// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license. //! This module helps deno implement timers and performance APIs. use crate::hr_timer_lock::hr_timer_lock; use deno_core::error::AnyError; use deno_core::op2; use deno_core::CancelFuture; use deno_core::CancelHandle; use deno_core::OpState; use deno_core::Resource; use deno_core::ResourceId; use std::borrow::Cow; use std::cell::RefCell; use std::rc::Rc; use std::time::Duration; use std::time::Instant; pub trait TimersPermission { fn allow_hrtime(&mut self) -> bool; } pub type StartTime = Instant; // Returns a milliseconds and nanoseconds subsec // since the start time of the deno runtime. // If the High precision flag is not set, the // nanoseconds are rounded on 2ms. #[op2(fast)] pub fn op_now(state: &mut OpState, #[buffer] buf: &mut [u8]) where TP: TimersPermission + 'static, { let start_time = state.borrow::(); let elapsed = start_time.elapsed(); let seconds = elapsed.as_secs(); let mut subsec_nanos = elapsed.subsec_nanos(); // If the permission is not enabled // Round the nano result on 2 milliseconds // see: https://developer.mozilla.org/en-US/docs/Web/API/DOMHighResTimeStamp#Reduced_time_precision if !state.borrow_mut::().allow_hrtime() { let reduced_time_precision = 2_000_000; // 2ms in nanoseconds subsec_nanos -= subsec_nanos % reduced_time_precision; } if buf.len() < 8 { return; } let buf: &mut [u32] = // SAFETY: buffer is at least 8 bytes long. unsafe { std::slice::from_raw_parts_mut(buf.as_mut_ptr() as _, 2) }; buf[0] = seconds as u32; buf[1] = subsec_nanos; } pub struct TimerHandle(Rc); impl Resource for TimerHandle { fn name(&self) -> Cow { "timer".into() } fn close(self: Rc) { self.0.cancel(); } } /// Creates a [`TimerHandle`] resource that can be used to cancel invocations of /// [`op_sleep`]. #[op2(fast)] #[smi] pub fn op_timer_handle(state: &mut OpState) -> ResourceId { state .resource_table .add(TimerHandle(CancelHandle::new_rc())) } /// Bifurcate the op_sleep op into an interval one we can use for sanitization purposes. #[op2(async(lazy), fast)] pub async fn op_sleep_interval( state: Rc>, #[smi] millis: u64, #[smi] rid: ResourceId, ) -> Result { op_sleep::call(state, millis, rid).await } /// Waits asynchronously until either `millis` milliseconds have passed or the /// [`TimerHandle`] resource given by `rid` has been canceled. /// /// If the timer is canceled, this returns `false`. Otherwise, it returns `true`. #[op2(async(lazy), fast)] pub async fn op_sleep( state: Rc>, #[smi] millis: u64, #[smi] rid: ResourceId, ) -> Result { // If this timeout is scheduled for 0ms it means we want it to run at the // end of the event loop turn. Since this is a lazy op, we can just return // having already spun the event loop. if millis == 0 { return Ok(true); } // If the timer is not present in the resource table it was cancelled before // this op was polled. let Ok(handle) = state.borrow().resource_table.get::(rid) else { return Ok(false); }; // If a timer is requested with <=100ms resolution, request the high-res timer. Since the default // Windows timer period is 15ms, this means a 100ms timer could fire at 115ms (15% late). We assume that // timers longer than 100ms are a reasonable cutoff here. // The high-res timers on Windows are still limited. Unfortunately this means that our shortest duration 4ms timers // can still be 25% late, but without a more complex timer system or spinning on the clock itself, we're somewhat // bounded by the OS' scheduler itself. let _hr_timer_lock = if millis <= 100 { Some(hr_timer_lock()) } else { None }; let res = tokio::time::sleep(Duration::from_millis(millis)) .or_cancel(handle.0.clone()) .await; // We release the high-res timer lock here, either by being cancelled or resolving. Ok(res.is_ok()) }