1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-11-24 15:19:26 -05:00
denoland-deno/ext/http/network_buffered_stream.rs
2023-06-26 09:10:27 -04:00

308 lines
9.8 KiB
Rust

// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license.
use bytes::Bytes;
use deno_core::futures::future::poll_fn;
use deno_core::futures::ready;
use std::io;
use std::mem::MaybeUninit;
use std::pin::Pin;
use std::task::Poll;
use tokio::io::AsyncRead;
use tokio::io::AsyncWrite;
use tokio::io::ReadBuf;
const MAX_PREFIX_SIZE: usize = 256;
/// [`NetworkStreamPrefixCheck`] is used to differentiate a stream between two different modes, depending
/// on whether the first bytes match a given prefix (or not).
///
/// IMPORTANT: This stream makes the assumption that the incoming bytes will never partially match the prefix
/// and then "hang" waiting for a write. For this code not to hang, the incoming stream must:
///
/// * match the prefix fully and then request writes at a later time
/// * not match the prefix, and then request writes after writing a byte that causes the prefix not to match
/// * not match the prefix and then close
pub struct NetworkStreamPrefixCheck<S: AsyncRead + Unpin> {
buffer: [MaybeUninit<u8>; MAX_PREFIX_SIZE * 2],
io: S,
prefix: &'static [u8],
}
impl<S: AsyncRead + Unpin> NetworkStreamPrefixCheck<S> {
pub fn new(io: S, prefix: &'static [u8]) -> Self {
debug_assert!(prefix.len() < MAX_PREFIX_SIZE);
Self {
io,
prefix,
buffer: [MaybeUninit::<u8>::uninit(); MAX_PREFIX_SIZE * 2],
}
}
// Returns a [`NetworkBufferedStream`] and a flag determining if we matched a prefix, rewound with the bytes we read to determine what
// type of stream this is.
pub async fn match_prefix(
self,
) -> io::Result<(bool, NetworkBufferedStream<S>)> {
let mut buffer = self.buffer;
let mut readbuf = ReadBuf::uninit(&mut buffer);
let mut io = self.io;
let prefix = self.prefix;
loop {
enum State {
Unknown,
Matched,
NotMatched,
}
let state = poll_fn(|cx| {
let filled_len = readbuf.filled().len();
let res = ready!(Pin::new(&mut io).poll_read(cx, &mut readbuf));
if let Err(e) = res {
return Poll::Ready(Err(e));
}
let filled = readbuf.filled();
let new_len = filled.len();
if new_len == filled_len {
// Empty read, no match
return Poll::Ready(Ok(State::NotMatched));
} else if new_len < prefix.len() {
// Read less than prefix, make sure we're still matching the prefix (early exit)
if !prefix.starts_with(filled) {
return Poll::Ready(Ok(State::NotMatched));
}
} else if new_len >= prefix.len() {
// We have enough to determine
if filled.starts_with(prefix) {
return Poll::Ready(Ok(State::Matched));
} else {
return Poll::Ready(Ok(State::NotMatched));
}
}
Poll::Ready(Ok(State::Unknown))
})
.await?;
match state {
State::Unknown => continue,
State::Matched => {
let initialized_len = readbuf.filled().len();
return Ok((
true,
NetworkBufferedStream::new(io, buffer, initialized_len),
));
}
State::NotMatched => {
let initialized_len = readbuf.filled().len();
return Ok((
false,
NetworkBufferedStream::new(io, buffer, initialized_len),
));
}
}
}
}
}
/// [`NetworkBufferedStream`] is a stream that allows us to efficiently search for an incoming prefix in another stream without
/// reading too much data. If the stream detects that the prefix has definitely been matched, or definitely not been matched,
/// it returns a flag and a rewound stream allowing later code to take another pass at that data.
///
/// [`NetworkBufferedStream`] is a custom wrapper around an asynchronous stream that implements AsyncRead
/// and AsyncWrite. It is designed to provide additional buffering functionality to the wrapped stream.
/// The primary use case for this struct is when you want to read a small amount of data from the beginning
/// of a stream, process it, and then continue reading the rest of the stream.
///
/// While the bounds for the class are limited to [`AsyncRead`] for easier testing, it is far more useful to use
/// with interactive duplex streams that have a prefix determining which mode to operate in. For example, this class
/// can determine whether an incoming stream is HTTP/2 or non-HTTP/2 and allow downstream code to make that determination.
pub struct NetworkBufferedStream<S: AsyncRead + Unpin> {
prefix: [MaybeUninit<u8>; MAX_PREFIX_SIZE * 2],
io: S,
initialized_len: usize,
prefix_offset: usize,
/// Have the prefix bytes been completely read out?
prefix_read: bool,
}
impl<S: AsyncRead + Unpin> NetworkBufferedStream<S> {
/// This constructor is private, because passing partially initialized data between the [`NetworkStreamPrefixCheck`] and
/// this [`NetworkBufferedStream`] is challenging without the introduction of extra copies.
fn new(
io: S,
prefix: [MaybeUninit<u8>; MAX_PREFIX_SIZE * 2],
initialized_len: usize,
) -> Self {
Self {
io,
initialized_len,
prefix_offset: 0,
prefix,
prefix_read: false,
}
}
fn current_slice(&self) -> &[u8] {
// We trust that these bytes are initialized properly
let slice = &self.prefix[self.prefix_offset..self.initialized_len];
// This guarantee comes from slice_assume_init_ref (we can't use that until it's stable)
// SAFETY: casting `slice` to a `*const [T]` is safe since the caller guarantees that
// `slice` is initialized, and `MaybeUninit` is guaranteed to have the same layout as `T`.
// The pointer obtained is valid since it refers to memory owned by `slice` which is a
// reference and thus guaranteed to be valid for reads.
unsafe { &*(slice as *const [_] as *const [u8]) as _ }
}
pub fn into_inner(self) -> (S, Bytes) {
let bytes = Bytes::copy_from_slice(self.current_slice());
(self.io, bytes)
}
}
impl<S: AsyncRead + Unpin> AsyncRead for NetworkBufferedStream<S> {
// From hyper's Rewind (https://github.com/hyperium/hyper), MIT License, Copyright (c) Sean McArthur
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<std::io::Result<()>> {
if !self.prefix_read {
let prefix = self.current_slice();
// If there are no remaining bytes, let the bytes get dropped.
if !prefix.is_empty() {
let copy_len = std::cmp::min(prefix.len(), buf.remaining());
buf.put_slice(&prefix[..copy_len]);
self.prefix_offset += copy_len;
return Poll::Ready(Ok(()));
} else {
self.prefix_read = true;
}
}
Pin::new(&mut self.io).poll_read(cx, buf)
}
}
impl<S: AsyncRead + AsyncWrite + Unpin> AsyncWrite
for NetworkBufferedStream<S>
{
fn poll_write(
mut self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &[u8],
) -> std::task::Poll<Result<usize, std::io::Error>> {
Pin::new(&mut self.io).poll_write(cx, buf)
}
fn poll_flush(
mut self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Result<(), std::io::Error>> {
Pin::new(&mut self.io).poll_flush(cx)
}
fn poll_shutdown(
mut self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Result<(), std::io::Error>> {
Pin::new(&mut self.io).poll_shutdown(cx)
}
fn is_write_vectored(&self) -> bool {
self.io.is_write_vectored()
}
fn poll_write_vectored(
mut self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
bufs: &[std::io::IoSlice<'_>],
) -> std::task::Poll<Result<usize, std::io::Error>> {
Pin::new(&mut self.io).poll_write_vectored(cx, bufs)
}
}
#[cfg(test)]
mod tests {
use super::*;
use tokio::io::AsyncReadExt;
struct YieldsOneByteAtATime(&'static [u8]);
impl AsyncRead for YieldsOneByteAtATime {
fn poll_read(
mut self: Pin<&mut Self>,
_cx: &mut std::task::Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
if let Some((head, tail)) = self.as_mut().0.split_first() {
self.as_mut().0 = tail;
let dest = buf.initialize_unfilled_to(1);
dest[0] = *head;
buf.advance(1);
}
Poll::Ready(Ok(()))
}
}
async fn test(
io: impl AsyncRead + Unpin,
prefix: &'static [u8],
expect_match: bool,
expect_string: &'static str,
) -> io::Result<()> {
let (matches, mut io) = NetworkStreamPrefixCheck::new(io, prefix)
.match_prefix()
.await?;
assert_eq!(matches, expect_match);
let mut s = String::new();
Pin::new(&mut io).read_to_string(&mut s).await?;
assert_eq!(s, expect_string);
Ok(())
}
#[tokio::test]
async fn matches_prefix_simple() -> io::Result<()> {
let buf = b"prefix match".as_slice();
test(buf, b"prefix", true, "prefix match").await
}
#[tokio::test]
async fn matches_prefix_exact() -> io::Result<()> {
let buf = b"prefix".as_slice();
test(buf, b"prefix", true, "prefix").await
}
#[tokio::test]
async fn not_matches_prefix_simple() -> io::Result<()> {
let buf = b"prefill match".as_slice();
test(buf, b"prefix", false, "prefill match").await
}
#[tokio::test]
async fn not_matches_prefix_short() -> io::Result<()> {
let buf = b"nope".as_slice();
test(buf, b"prefix", false, "nope").await
}
#[tokio::test]
async fn not_matches_prefix_empty() -> io::Result<()> {
let buf = b"".as_slice();
test(buf, b"prefix", false, "").await
}
#[tokio::test]
async fn matches_one_byte_at_a_time() -> io::Result<()> {
let buf = YieldsOneByteAtATime(b"prefix");
test(buf, b"prefix", true, "prefix").await
}
#[tokio::test]
async fn not_matches_one_byte_at_a_time() -> io::Result<()> {
let buf = YieldsOneByteAtATime(b"prefill");
test(buf, b"prefix", false, "prefill").await
}
}