1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-03 04:48:52 -05:00
denoland-deno/core/ops.rs
Bartek Iwańczuk f3c0f0565b
feat(core): Add ability to "ref" and "unref" pending ops (#12889)
This commit adds an ability to "ref" or "unref" pending ops.

Up to this point Deno had a notion of "async ops" and "unref async ops";
the former keep event loop alive, while the latter do not block event loop
from finishing. It was not possible to change between op types after
dispatching, one had to decide which type to use before dispatch.

Instead of storing ops in two separate "FuturesUnordered" collections,
now ops are stored in a single collection, with supplemental "HashSet"
storing ids of promises that were "unrefed".

Two APIs were added to "Deno.core":

"Deno.core.refOp(promiseId)" which allows to mark promise id
to be "refed" and keep event loop alive (the default behavior)
"Deno.core.unrefOp(promiseId)" which allows to mark promise
id as "unrefed" which won't block event loop from exiting
2021-11-25 19:49:09 +01:00

270 lines
7 KiB
Rust

// Copyright 2018-2021 the Deno authors. All rights reserved. MIT license.
use crate::error::type_error;
use crate::gotham_state::GothamState;
use crate::ops_metrics::OpsTracker;
use crate::resources::ResourceTable;
use crate::runtime::GetErrorClassFn;
use anyhow::Error;
use futures::future::maybe_done;
use futures::future::FusedFuture;
use futures::future::MaybeDone;
use futures::ready;
use futures::task::noop_waker;
use futures::Future;
use indexmap::IndexMap;
use serde::de::DeserializeOwned;
use serde::Serialize;
use std::cell::RefCell;
use std::iter::once;
use std::ops::Deref;
use std::ops::DerefMut;
use std::pin::Pin;
use std::rc::Rc;
use std::task::Context;
use std::task::Poll;
/// Wrapper around a Future, which causes that Future to be polled immediately.
/// (Background: ops are stored in a `FuturesUnordered` structure which polls
/// them, but without the `OpCall` wrapper this doesn't happen until the next
/// turn of the event loop, which is too late for certain ops.)
pub struct OpCall<T>(MaybeDone<Pin<Box<dyn Future<Output = T>>>>);
impl<T> OpCall<T> {
/// Wraps a future, and polls the inner future immediately.
/// This should be the default choice for ops.
pub fn eager(fut: impl Future<Output = T> + 'static) -> Self {
let boxed = Box::pin(fut) as Pin<Box<dyn Future<Output = T>>>;
let mut inner = maybe_done(boxed);
let waker = noop_waker();
let mut cx = Context::from_waker(&waker);
let mut pinned = Pin::new(&mut inner);
let _ = pinned.as_mut().poll(&mut cx);
Self(inner)
}
/// Wraps a future; the inner future is polled the usual way (lazily).
pub fn lazy(fut: impl Future<Output = T> + 'static) -> Self {
let boxed = Box::pin(fut) as Pin<Box<dyn Future<Output = T>>>;
let inner = maybe_done(boxed);
Self(inner)
}
/// Create a future by specifying its output. This is basically the same as
/// `async { value }` or `futures::future::ready(value)`.
pub fn ready(value: T) -> Self {
Self(MaybeDone::Done(value))
}
}
impl<T> Future for OpCall<T> {
type Output = T;
fn poll(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Self::Output> {
let inner = unsafe { &mut self.get_unchecked_mut().0 };
let mut pinned = Pin::new(inner);
ready!(pinned.as_mut().poll(cx));
Poll::Ready(pinned.as_mut().take_output().unwrap())
}
}
impl<F> FusedFuture for OpCall<F>
where
F: Future,
{
fn is_terminated(&self) -> bool {
self.0.is_terminated()
}
}
pub type PromiseId = i32;
pub type OpAsyncFuture = OpCall<(PromiseId, OpId, OpResult)>;
pub type OpFn = dyn Fn(Rc<RefCell<OpState>>, OpPayload) -> Op + 'static;
pub type OpId = usize;
pub struct OpPayload<'a, 'b, 'c> {
pub(crate) scope: &'a mut v8::HandleScope<'b>,
pub(crate) a: v8::Local<'c, v8::Value>,
pub(crate) b: v8::Local<'c, v8::Value>,
pub(crate) op_id: OpId,
pub(crate) promise_id: PromiseId,
}
impl<'a, 'b, 'c> OpPayload<'a, 'b, 'c> {
pub fn deserialize<T: DeserializeOwned, U: DeserializeOwned>(
self,
) -> Result<(T, U), Error> {
let a: T = serde_v8::from_v8(self.scope, self.a)
.map_err(Error::from)
.map_err(|e| type_error(format!("Error parsing args: {}", e)))?;
let b: U = serde_v8::from_v8(self.scope, self.b)
.map_err(Error::from)
.map_err(|e| type_error(format!("Error parsing args: {}", e)))?;
Ok((a, b))
}
}
pub enum Op {
Sync(OpResult),
Async(OpAsyncFuture),
NotFound,
}
pub enum OpResult {
Ok(serde_v8::SerializablePkg),
Err(OpError),
}
impl OpResult {
pub fn to_v8<'a>(
&self,
scope: &mut v8::HandleScope<'a>,
) -> Result<v8::Local<'a, v8::Value>, serde_v8::Error> {
match self {
Self::Ok(x) => x.to_v8(scope),
Self::Err(err) => serde_v8::to_v8(scope, err),
}
}
}
#[derive(Serialize)]
#[serde(rename_all = "camelCase")]
pub struct OpError {
#[serde(rename = "$err_class_name")]
class_name: &'static str,
message: String,
code: Option<&'static str>,
}
pub fn serialize_op_result<R: Serialize + 'static>(
result: Result<R, Error>,
state: Rc<RefCell<OpState>>,
) -> OpResult {
match result {
Ok(v) => OpResult::Ok(v.into()),
Err(err) => OpResult::Err(OpError {
class_name: (state.borrow().get_error_class_fn)(&err),
message: err.to_string(),
code: crate::error_codes::get_error_code(&err),
}),
}
}
/// Maintains the resources and ops inside a JS runtime.
pub struct OpState {
pub resource_table: ResourceTable,
pub op_table: OpTable,
pub get_error_class_fn: GetErrorClassFn,
pub(crate) tracker: OpsTracker,
gotham_state: GothamState,
}
impl OpState {
pub(crate) fn new() -> OpState {
OpState {
resource_table: Default::default(),
op_table: OpTable::default(),
get_error_class_fn: &|_| "Error",
tracker: OpsTracker {
ops: RefCell::new(Vec::with_capacity(256)),
},
gotham_state: Default::default(),
}
}
}
impl Deref for OpState {
type Target = GothamState;
fn deref(&self) -> &Self::Target {
&self.gotham_state
}
}
impl DerefMut for OpState {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.gotham_state
}
}
/// Collection for storing registered ops. The special 'get_op_catalog'
/// op with OpId `0` is automatically added when the OpTable is created.
pub struct OpTable(IndexMap<String, Rc<OpFn>>);
impl OpTable {
pub fn register_op<F>(&mut self, name: &str, op_fn: F) -> OpId
where
F: Fn(Rc<RefCell<OpState>>, OpPayload) -> Op + 'static,
{
let (op_id, prev) = self.0.insert_full(name.to_owned(), Rc::new(op_fn));
assert!(prev.is_none());
op_id
}
pub fn op_entries(state: Rc<RefCell<OpState>>) -> Vec<(String, OpId)> {
state.borrow().op_table.0.keys().cloned().zip(0..).collect()
}
pub fn route_op(
op_id: OpId,
state: Rc<RefCell<OpState>>,
payload: OpPayload,
) -> Op {
let op_fn = state
.borrow()
.op_table
.0
.get_index(op_id)
.map(|(_, op_fn)| op_fn.clone());
match op_fn {
Some(f) => (f)(state, payload),
None => Op::NotFound,
}
}
}
impl Default for OpTable {
fn default() -> Self {
fn dummy(_state: Rc<RefCell<OpState>>, _p: OpPayload) -> Op {
unreachable!()
}
Self(once(("ops".to_owned(), Rc::new(dummy) as _)).collect())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn op_table() {
let state = Rc::new(RefCell::new(OpState::new()));
let foo_id;
let bar_id;
{
let op_table = &mut state.borrow_mut().op_table;
foo_id =
op_table.register_op("foo", |_, _| Op::Sync(OpResult::Ok(321.into())));
assert_eq!(foo_id, 1);
bar_id =
op_table.register_op("bar", |_, _| Op::Sync(OpResult::Ok(123.into())));
assert_eq!(bar_id, 2);
}
let mut catalog_entries = OpTable::op_entries(state);
catalog_entries.sort_by(|(_, id1), (_, id2)| id1.partial_cmp(id2).unwrap());
assert_eq!(
catalog_entries,
vec![
("ops".to_owned(), 0),
("foo".to_owned(), 1),
("bar".to_owned(), 2)
]
);
}
}