1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-18 03:44:05 -05:00
denoland-deno/cli/tsc/dts/lib.deno.unstable.d.ts

1965 lines
66 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license.
/// <reference no-default-lib="true" />
/// <reference lib="deno.ns" />
/// <reference lib="deno.broadcast_channel" />
declare namespace Deno {
export {}; // stop default export type behavior
/** **UNSTABLE**: New API, yet to be vetted.
*
* Retrieve the process umask. If `mask` is provided, sets the process umask.
* This call always returns what the umask was before the call.
*
* ```ts
* console.log(Deno.umask()); // e.g. 18 (0o022)
* const prevUmaskValue = Deno.umask(0o077); // e.g. 18 (0o022)
* console.log(Deno.umask()); // e.g. 63 (0o077)
* ```
*
* This API is under consideration to determine if permissions are required to
* call it.
*
* *Note*: This API is not implemented on Windows
*
* @category File System
*/
export function umask(mask?: number): number;
/** **UNSTABLE**: New API, yet to be vetted.
*
* All plain number types for interfacing with foreign functions.
*
* @category FFI
*/
type NativeNumberType =
| "u8"
| "i8"
| "u16"
| "i16"
| "u32"
| "i32"
| "f32"
| "f64";
/** **UNSTABLE**: New API, yet to be vetted.
*
* All BigInt number types for interfacing with foreign functions.
*
* @category FFI
*/
type NativeBigIntType =
| "u64"
| "i64"
| "usize"
| "isize";
/** **UNSTABLE**: New API, yet to be vetted.
*
* The native boolean type for interfacing to foreign functions.
*
* @category FFI
*/
type NativeBooleanType = "bool";
/** **UNSTABLE**: New API, yet to be vetted.
*
* The native pointer type for interfacing to foreign functions.
*
* @category FFI
*/
type NativePointerType = "pointer";
/** **UNSTABLE**: New API, yet to be vetted.
*
* The native buffer type for interfacing to foreign functions.
*
* @category FFI
*/
type NativeBufferType = "buffer";
/** **UNSTABLE**: New API, yet to be vetted.
*
* The native function type for interfacing with foreign functions.
*
* @category FFI
*/
type NativeFunctionType = "function";
/** **UNSTABLE**: New API, yet to be vetted.
*
* The native void type for interfacing with foreign functions.
*
* @category FFI
*/
type NativeVoidType = "void";
/** **UNSTABLE**: New API, yet to be vetted.
*
* The native struct type for interfacing with foreign functions.
*
* @category FFI
*/
type NativeStructType = { readonly struct: readonly NativeType[] };
/** **UNSTABLE**: New API, yet to be vetted.
*
* All supported types for interfacing with foreign functions.
*
* @category FFI
*/
export type NativeType =
| NativeNumberType
| NativeBigIntType
| NativeBooleanType
| NativePointerType
| NativeBufferType
| NativeFunctionType
| NativeStructType;
/** **UNSTABLE**: New API, yet to be vetted.
*
* @category FFI
*/
export type NativeResultType = NativeType | NativeVoidType;
/** **UNSTABLE**: New API, yet to be vetted.
*
* A utility type conversion for foreign symbol parameters and unsafe callback
* return types.
*
* @category FFI
*/
type ToNativeTypeMap =
& Record<NativeNumberType, number>
& Record<NativeBigIntType, number | bigint>
& Record<NativeBooleanType, boolean>
& Record<NativePointerType, PointerValue>
& Record<NativeFunctionType, PointerValue>
& Record<NativeBufferType, BufferSource | null>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Type conversion for foreign symbol parameters and unsafe callback return
* types.
*
* @category FFI
*/
type ToNativeType<T extends NativeType = NativeType> = T extends
NativeStructType ? BufferSource
: ToNativeTypeMap[Exclude<T, NativeStructType>];
/** **UNSTABLE**: New API, yet to be vetted.
*
* A utility type for conversion for unsafe callback return types.
*
* @category FFI
*/
type ToNativeResultTypeMap = ToNativeTypeMap & Record<NativeVoidType, void>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Type conversion for unsafe callback return types.
*
* @category FFI
*/
type ToNativeResultType<T extends NativeResultType = NativeResultType> =
T extends NativeStructType ? BufferSource
: ToNativeResultTypeMap[Exclude<T, NativeStructType>];
/** **UNSTABLE**: New API, yet to be vetted.
*
* A utility type for conversion of parameter types of foreign functions.
*
* @category FFI
*/
type ToNativeParameterTypes<T extends readonly NativeType[]> =
//
[(T[number])[]] extends [T] ? ToNativeType<T[number]>[]
: [readonly (T[number])[]] extends [T]
? readonly ToNativeType<T[number]>[]
: T extends readonly [...NativeType[]] ? {
[K in keyof T]: ToNativeType<T[K]>;
}
: never;
/** **UNSTABLE**: New API, yet to be vetted.
*
* A utility type for conversion of foreign symbol return types and unsafe
* callback parameters.
*
* @category FFI
*/
type FromNativeTypeMap =
& Record<NativeNumberType, number>
& Record<NativeBigIntType, number | bigint>
& Record<NativeBooleanType, boolean>
& Record<NativePointerType, PointerValue>
& Record<NativeBufferType, PointerValue>
& Record<NativeFunctionType, PointerValue>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Type conversion for foreign symbol return types and unsafe callback
* parameters.
*
* @category FFI
*/
type FromNativeType<T extends NativeType = NativeType> = T extends
NativeStructType ? Uint8Array
: FromNativeTypeMap[Exclude<T, NativeStructType>];
/** **UNSTABLE**: New API, yet to be vetted.
*
* A utility type for conversion for foreign symbol return types.
*
* @category FFI
*/
type FromNativeResultTypeMap =
& FromNativeTypeMap
& Record<NativeVoidType, void>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Type conversion for foreign symbol return types.
*
* @category FFI
*/
type FromNativeResultType<T extends NativeResultType = NativeResultType> =
T extends NativeStructType ? Uint8Array
: FromNativeResultTypeMap[Exclude<T, NativeStructType>];
/** **UNSTABLE**: New API, yet to be vetted.
*
* @category FFI
*/
type FromNativeParameterTypes<
T extends readonly NativeType[],
> =
//
[(T[number])[]] extends [T] ? FromNativeType<T[number]>[]
: [readonly (T[number])[]] extends [T]
? readonly FromNativeType<T[number]>[]
: T extends readonly [...NativeType[]] ? {
[K in keyof T]: FromNativeType<T[K]>;
}
: never;
/** **UNSTABLE**: New API, yet to be vetted.
*
* The interface for a foreign function as defined by its parameter and result
* types.
*
* @category FFI
*/
export interface ForeignFunction<
Parameters extends readonly NativeType[] = readonly NativeType[],
Result extends NativeResultType = NativeResultType,
NonBlocking extends boolean = boolean,
> {
/** Name of the symbol.
*
* Defaults to the key name in symbols object. */
name?: string;
/** The parameters of the foreign function. */
parameters: Parameters;
/** The result (return value) of the foreign function. */
result: Result;
/** When `true`, function calls will run on a dedicated blocking thread and
* will return a `Promise` resolving to the `result`. */
nonblocking?: NonBlocking;
/** When `true`, function calls can safely callback into JavaScript or
* trigger a garbage collection event.
*
* @default {false} */
callback?: boolean;
/** When `true`, dlopen will not fail if the symbol is not found.
* Instead, the symbol will be set to `null`.
*
* @default {false} */
optional?: boolean;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* @category FFI
*/
export interface ForeignStatic<Type extends NativeType = NativeType> {
/** Name of the symbol, defaults to the key name in symbols object. */
name?: string;
/** The type of the foreign static value. */
type: Type;
/** When `true`, dlopen will not fail if the symbol is not found.
* Instead, the symbol will be set to `null`.
*
* @default {false} */
optional?: boolean;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* A foreign library interface descriptor.
*
* @category FFI
*/
export interface ForeignLibraryInterface {
[name: string]: ForeignFunction | ForeignStatic;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* A utility type that infers a foreign symbol.
*
* @category FFI
*/
type StaticForeignSymbol<T extends ForeignFunction | ForeignStatic> =
T extends ForeignFunction ? FromForeignFunction<T>
: T extends ForeignStatic ? FromNativeType<T["type"]>
: never;
/** **UNSTABLE**: New API, yet to be vetted.
*
* @category FFI
*/
type FromForeignFunction<T extends ForeignFunction> = T["parameters"] extends
readonly [] ? () => StaticForeignSymbolReturnType<T>
: (
...args: ToNativeParameterTypes<T["parameters"]>
) => StaticForeignSymbolReturnType<T>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* @category FFI
*/
type StaticForeignSymbolReturnType<T extends ForeignFunction> =
ConditionalAsync<T["nonblocking"], FromNativeResultType<T["result"]>>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* @category FFI
*/
type ConditionalAsync<IsAsync extends boolean | undefined, T> =
IsAsync extends true ? Promise<T> : T;
/** **UNSTABLE**: New API, yet to be vetted.
*
* A utility type that infers a foreign library interface.
*
* @category FFI
*/
type StaticForeignLibraryInterface<T extends ForeignLibraryInterface> = {
[K in keyof T]: T[K]["optional"] extends true
? StaticForeignSymbol<T[K]> | null
: StaticForeignSymbol<T[K]>;
};
/** @category FFI */
const brand: unique symbol;
/** @category FFI */
type PointerObject = { [brand]: unknown };
/** **UNSTABLE**: New API, yet to be vetted.
*
* Pointer type depends on the architecture and actual pointer value.
*
* On a 32 bit host system all pointer values are plain numbers. On a 64 bit
* host system pointer values are represented as numbers if the value is below
* `Number.MAX_SAFE_INTEGER`, otherwise they are provided as bigints.
*
* @category FFI
*/
export type PointerValue = null | PointerObject;
/** **UNSTABLE**: New API, yet to be vetted.
*
* An unsafe pointer to a memory location for passing and returning pointers
* to and from the FFI.
*
* @category FFI
*/
export class UnsafePointer {
/** Create a pointer from a numeric value. This one is <i>really</i> dangerous! */
static create(value: number | bigint): PointerValue;
/** Returns `true` if the two pointers point to the same address. */
static equals(a: PointerValue, b: PointerValue): boolean;
/** Return the direct memory pointer to the typed array in memory. */
static of(value: Deno.UnsafeCallback | BufferSource): PointerValue;
/** Return a new pointer offset from the original by `offset` bytes. */
static offset(
value: NonNullable<PointerValue>,
offset: number,
): PointerValue;
/** Get the numeric value of a pointer */
static value(value: PointerValue): number | bigint;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* An unsafe pointer view to a memory location as specified by the `pointer`
* value. The `UnsafePointerView` API follows the standard built in interface
* {@linkcode DataView} for accessing the underlying types at an memory
* location (numbers, strings and raw bytes).
*
* @category FFI
*/
export class UnsafePointerView {
constructor(pointer: NonNullable<PointerValue>);
pointer: NonNullable<PointerValue>;
/** Gets a boolean at the specified byte offset from the pointer. */
getBool(offset?: number): boolean;
/** Gets an unsigned 8-bit integer at the specified byte offset from the
* pointer. */
getUint8(offset?: number): number;
/** Gets a signed 8-bit integer at the specified byte offset from the
* pointer. */
getInt8(offset?: number): number;
/** Gets an unsigned 16-bit integer at the specified byte offset from the
* pointer. */
getUint16(offset?: number): number;
/** Gets a signed 16-bit integer at the specified byte offset from the
* pointer. */
getInt16(offset?: number): number;
/** Gets an unsigned 32-bit integer at the specified byte offset from the
* pointer. */
getUint32(offset?: number): number;
/** Gets a signed 32-bit integer at the specified byte offset from the
* pointer. */
getInt32(offset?: number): number;
/** Gets an unsigned 64-bit integer at the specified byte offset from the
* pointer. */
getBigUint64(offset?: number): number | bigint;
/** Gets a signed 64-bit integer at the specified byte offset from the
* pointer. */
getBigInt64(offset?: number): number | bigint;
/** Gets a signed 32-bit float at the specified byte offset from the
* pointer. */
getFloat32(offset?: number): number;
/** Gets a signed 64-bit float at the specified byte offset from the
* pointer. */
getFloat64(offset?: number): number;
/** Gets a pointer at the specified byte offset from the pointer */
getPointer(offset?: number): PointerValue;
/** Gets a C string (`null` terminated string) at the specified byte offset
* from the pointer. */
getCString(offset?: number): string;
/** Gets a C string (`null` terminated string) at the specified byte offset
* from the specified pointer. */
static getCString(
pointer: NonNullable<PointerValue>,
offset?: number,
): string;
/** Gets an `ArrayBuffer` of length `byteLength` at the specified byte
* offset from the pointer. */
getArrayBuffer(byteLength: number, offset?: number): ArrayBuffer;
/** Gets an `ArrayBuffer` of length `byteLength` at the specified byte
* offset from the specified pointer. */
static getArrayBuffer(
pointer: NonNullable<PointerValue>,
byteLength: number,
offset?: number,
): ArrayBuffer;
/** Copies the memory of the pointer into a typed array.
*
* Length is determined from the typed array's `byteLength`.
*
* Also takes optional byte offset from the pointer. */
copyInto(destination: BufferSource, offset?: number): void;
/** Copies the memory of the specified pointer into a typed array.
*
* Length is determined from the typed array's `byteLength`.
*
* Also takes optional byte offset from the pointer. */
static copyInto(
pointer: NonNullable<PointerValue>,
destination: BufferSource,
offset?: number,
): void;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* An unsafe pointer to a function, for calling functions that are not present
* as symbols.
*
* @category FFI
*/
export class UnsafeFnPointer<Fn extends ForeignFunction> {
/** The pointer to the function. */
pointer: NonNullable<PointerValue>;
/** The definition of the function. */
definition: Fn;
constructor(pointer: NonNullable<PointerValue>, definition: Const<Fn>);
/** Call the foreign function. */
call: FromForeignFunction<Fn>;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* Definition of a unsafe callback function.
*
* @category FFI
*/
export interface UnsafeCallbackDefinition<
Parameters extends readonly NativeType[] = readonly NativeType[],
Result extends NativeResultType = NativeResultType,
> {
/** The parameters of the callbacks. */
parameters: Parameters;
/** The current result of the callback. */
result: Result;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* An unsafe callback function.
*
* @category FFI
*/
type UnsafeCallbackFunction<
Parameters extends readonly NativeType[] = readonly NativeType[],
Result extends NativeResultType = NativeResultType,
> = Parameters extends readonly [] ? () => ToNativeResultType<Result> : (
...args: FromNativeParameterTypes<Parameters>
) => ToNativeResultType<Result>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* An unsafe function pointer for passing JavaScript functions as C function
* pointers to foreign function calls.
*
* The function pointer remains valid until the `close()` method is called.
*
* All `UnsafeCallback` are always thread safe in that they can be called from
* foreign threads without crashing. However, they do not wake up the Deno event
* loop by default.
*
* If a callback is to be called from foreign threads, use the `threadSafe()`
* static constructor or explicitly call `ref()` to have the callback wake up
* the Deno event loop when called from foreign threads. This also stops
* Deno's process from exiting while the callback still exists and is not
* unref'ed.
*
* Use `deref()` to then allow Deno's process to exit. Calling `deref()` on
* a ref'ed callback does not stop it from waking up the Deno event loop when
* called from foreign threads.
*
* @category FFI
*/
export class UnsafeCallback<
Definition extends UnsafeCallbackDefinition = UnsafeCallbackDefinition,
> {
constructor(
definition: Const<Definition>,
callback: UnsafeCallbackFunction<
Definition["parameters"],
Definition["result"]
>,
);
/** The pointer to the unsafe callback. */
readonly pointer: NonNullable<PointerValue>;
/** The definition of the unsafe callback. */
readonly definition: Definition;
/** The callback function. */
readonly callback: UnsafeCallbackFunction<
Definition["parameters"],
Definition["result"]
>;
/**
* Creates an {@linkcode UnsafeCallback} and calls `ref()` once to allow it to
* wake up the Deno event loop when called from foreign threads.
*
* This also stops Deno's process from exiting while the callback still
* exists and is not unref'ed.
*/
static threadSafe<
Definition extends UnsafeCallbackDefinition = UnsafeCallbackDefinition,
>(
definition: Const<Definition>,
callback: UnsafeCallbackFunction<
Definition["parameters"],
Definition["result"]
>,
): UnsafeCallback<Definition>;
/**
* Increments the callback's reference counting and returns the new
* reference count.
*
* After `ref()` has been called, the callback always wakes up the
* Deno event loop when called from foreign threads.
*
* If the callback's reference count is non-zero, it keeps Deno's
* process from exiting.
*/
ref(): number;
/**
* Decrements the callback's reference counting and returns the new
* reference count.
*
* Calling `unref()` does not stop a callback from waking up the Deno
* event loop when called from foreign threads.
*
* If the callback's reference counter is zero, it no longer keeps
* Deno's process from exiting.
*/
unref(): number;
/**
* Removes the C function pointer associated with this instance.
*
* Continuing to use the instance or the C function pointer after closing
* the `UnsafeCallback` will lead to errors and crashes.
*
* Calling this method sets the callback's reference counting to zero,
* stops the callback from waking up the Deno event loop when called from
* foreign threads and no longer keeps Deno's process from exiting.
*/
close(): void;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* A dynamic library resource. Use {@linkcode Deno.dlopen} to load a dynamic
* library and return this interface.
*
* @category FFI
*/
export interface DynamicLibrary<S extends ForeignLibraryInterface> {
/** All of the registered library along with functions for calling them. */
symbols: StaticForeignLibraryInterface<S>;
/** Removes the pointers associated with the library symbols.
*
* Continuing to use symbols that are part of the library will lead to
* errors and crashes.
*
* Calling this method will also immediately set any references to zero and
* will no longer keep Deno's process from exiting.
*/
close(): void;
}
/**
* This magic code used to implement better type hints for {@linkcode Deno.dlopen}
*
* @category FFI
*/
type Cast<A, B> = A extends B ? A : B;
/** @category FFI */
type Const<T> = Cast<
T,
| (T extends string | number | bigint | boolean ? T : never)
| { [K in keyof T]: Const<T[K]> }
| []
>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Opens an external dynamic library and registers symbols, making foreign
* functions available to be called.
*
* Requires `allow-ffi` permission. Loading foreign dynamic libraries can in
* theory bypass all of the sandbox permissions. While it is a separate
* permission users should acknowledge in practice that is effectively the
* same as running with the `allow-all` permission.
*
* @example Given a C library which exports a foreign function named `add()`
*
* ```ts
* // Determine library extension based on
* // your OS.
* let libSuffix = "";
* switch (Deno.build.os) {
* case "windows":
* libSuffix = "dll";
* break;
* case "darwin":
* libSuffix = "dylib";
* break;
* default:
* libSuffix = "so";
* break;
* }
*
* const libName = `./libadd.${libSuffix}`;
* // Open library and define exported symbols
* const dylib = Deno.dlopen(
* libName,
* {
* "add": { parameters: ["isize", "isize"], result: "isize" },
* } as const,
* );
*
* // Call the symbol `add`
* const result = dylib.symbols.add(35, 34); // 69
*
* console.log(`Result from external addition of 35 and 34: ${result}`);
* ```
*
* @tags allow-ffi
* @category FFI
*/
export function dlopen<S extends ForeignLibraryInterface>(
filename: string | URL,
symbols: Const<S>,
): DynamicLibrary<S>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* These are unstable options which can be used with {@linkcode Deno.run}.
*
* @category Sub Process
*/
interface UnstableRunOptions extends RunOptions {
/** If `true`, clears the environment variables before executing the
* sub-process.
*
* @default {false} */
clearEnv?: boolean;
/** For POSIX systems, sets the group ID for the sub process. */
gid?: number;
/** For POSIX systems, sets the user ID for the sub process. */
uid?: number;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* Spawns new subprocess. RunOptions must contain at a minimum the `opt.cmd`,
* an array of program arguments, the first of which is the binary.
*
* ```ts
* const p = Deno.run({
* cmd: ["curl", "https://example.com"],
* });
* const status = await p.status();
* ```
*
* Subprocess uses same working directory as parent process unless `opt.cwd`
* is specified.
*
* Environmental variables from parent process can be cleared using `opt.clearEnv`.
* Doesn't guarantee that only `opt.env` variables are present,
* as the OS may set environmental variables for processes.
*
* Environmental variables for subprocess can be specified using `opt.env`
* mapping.
*
* `opt.uid` sets the child processs user ID. This translates to a setuid call
* in the child process. Failure in the setuid call will cause the spawn to fail.
*
* `opt.gid` is similar to `opt.uid`, but sets the group ID of the child process.
* This has the same semantics as the uid field.
*
* By default subprocess inherits stdio of parent process. To change
* this this, `opt.stdin`, `opt.stdout`, and `opt.stderr` can be set
* independently to a resource ID (_rid_) of an open file, `"inherit"`,
* `"piped"`, or `"null"`:
*
* - _number_: the resource ID of an open file/resource. This allows you to
* read or write to a file.
* - `"inherit"`: The default if unspecified. The subprocess inherits from the
* parent.
* - `"piped"`: A new pipe should be arranged to connect the parent and child
* sub-process.
* - `"null"`: This stream will be ignored. This is the equivalent of attaching
* the stream to `/dev/null`.
*
* Details of the spawned process are returned as an instance of
* {@linkcode Deno.Process}.
*
* Requires `allow-run` permission.
*
* @tags allow-run
* @category Sub Process
*/
export function run<T extends UnstableRunOptions = UnstableRunOptions>(
opt: T,
): Process<T>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* A custom `HttpClient` for use with {@linkcode fetch} function. This is
* designed to allow custom certificates or proxies to be used with `fetch()`.
*
* @example ```ts
* const caCert = await Deno.readTextFile("./ca.pem");
* const client = Deno.createHttpClient({ caCerts: [ caCert ] });
* const req = await fetch("https://myserver.com", { client });
* ```
*
* @category Fetch API
*/
export interface HttpClient {
/** The resource ID associated with the client. */
rid: number;
/** Close the HTTP client. */
close(): void;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* The options used when creating a {@linkcode Deno.HttpClient}.
*
* @category Fetch API
*/
export interface CreateHttpClientOptions {
/** A list of root certificates that will be used in addition to the
* default root certificates to verify the peer's certificate.
*
* Must be in PEM format. */
caCerts?: string[];
/** A HTTP proxy to use for new connections. */
proxy?: Proxy;
/** PEM formatted client certificate chain. */
certChain?: string;
/** PEM formatted (RSA or PKCS8) private key of client certificate. */
privateKey?: string;
/** Sets the maximum numer of idle connections per host allowed in the pool. */
poolMaxIdlePerHost?: number;
/** Set an optional timeout for idle sockets being kept-alive.
* Set to false to disable the timeout. */
poolIdleTimeout?: number | false;
/**
* Whether HTTP/1.1 is allowed or not.
*
* @default {true}
*/
http1?: boolean;
/** Whether HTTP/2 is allowed or not.
*
* @default {true}
*/
http2?: boolean;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* The definition of a proxy when specifying
* {@linkcode Deno.CreateHttpClientOptions}.
*
* @category Fetch API
*/
export interface Proxy {
/** The string URL of the proxy server to use. */
url: string;
/** The basic auth credentials to be used against the proxy server. */
basicAuth?: BasicAuth;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* Basic authentication credentials to be used with a {@linkcode Deno.Proxy}
* server when specifying {@linkcode Deno.CreateHttpClientOptions}.
*
* @category Fetch API
*/
export interface BasicAuth {
/** The username to be used against the proxy server. */
username: string;
/** The password to be used against the proxy server. */
password: string;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* Create a custom HttpClient for to use with {@linkcode fetch}. This is an
* extension of the web platform Fetch API which allows Deno to use custom
* TLS certificates and connect via a proxy while using `fetch()`.
*
* @example ```ts
* const caCert = await Deno.readTextFile("./ca.pem");
* const client = Deno.createHttpClient({ caCerts: [ caCert ] });
* const response = await fetch("https://myserver.com", { client });
* ```
*
* @example ```ts
* const client = Deno.createHttpClient({
* proxy: { url: "http://myproxy.com:8080" }
* });
* const response = await fetch("https://myserver.com", { client });
* ```
*
* @category Fetch API
*/
export function createHttpClient(
options: CreateHttpClientOptions,
): HttpClient;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Represents membership of a IPv4 multicast group.
*
* @category Network
*/
interface MulticastV4Membership {
/** Leaves the multicast group. */
leave: () => Promise<void>;
/** Sets the multicast loopback option. If enabled, multicast packets will be looped back to the local socket. */
setLoopback: (loopback: boolean) => Promise<void>;
/** Sets the time-to-live of outgoing multicast packets for this socket. */
setTTL: (ttl: number) => Promise<void>;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* Represents membership of a IPv6 multicast group.
*
* @category Network
*/
interface MulticastV6Membership {
/** Leaves the multicast group. */
leave: () => Promise<void>;
/** Sets the multicast loopback option. If enabled, multicast packets will be looped back to the local socket. */
setLoopback: (loopback: boolean) => Promise<void>;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* A generic transport listener for message-oriented protocols.
*
* @category Network
*/
export interface DatagramConn extends AsyncIterable<[Uint8Array, Addr]> {
/** Joins an IPv4 multicast group. */
joinMulticastV4(
address: string,
networkInterface: string,
): Promise<MulticastV4Membership>;
/** Joins an IPv6 multicast group. */
joinMulticastV6(
address: string,
networkInterface: number,
): Promise<MulticastV6Membership>;
/** Waits for and resolves to the next message to the instance.
*
* Messages are received in the format of a tuple containing the data array
* and the address information.
*/
receive(p?: Uint8Array): Promise<[Uint8Array, Addr]>;
/** Sends a message to the target via the connection. The method resolves
* with the number of bytes sent. */
send(p: Uint8Array, addr: Addr): Promise<number>;
/** Close closes the socket. Any pending message promises will be rejected
* with errors. */
close(): void;
/** Return the address of the instance. */
readonly addr: Addr;
[Symbol.asyncIterator](): AsyncIterableIterator<[Uint8Array, Addr]>;
}
/**
* @category Network
*/
export interface TcpListenOptions extends ListenOptions {
/** When `true` the SO_REUSEPORT flag will be set on the listener. This
* allows multiple processes to listen on the same address and port.
*
* On Linux this will cause the kernel to distribute incoming connections
* across the different processes that are listening on the same address and
* port.
*
* This flag is only supported on Linux. It is silently ignored on other
* platforms.
*
* @default {false} */
reusePort?: boolean;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* Unstable options which can be set when opening a Unix listener via
* {@linkcode Deno.listen} or {@linkcode Deno.listenDatagram}.
*
* @category Network
*/
export interface UnixListenOptions {
/** A path to the Unix Socket. */
path: string;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* Unstable options which can be set when opening a datagram listener via
* {@linkcode Deno.listenDatagram}.
*
* @category Network
*/
export interface UdpListenOptions extends ListenOptions {
/** When `true` the specified address will be reused, even if another
* process has already bound a socket on it. This effectively steals the
* socket from the listener.
*
* @default {false} */
reuseAddress?: boolean;
/** When `true`, sent multicast packets will be looped back to the local socket.
*
* @default {false} */
loopback?: boolean;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* Listen announces on the local transport address.
*
* ```ts
* const listener = Deno.listen({ path: "/foo/bar.sock", transport: "unix" })
* ```
*
* Requires `allow-read` and `allow-write` permission.
*
* @tags allow-read, allow-write
* @category Network
*/
export function listen(
options: UnixListenOptions & { transport: "unix" },
): Listener;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Listen announces on the local transport address.
*
* ```ts
* const listener1 = Deno.listenDatagram({
* port: 80,
* transport: "udp"
* });
* const listener2 = Deno.listenDatagram({
* hostname: "golang.org",
* port: 80,
* transport: "udp"
* });
* ```
*
* Requires `allow-net` permission.
*
* @tags allow-net
* @category Network
*/
export function listenDatagram(
options: UdpListenOptions & { transport: "udp" },
): DatagramConn;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Listen announces on the local transport address.
*
* ```ts
* const listener = Deno.listenDatagram({
* path: "/foo/bar.sock",
* transport: "unixpacket"
* });
* ```
*
* Requires `allow-read` and `allow-write` permission.
*
* @tags allow-read, allow-write
* @category Network
*/
export function listenDatagram(
options: UnixListenOptions & { transport: "unixpacket" },
): DatagramConn;
/** **UNSTABLE**: New API, yet to be vetted.
*
* @category Network
*/
export interface UnixConnectOptions {
transport: "unix";
path: string;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* Connects to the hostname (default is "127.0.0.1") and port on the named
* transport (default is "tcp"), and resolves to the connection (`Conn`).
*
* ```ts
* const conn1 = await Deno.connect({ port: 80 });
* const conn2 = await Deno.connect({ hostname: "192.0.2.1", port: 80 });
* const conn3 = await Deno.connect({ hostname: "[2001:db8::1]", port: 80 });
* const conn4 = await Deno.connect({ hostname: "golang.org", port: 80, transport: "tcp" });
* const conn5 = await Deno.connect({ path: "/foo/bar.sock", transport: "unix" });
* ```
*
* Requires `allow-net` permission for "tcp" and `allow-read` for "unix".
*
* @tags allow-net, allow-read
* @category Network
*/
export function connect(options: ConnectOptions): Promise<TcpConn>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Connects to the hostname (default is "127.0.0.1") and port on the named
* transport (default is "tcp"), and resolves to the connection (`Conn`).
*
* ```ts
* const conn1 = await Deno.connect({ port: 80 });
* const conn2 = await Deno.connect({ hostname: "192.0.2.1", port: 80 });
* const conn3 = await Deno.connect({ hostname: "[2001:db8::1]", port: 80 });
* const conn4 = await Deno.connect({ hostname: "golang.org", port: 80, transport: "tcp" });
* const conn5 = await Deno.connect({ path: "/foo/bar.sock", transport: "unix" });
* ```
*
* Requires `allow-net` permission for "tcp" and `allow-read` for "unix".
*
* @tags allow-net, allow-read
* @category Network
*/
export function connect(options: UnixConnectOptions): Promise<UnixConn>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* @category Network
*/
export interface ConnectTlsOptions {
/** **UNSTABLE**: New API, yet to be vetted.
*
* PEM formatted client certificate chain.
*/
certChain?: string;
/** **UNSTABLE**: New API, yet to be vetted.
*
* PEM formatted (RSA or PKCS8) private key of client certificate.
*/
privateKey?: string;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* @category Network
*/
export interface TlsHandshakeInfo {
/** **UNSTABLE**: New API, yet to be vetted.
*
* Contains the ALPN protocol selected during negotiation with the server.
* If no ALPN protocol selected, returns `null`.
*/
alpnProtocol: string | null;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* @category Network
*/
export interface TlsConn extends Conn {
/** **UNSTABLE**: New API, yet to be vetted.
*
* Runs the client or server handshake protocol to completion if that has
* not happened yet. Calling this method is optional; the TLS handshake
* will be completed automatically as soon as data is sent or received.
*/
handshake(): Promise<TlsHandshakeInfo>;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* Create a TLS connection with an attached client certificate.
*
* ```ts
* const conn = await Deno.connectTls({
* hostname: "deno.land",
* port: 443,
* certChain: "---- BEGIN CERTIFICATE ----\n ...",
* privateKey: "---- BEGIN PRIVATE KEY ----\n ...",
* });
* ```
*
* Requires `allow-net` permission.
*
* @tags allow-net
* @category Network
*/
export function connectTls(options: ConnectTlsOptions): Promise<TlsConn>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Acquire an advisory file-system lock for the provided file.
*
* @param [exclusive=false]
* @category File System
*/
export function flock(rid: number, exclusive?: boolean): Promise<void>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Acquire an advisory file-system lock synchronously for the provided file.
*
* @param [exclusive=false]
* @category File System
*/
export function flockSync(rid: number, exclusive?: boolean): void;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Release an advisory file-system lock for the provided file.
*
* @category File System
*/
export function funlock(rid: number): Promise<void>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Release an advisory file-system lock for the provided file synchronously.
*
* @category File System
*/
export function funlockSync(rid: number): void;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Allows "hijacking" the connection that the request is associated with. This
* can be used to implement protocols that build on top of HTTP (eg.
* {@linkcode WebSocket}).
*
* The returned promise returns underlying connection and first packet
* received. The promise shouldn't be awaited before responding to the
* `request`, otherwise event loop might deadlock.
*
* ```ts
* function handler(req: Request): Response {
* Deno.upgradeHttp(req).then(([conn, firstPacket]) => {
* // ...
* });
* return new Response(null, { status: 101 });
* }
* ```
*
* This method can only be called on requests originating the
* {@linkcode Deno.serveHttp} server.
*
* @category HTTP Server
*/
export function upgradeHttp(
request: Request,
): Promise<[Deno.Conn, Uint8Array]>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Open a new {@linkcode Deno.Kv} connection to persist data.
*
* When a path is provided, the database will be persisted to disk at that
* path. Read and write access to the file is required.
*
* When no path is provided, the database will be opened in a default path for
* the current script. This location is persistent across script runs and is
* keyed on the origin storage key (the same key that is used to determine
* `localStorage` persistence). More information about the origin storage key
* can be found in the Deno Manual.
*
* @tags allow-read, allow-write
* @category KV
*/
export function openKv(path?: string): Promise<Deno.Kv>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* A key to be persisted in a {@linkcode Deno.Kv}. A key is a sequence
* of {@linkcode Deno.KvKeyPart}s.
*
* Keys are ordered lexicographically by their parts. The first part is the
* most significant, and the last part is the least significant. The order of
* the parts is determined by both the type and the value of the part. The
* relative significance of the types can be found in documentation for the
* {@linkcode Deno.KvKeyPart} type.
*
* Keys have a maximum size of 2048 bytes serialized. If the size of the key
* exceeds this limit, an error will be thrown on the operation that this key
* was passed to.
*
* @category KV
*/
export type KvKey = readonly KvKeyPart[];
/** **UNSTABLE**: New API, yet to be vetted.
*
* A single part of a {@linkcode Deno.KvKey}. Parts are ordered
* lexicographically, first by their type, and within a given type by their
* value.
*
* The ordering of types is as follows:
*
* 1. `Uint8Array`
* 2. `string`
* 3. `number`
* 4. `bigint`
* 5. `boolean`
*
* Within a given type, the ordering is as follows:
*
* - `Uint8Array` is ordered by the byte ordering of the array
* - `string` is ordered by the byte ordering of the UTF-8 encoding of the
* string
* - `number` is ordered following this pattern: `-NaN`
* < `-Infinity` < `-100.0` < `-1.0` < -`0.5` < `-0.0` < `0.0` < `0.5`
* < `1.0` < `100.0` < `Infinity` < `NaN`
* - `bigint` is ordered by mathematical ordering, with the largest negative
* number being the least first value, and the largest positive number
* being the last value
* - `boolean` is ordered by `false` < `true`
*
* This means that the part `1.0` (a number) is ordered before the part `2.0`
* (also a number), but is greater than the part `0n` (a bigint), because
* `1.0` is a number and `0n` is a bigint, and type ordering has precedence
* over the ordering of values within a type.
*
* @category KV
*/
export type KvKeyPart = Uint8Array | string | number | bigint | boolean;
/** **UNSTABLE**: New API, yet to be vetted.
*
* Consistency level of a KV operation.
*
* - `strong` - This operation must be strongly-consistent.
* - `eventual` - Eventually-consistent behavior is allowed.
*
* @category KV
*/
export type KvConsistencyLevel = "strong" | "eventual";
/** **UNSTABLE**: New API, yet to be vetted.
*
* A selector that selects the range of data returned by a list operation on a
* {@linkcode Deno.Kv}.
*
* The selector can either be a prefix selector or a range selector. A prefix
* selector selects all keys that start with the given prefix (optionally
* starting at a given key). A range selector selects all keys that are
* lexicographically between the given start and end keys.
*
* @category KV
*/
export type KvListSelector =
| { prefix: KvKey }
| { prefix: KvKey; start: KvKey }
| { prefix: KvKey; end: KvKey }
| { start: KvKey; end: KvKey };
/** **UNSTABLE**: New API, yet to be vetted.
*
* A mutation to a key in a {@linkcode Deno.Kv}. A mutation is a
* combination of a key, a value, and a type. The type determines how the
* mutation is applied to the key.
*
* - `set` - Sets the value of the key to the given value, overwriting any
* existing value.
* - `delete` - Deletes the key from the database. The mutation is a no-op if
* the key does not exist.
* - `sum` - Adds the given value to the existing value of the key. Both the
* value specified in the mutation, and any existing value must be of type
* `Deno.KvU64`. If the key does not exist, the value is set to the given
* value (summed with 0). If the result of the sum overflows an unsigned
* 64-bit integer, the result is wrapped around.
* - `max` - Sets the value of the key to the maximum of the existing value
* and the given value. Both the value specified in the mutation, and any
* existing value must be of type `Deno.KvU64`. If the key does not exist,
* the value is set to the given value.
* - `min` - Sets the value of the key to the minimum of the existing value
* and the given value. Both the value specified in the mutation, and any
* existing value must be of type `Deno.KvU64`. If the key does not exist,
* the value is set to the given value.
*
* @category KV
*/
export type KvMutation =
& { key: KvKey }
& (
| { type: "set"; value: unknown }
| { type: "delete" }
| { type: "sum"; value: KvU64 }
| { type: "max"; value: KvU64 }
| { type: "min"; value: KvU64 }
);
/** **UNSTABLE**: New API, yet to be vetted.
*
* An iterator over a range of data entries in a {@linkcode Deno.Kv}.
*
* The cursor getter returns the cursor that can be used to resume the
* iteration from the current position in the future.
*
* @category KV
*/
export class KvListIterator<T> implements AsyncIterableIterator<KvEntry<T>> {
/**
* Returns the cursor of the current position in the iteration. This cursor
* can be used to resume the iteration from the current position in the
* future by passing it to the `cursor` option of the `list` method.
*/
get cursor(): string;
next(): Promise<IteratorResult<KvEntry<T>, undefined>>;
[Symbol.asyncIterator](): AsyncIterableIterator<KvEntry<T>>;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* A versioned pair of key and value in a {@linkcode Deno.Kv}.
*
* The `versionstamp` is a string that represents the current version of the
* key-value pair. It can be used to perform atomic operations on the KV store
* by passing it to the `check` method of a {@linkcode Deno.AtomicOperation}.
*
* @category KV
*/
export type KvEntry<T> = { key: KvKey; value: T; versionstamp: string };
/**
* **UNSTABLE**: New API, yet to be vetted.
*
* An optional versioned pair of key and value in a {@linkcode Deno.Kv}.
*
* This is the same as a {@linkcode KvEntry}, but the `value` and `versionstamp`
* fields may be `null` if no value exists for the given key in the KV store.
*
* @category KV
*/
export type KvEntryMaybe<T> = KvEntry<T> | {
key: KvKey;
value: null;
versionstamp: null;
};
/** **UNSTABLE**: New API, yet to be vetted.
*
* Options for listing key-value pairs in a {@linkcode Deno.Kv}.
*
* @category KV
*/
export interface KvListOptions {
/**
* The maximum number of key-value pairs to return. If not specified, all
* matching key-value pairs will be returned.
*/
limit?: number;
/**
* The cursor to resume the iteration from. If not specified, the iteration
* will start from the beginning.
*/
cursor?: string;
/**
* Whether to reverse the order of the returned key-value pairs. If not
* specified, the order will be ascending from the start of the range as per
* the lexicographical ordering of the keys. If `true`, the order will be
* descending from the end of the range.
*
* The default value is `false`.
*/
reverse?: boolean;
/**
* The consistency level of the list operation. The default consistency
* level is "strong". Some use cases can benefit from using a weaker
* consistency level. For more information on consistency levels, see the
* documentation for {@linkcode Deno.KvConsistencyLevel}.
*
* List operations are performed in batches (in sizes specified by the
* `batchSize` option). The consistency level of the list operation is
* applied to each batch individually. This means that while each batch is
* guaranteed to be consistent within itself, the entire list operation may
* not be consistent across batches because a mutation may be applied to a
* key-value pair between batches, in a batch that has already been returned
* by the list operation.
*/
consistency?: KvConsistencyLevel;
/**
* The size of the batches in which the list operation is performed. Larger
* or smaller batch sizes may positively or negatively affect the
* performance of a list operation depending on the specific use case and
* iteration behavior. Slow iterating queries may benefit from using a
* smaller batch size for increased overall consistency, while fast
* iterating queries may benefit from using a larger batch size for better
* performance.
*
* The default batch size is equal to the `limit` option, or 100 if this is
* unset. The maximum value for this option is 500. Larger values will be
* clamped.
*/
batchSize?: number;
}
/** @category KV */
export interface KvCommitResult {
ok: true;
/** The versionstamp of the value committed to KV. */
versionstamp: string;
}
/** @category KV */
export interface KvCommitError {
ok: false;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* A check to perform as part of a {@linkcode Deno.AtomicOperation}. The check
* will fail if the versionstamp for the key-value pair in the KV store does
* not match the given versionstamp. A check with a `null` versionstamp checks
* that the key-value pair does not currently exist in the KV store.
*
* @category KV
*/
export interface AtomicCheck {
key: KvKey;
versionstamp: string | null;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* An operation on a {@linkcode Deno.Kv} that can be performed
* atomically. Atomic operations do not auto-commit, and must be committed
* explicitly by calling the `commit` method.
*
* Atomic operations can be used to perform multiple mutations on the KV store
* in a single atomic transaction. They can also be used to perform
* conditional mutations by specifying one or more
* {@linkcode Deno.AtomicCheck}s that ensure that a mutation is only performed
* if the key-value pair in the KV has a specific versionstamp. If any of the
* checks fail, the entire operation will fail and no mutations will be made.
*
* The ordering of mutations is guaranteed to be the same as the ordering of
* the mutations specified in the operation. Checks are performed before any
* mutations are performed. The ordering of checks is unobservable.
*
* Atomic operations can be used to implement optimistic locking, where a
* mutation is only performed if the key-value pair in the KV store has not
* been modified since the last read. This can be done by specifying a check
* that ensures that the versionstamp of the key-value pair matches the
* versionstamp that was read. If the check fails, the mutation will not be
* performed and the operation will fail. One can then retry the read-modify-
* write operation in a loop until it succeeds.
*
* The `commit` method of an atomic operation returns a value indicating
* whether checks passed and mutations were performed. If the operation failed
* because of a failed check, the return value will be a
* {@linkcode Deno.KvCommitError} with an `ok: false` property. If the
* operation failed for any other reason (storage error, invalid value, etc.),
* an exception will be thrown. If the operation succeeded, the return value
* will be a {@linkcode Deno.KvCommitResult} object with a `ok: true` property
* and the versionstamp of the value committed to KV.
*
* @category KV
*/
export class AtomicOperation {
/**
* Add to the operation a check that ensures that the versionstamp of the
* key-value pair in the KV store matches the given versionstamp. If the
* check fails, the entire operation will fail and no mutations will be
* performed during the commit.
*/
check(...checks: AtomicCheck[]): this;
/**
* Add to the operation a mutation that performs the specified mutation on
* the specified key if all checks pass during the commit. The types and
* semantics of all available mutations are described in the documentation
* for {@linkcode Deno.KvMutation}.
*/
mutate(...mutations: KvMutation[]): this;
/**
* Shortcut for creating a `sum` mutation. This method wraps `n` in a
* {@linkcode Deno.KvU64}, so the value of `n` must be in the range
* `[0, 2^64-1]`.
*/
sum(key: KvKey, n: bigint): this;
/**
* Shortcut for creating a `min` mutation. This method wraps `n` in a
* {@linkcode Deno.KvU64}, so the value of `n` must be in the range
* `[0, 2^64-1]`.
*/
min(key: KvKey, n: bigint): this;
/**
* Shortcut for creating a `max` mutation. This method wraps `n` in a
* {@linkcode Deno.KvU64}, so the value of `n` must be in the range
* `[0, 2^64-1]`.
*/
max(key: KvKey, n: bigint): this;
/**
* Add to the operation a mutation that sets the value of the specified key
* to the specified value if all checks pass during the commit.
*/
set(key: KvKey, value: unknown): this;
/**
* Add to the operation a mutation that deletes the specified key if all
* checks pass during the commit.
*/
delete(key: KvKey): this;
/**
* Add to the operation a mutation that enqueues a value into the queue
* if all checks pass during the commit.
*/
enqueue(
value: unknown,
options?: { delay?: number; keysIfUndelivered?: Deno.KvKey[] },
): this;
/**
* Commit the operation to the KV store. Returns a value indicating whether
* checks passed and mutations were performed. If the operation failed
* because of a failed check, the return value will be a {@linkcode
* Deno.KvCommitError} with an `ok: false` property. If the operation failed
* for any other reason (storage error, invalid value, etc.), an exception
* will be thrown. If the operation succeeded, the return value will be a
* {@linkcode Deno.KvCommitResult} object with a `ok: true` property and the
* versionstamp of the value committed to KV.
*
* If the commit returns `ok: false`, one may create a new atomic operation
* with updated checks and mutations and attempt to commit it again. See the
* note on optimistic locking in the documentation for
* {@linkcode Deno.AtomicOperation}.
*/
commit(): Promise<KvCommitResult | KvCommitError>;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* A key-value database that can be used to store and retrieve data.
*
* Data is stored as key-value pairs, where the key is a {@linkcode Deno.KvKey}
* and the value is an arbitrary structured-serializable JavaScript value.
* Keys are ordered lexicographically as described in the documentation for
* {@linkcode Deno.KvKey}. Keys are unique within a database, and the last
* value set for a given key is the one that is returned when reading the
* key. Keys can be deleted from the database, in which case they will no
* longer be returned when reading keys.
*
* Values can be any structured-serializable JavaScript value (objects,
* arrays, strings, numbers, etc.). The special value {@linkcode Deno.KvU64}
* can be used to store 64-bit unsigned integers in the database. This special
* value can not be nested within other objects or arrays. In addition to the
* regular database mutation operations, the unsigned 64-bit integer value
* also supports `sum`, `max`, and `min` mutations.
*
* Keys are versioned on write by assigning the key an ever-increasing
* "versionstamp". The versionstamp represents the version of a key-value pair
* in the database at some point in time, and can be used to perform
* transactional operations on the database without requiring any locking.
* This is enabled by atomic operations, which can have conditions that ensure
* that the operation only succeeds if the versionstamp of the key-value pair
* matches an expected versionstamp.
*
* Keys have a maximum length of 2048 bytes after serialization. Values have a
* maximum length of 64 KiB after serialization. Serialization of both keys
* and values is somewhat opaque, but one can usually assume that the
* serialization of any value is about the same length as the resulting string
* of a JSON serialization of that same value. If theses limits are exceeded,
* an exception will be thrown.
*
* @category KV
*/
export class Kv {
/**
* Retrieve the value and versionstamp for the given key from the database
* in the form of a {@linkcode Deno.KvEntryMaybe}. If no value exists for
* the key, the returned entry will have a `null` value and versionstamp.
*
* ```ts
* const db = await Deno.openKv();
* const result = await db.get(["foo"]);
* result.key; // ["foo"]
* result.value; // "bar"
* result.versionstamp; // "00000000000000010000"
* ```
*
* The `consistency` option can be used to specify the consistency level
* for the read operation. The default consistency level is "strong". Some
* use cases can benefit from using a weaker consistency level. For more
* information on consistency levels, see the documentation for
* {@linkcode Deno.KvConsistencyLevel}.
*/
get<T = unknown>(
key: KvKey,
options?: { consistency?: KvConsistencyLevel },
): Promise<KvEntryMaybe<T>>;
/**
* Retrieve multiple values and versionstamps from the database in the form
* of an array of {@linkcode Deno.KvEntryMaybe} objects. The returned array
* will have the same length as the `keys` array, and the entries will be in
* the same order as the keys. If no value exists for a given key, the
* returned entry will have a `null` value and versionstamp.
*
* ```ts
* const db = await Deno.openKv();
* const result = await db.getMany([["foo"], ["baz"]]);
* result[0].key; // ["foo"]
* result[0].value; // "bar"
* result[0].versionstamp; // "00000000000000010000"
* result[1].key; // ["baz"]
* result[1].value; // null
* result[1].versionstamp; // null
* ```
*
* The `consistency` option can be used to specify the consistency level
* for the read operation. The default consistency level is "strong". Some
* use cases can benefit from using a weaker consistency level. For more
* information on consistency levels, see the documentation for
* {@linkcode Deno.KvConsistencyLevel}.
*/
getMany<T extends readonly unknown[]>(
keys: readonly [...{ [K in keyof T]: KvKey }],
options?: { consistency?: KvConsistencyLevel },
): Promise<{ [K in keyof T]: KvEntryMaybe<T[K]> }>;
/**
* Set the value for the given key in the database. If a value already
* exists for the key, it will be overwritten.
*
* ```ts
* const db = await Deno.openKv();
* await db.set(["foo"], "bar");
* ```
*/
set(key: KvKey, value: unknown): Promise<KvCommitResult>;
/**
* Delete the value for the given key from the database. If no value exists
* for the key, this operation is a no-op.
*
* ```ts
* const db = await Deno.openKv();
* await db.delete(["foo"]);
* ```
*/
delete(key: KvKey): Promise<void>;
/**
* Retrieve a list of keys in the database. The returned list is an
* {@linkcode Deno.KvListIterator} which can be used to iterate over the
* entries in the database.
*
* Each list operation must specify a selector which is used to specify the
* range of keys to return. The selector can either be a prefix selector, or
* a range selector:
*
* - A prefix selector selects all keys that start with the given prefix of
* key parts. For example, the selector `["users"]` will select all keys
* that start with the prefix `["users"]`, such as `["users", "alice"]`
* and `["users", "bob"]`. Note that you can not partially match a key
* part, so the selector `["users", "a"]` will not match the key
* `["users", "alice"]`. A prefix selector may specify a `start` key that
* is used to skip over keys that are lexicographically less than the
* start key.
* - A range selector selects all keys that are lexicographically between
* the given start and end keys (including the start, and excluding the
* end). For example, the selector `["users", "a"], ["users", "n"]` will
* select all keys that start with the prefix `["users"]` and have a
* second key part that is lexicographically between `a` and `n`, such as
* `["users", "alice"]`, `["users", "bob"]`, and `["users", "mike"]`, but
* not `["users", "noa"]` or `["users", "zoe"]`.
*
* ```ts
* const db = await Deno.openKv();
* const entries = db.list({ prefix: ["users"] });
* for await (const entry of entries) {
* entry.key; // ["users", "alice"]
* entry.value; // { name: "Alice" }
* entry.versionstamp; // "00000000000000010000"
* }
* ```
*
* The `options` argument can be used to specify additional options for the
* list operation. See the documentation for {@linkcode Deno.KvListOptions}
* for more information.
*/
list<T = unknown>(
selector: KvListSelector,
options?: KvListOptions,
): KvListIterator<T>;
/**
* Add a value into the database queue to be delivered to the queue
* listener via {@linkcode Deno.Kv.listenQueue}.
*
* ```ts
* const db = await Deno.openKv();
* await db.enqueue("bar");
* ```
*
* The `delay` option can be used to specify the delay (in milliseconds)
* of the value delivery. The default delay is 0, which means immediate
* delivery.
*
* ```ts
* const db = await Deno.openKv();
* await db.enqueue("bar", { delay: 60000 });
* ```
*
* The `keysIfUndelivered` option can be used to specify the keys to
* be set if the value is not successfully delivered to the queue
* listener after several attempts. The values are set to the value of
* the queued message.
*
* ```ts
* const db = await Deno.openKv();
* await db.enqueue("bar", { keysIfUndelivered: [["foo", "bar"]] });
* ```
*/
enqueue(
value: unknown,
options?: { delay?: number; keysIfUndelivered?: Deno.KvKey[] },
): Promise<KvCommitResult>;
/**
* Listen for queue values to be delivered from the database queue, which
* were enqueued with {@linkcode Deno.Kv.enqueue}. The provided handler
* callback is invoked on every dequeued value. A failed callback
* invocation is automatically retried multiple times until it succeeds
* or until the maximum number of retries is reached.
*
* ```ts
* const db = await Deno.openKv();
* db.listenQueue(async (msg: unknown) => {
* await db.set(["foo"], msg);
* });
* ```
*/
listenQueue(
handler: (value: unknown) => Promise<void> | void,
): Promise<void>;
/**
* Create a new {@linkcode Deno.AtomicOperation} object which can be used to
* perform an atomic transaction on the database. This does not perform any
* operations on the database - the atomic transaction must be committed
* explicitly using the {@linkcode Deno.AtomicOperation.commit} method once
* all checks and mutations have been added to the operation.
*/
atomic(): AtomicOperation;
/**
* Close the database connection. This will prevent any further operations
* from being performed on the database, and interrupt any in-flight
* operations immediately.
*/
close(): void;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* Wrapper type for 64-bit unsigned integers for use as values in a
* {@linkcode Deno.Kv}.
*
* @category KV
*/
export class KvU64 {
/** Create a new `KvU64` instance from the given bigint value. If the value
* is signed or greater than 64-bits, an error will be thrown. */
constructor(value: bigint);
/** The value of this unsigned 64-bit integer, represented as a bigint. */
readonly value: bigint;
}
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* The [Fetch API](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)
* which also supports setting a {@linkcode Deno.HttpClient} which provides a
* way to connect via proxies and use custom TLS certificates.
*
* @tags allow-net, allow-read
* @category Fetch API
*/
declare function fetch(
input: Request | URL | string,
init?: RequestInit & { client: Deno.HttpClient },
): Promise<Response>;
/** **UNSTABLE**: New API, yet to be vetted.
*
* @category Web Workers
*/
declare interface WorkerOptions {
/** **UNSTABLE**: New API, yet to be vetted.
*
* Configure permissions options to change the level of access the worker will
* have. By default it will have no permissions. Note that the permissions
* of a worker can't be extended beyond its parent's permissions reach.
*
* - `"inherit"` will take the permissions of the thread the worker is created
* in.
* - `"none"` will use the default behavior and have no permission
* - A list of routes can be provided that are relative to the file the worker
* is created in to limit the access of the worker (read/write permissions
* only)
*
* Example:
*
* ```ts
* // mod.ts
* const worker = new Worker(
* new URL("deno_worker.ts", import.meta.url).href, {
* type: "module",
* deno: {
* permissions: {
* read: true,
* },
* },
* }
* );
* ```
*/
deno?: {
/** Set to `"none"` to disable all the permissions in the worker. */
permissions?: Deno.PermissionOptions;
};
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* @category Web Sockets
*/
declare interface WebSocketStreamOptions {
protocols?: string[];
signal?: AbortSignal;
headers?: HeadersInit;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* @category Web Sockets
*/
declare interface WebSocketConnection {
readable: ReadableStream<string | Uint8Array>;
writable: WritableStream<string | Uint8Array>;
extensions: string;
protocol: string;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* @category Web Sockets
*/
declare interface WebSocketCloseInfo {
code?: number;
reason?: string;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* @tags allow-net
* @category Web Sockets
*/
declare interface WebSocketStream {
url: string;
connection: Promise<WebSocketConnection>;
closed: Promise<WebSocketCloseInfo>;
close(closeInfo?: WebSocketCloseInfo): void;
}
/** **UNSTABLE**: New API, yet to be vetted.
*
* @tags allow-net
* @category Web Sockets
*/
declare var WebSocketStream: {
readonly prototype: WebSocketStream;
new (url: string, options?: WebSocketStreamOptions): WebSocketStream;
};