_op("op_write", s.stateful_minimal_op2(op_write)); } pub fn get_stdio() -> ( StreamResourceHolder, StreamResourceHolder, StreamResourceHolder, ) { let stdin = StreamResourceHolder::new(StreamResource::Stdin( tokio::io::stdin(), TTYMetadata::default(), )); let stdout = StreamResourceHolder::new(StreamResource::FsFile(Some({ let stdout = STDOUT_HANDLE.try_clone().unwrap(); (tokio::fs::File::from_std(stdout), FileMetadata::default()) }))); let stderr = StreamResourceHolder::new(StreamResource::FsFile(Some({ let stderr = STDERR_HANDLE.try_clone().unwrap(); (tokio::fs::File::from_std(stderr), FileMetadata::default()) }))); (stdin, stdout, stderr) } fn no_buffer_specified() -> OpError { OpError::type_error("no buffer specified".to_string()) } #[cfg(unix)] use nix::sys::termios; #[derive(Default)] pub struct TTYMetadata { #[cfg(unix)] pub mode: Option, } #[derive(Default)] pub struct FileMetadata { pub tty: TTYMetadata, } pub struct StreamResourceHolder { pub resource: StreamResource, waker: HashMap, waker_counter: AtomicUsize, } impl StreamResourceHolder { pub fn new(resource: StreamResource) -> StreamResourceHolder { StreamResourceHolder { resource, // Atleast one task is expecter for the resource waker: HashMap::with_capacity(1), // Tracks wakers Ids waker_counter: AtomicUsize::new(0), } } } impl Drop for StreamResourceHolder { fn drop(&mut self) { self.wake_tasks(); } } impl StreamResourceHolder { pub fn track_task(&mut self, cx: &Context) -> Result { let waker = futures::task::AtomicWaker::new(); waker.register(cx.waker()); // Its OK if it overflows let task_waker_id = self.waker_counter.fetch_add(1, Ordering::Relaxed); self.waker.insert(task_waker_id, waker); Ok(task_waker_id) } pub fn wake_tasks(&mut self) { for waker in self.waker.values() { waker.wake(); } } pub fn untrack_task(&mut self, task_waker_id: usize) { self.waker.remove(&task_waker_id); } } pub enum StreamResource { Stdin(tokio::io::Stdin, TTYMetadata), FsFile(Option<(tokio::fs::File, FileMetadata)>), TcpStream(Option), #[cfg(not(windows))] UnixStream(tokio::net::UnixStream), ServerTlsStream(Box>), ClientTlsStream(Box>), HttpBody(Box), ChildStdin(tokio::process::ChildStdin), ChildStdout(tokio::process::ChildStdout), ChildStderr(tokio::process::ChildStderr), } trait UnpinAsyncRead: AsyncRead + Unpin {} trait UnpinAsyncWrite: AsyncWrite + Unpin {} impl UnpinAsyncRead for T {} impl UnpinAsyncWrite for T {} /// `DenoAsyncRead` is the same as the `tokio_io::AsyncRead` trait /// but uses an `OpError` error instead of `std::io:Error` pub trait DenoAsyncRead { fn poll_read( &mut self, cx: &mut Context, buf: &mut [u8], ) -> Poll>; } impl DenoAsyncRead for StreamResource { fn poll_read( &mut self, cx: &mut Context, buf: &mut [u8], ) -> Poll> { use StreamResource::*; let f: &mut dyn UnpinAsyncRead = match self { FsFile(Some((f, _))) => f, FsFile(None) => return Poll::Ready(Err(OpError::resource_unavailable())), Stdin(f, _) => f, TcpStream(Some(f)) => f, #[cfg(not(windows))] UnixStream(f) => f, ClientTlsStream(f) => f, ServerTlsStream(f) => f, ChildStdout(f) => f, ChildStderr(f) => f, HttpBody(f) => f, _ => return Err(OpError::bad_resource_id()).into(), }; let v = ready!(Pin::new(f).poll_read(cx, buf))?; Ok(v).into() } } pub fn op_read( isolate_state: &mut CoreIsolateState, _state: &State, is_sync: bool, rid: i32, zero_copy: Option, ) -> MinimalOp { debug!("read rid={}", rid); if zero_copy.is_none() { return MinimalOp::Sync(Err(no_buffer_specified())); } let resource_table = isolate_state.resource_table.clone(); let mut buf = zero_copy.unwrap(); if is_sync { MinimalOp::Sync({ // First we look up the rid in the resource table. let mut resource_table = resource_table.borrow_mut(); std_file_resource(&mut resource_table, rid as u32, move |r| match r { Ok(std_file) => { use std::io::Read; std_file .read(&mut buf) .map(|n: usize| n as i32) .map_err(OpError::from) } Err(_) => Err(OpError::type_error( "sync read not allowed on this resource".to_string(), )), }) }) } else { MinimalOp::Async( poll_fn(move |cx| { let mut resource_table = resource_table.borrow_mut(); let resource_holder = resource_table .get_mut::(rid as u32) .ok_or_else(OpError::bad_resource_id)?; let mut task_tracker_id: Option = None; let nread = match resource_holder .resource .poll_read(cx, &mut buf.as_mut()[..]) .map_err(OpError::from) { Poll::Ready(t) => { if let Some(id) = task_tracker_id { resource_holder.untrack_task(id); } t } Poll::Pending => { task_tracker_id.replace(resource_holder.track_task(cx)?); return Poll::Pending; } }?; Poll::Ready(Ok(nread as i32)) }) .boxed_local(), ) } } /// `DenoAsyncWrite` is the same as the `tokio_io::AsyncWrite` trait /// but uses an `OpError` error instead of `std::io:Error` pub trait DenoAsyncWrite { fn poll_write( &mut self, cx: &mut Context, buf: &[u8], ) -> Poll>; fn poll_close(&mut self, cx: &mut Context) -> Poll>; fn poll_flush(&mut self, cx: &mut Context) -> Poll>; } impl DenoAsyncWrite for StreamResource { fn poll_write( &mut self, cx: &mut Context, buf: &[u8], ) -> Poll> { use StreamResource::*; let f: &mut dyn UnpinAsyncWrite = match self { FsFile(Some((f, _))) => f, FsFile(None) => return Poll::Pending, TcpStream(Some(f)) => f, #[cfg(not(windows))] UnixStream(f) => f, ClientTlsStream(f) => f, ServerTlsStream(f) => f, ChildStdin(f) => f, _ => return Err(OpError::bad_resource_id()).into(), }; let v = ready!(Pin::new(f).poll_write(cx, buf))?; Ok(v).into() } fn poll_flush(&mut self, cx: &mut Context) -> Poll> { use StreamResource::*; let f: &mut dyn UnpinAsyncWrite = match self { FsFile(Some((f, _))) => f, FsFile(None) => return Poll::Pending, TcpStream(Some(f)) => f, #[cfg(not(windows))] UnixStream(f) => f, ClientTlsStream(f) => f, ServerTlsStream(f) => f, ChildStdin(f) => f, _ => return Err(OpError::bad_resource_id()).into(), }; ready!(Pin::new(f).poll_flush(cx))?; Ok(()).into() } fn poll_close(&mut self, _cx: &mut Context) -> Poll> { unimplemented!() } } pub fn op_write( isolate_state: &mut CoreIsolateState, _state: &State, is_sync: bool, rid: i32, zero_copy: Option, ) -> MinimalOp { debug!("write rid={}", rid); if zero_copy.is_none() { return MinimalOp::Sync(Err(no_buffer_specified())); } let buf = zero_copy.unwrap(); if is_sync { MinimalOp::Sync({ // First we look up the rid in the resource table. let mut resource_table = isolate_state.resource_table.borrow_mut(); std_file_resource(&mut resource_table, rid as u32, move |r| match r { Ok(std_file) => { use std::io::Write; std_file .write(&buf) .map(|nwritten: usize| nwritten as i32) .map_err(OpError::from) } Err(_) => Err(OpError::type_error( "sync read not allowed on this resource".to_string(), )), }) }) } else { let resource_table = isolate_state.resource_table.clone(); MinimalOp::Async( async move { let nwritten = poll_fn(|cx| { let mut resource_table = resource_table.borrow_mut(); let resource_holder = resource_table .get_mut::(rid as u32) .ok_or_else(OpError::bad_resource_id)?; resource_holder.resource.poll_write(cx, &buf.as_ref()[..]) }) .await?; // TODO(bartlomieju): this step was added during upgrade to Tokio 0.2 // and the reasons for the need to explicitly flush are not fully known. // Figure out why it's needed and preferably remove it. // https://github.com/denoland/deno/issues/3565 poll_fn(|cx| { let mut resource_table = resource_table.borrow_mut(); let resource_holder = resource_table .get_mut::(rid as u32) .ok_or_else(OpError::bad_resource_id)?; resource_holder.resource.poll_flush(cx) }) .await?; Ok(nwritten as i32) } .boxed_local(), ) } } /// Helper function for operating on a std::fs::File stored in the resource table. /// /// We store file system file resources as tokio::fs::File, so this is a little /// utility function that gets a std::fs:File when you need to do blocking /// operations. /// /// Returns ErrorKind::Busy if the resource is being used by another op. pub fn std_file_resource( resource_table: &mut ResourceTable, rid: u32, mut f: F, ) -> Result where F: FnMut( Result<&mut std::fs::File, &mut StreamResource>, ) -> Result, { // First we look up the rid in the resource table. let mut r = resource_table.get_mut::(rid); if let Some(ref mut resource_holder) = r { // Sync write only works for FsFile. It doesn't make sense to do this // for non-blocking sockets. So we error out if not FsFile. match &mut resource_holder.resource { StreamResource::FsFile(option_file_metadata) => { // The object in the resource table is a tokio::fs::File - but in // order to do a blocking write on it, we must turn it into a // std::fs::File. Hopefully this code compiles down to nothing. if let Some((tokio_file, metadata)) = option_file_metadata.take() { match tokio_file.try_into_std() { Ok(mut std_file) => { let result = f(Ok(&mut std_file)); // Turn the std_file handle back into a tokio file, put it back // in the resource table. let tokio_file = tokio::fs::File::from_std(std_file); resource_holder.resource = StreamResource::FsFile(Some((tokio_file, metadata))); // return the result. result } Err(tokio_file) => { // This function will return an error containing the file if // some operation is in-flight. resource_holder.resource = StreamResource::FsFile(Some((tokio_file, metadata))); Err(OpError::resource_unavailable()) } } } else { Err(OpError::resource_unavailable()) } } _ => f(Err(&mut resource_holder.resource)), } } else { Err(OpError::bad_resource_id()) } }