1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-12 00:54:02 -05:00
denoland-deno/ext/crypto/lib.rs
2021-08-11 12:27:05 +02:00

558 lines
16 KiB
Rust

// Copyright 2018-2021 the Deno authors. All rights reserved. MIT license.
use deno_core::error::custom_error;
use deno_core::error::not_supported;
use deno_core::error::null_opbuf;
use deno_core::error::type_error;
use deno_core::error::AnyError;
use deno_core::include_js_files;
use deno_core::op_async;
use deno_core::op_sync;
use deno_core::Extension;
use deno_core::OpState;
use deno_core::ZeroCopyBuf;
use serde::Deserialize;
use std::cell::RefCell;
use std::convert::TryInto;
use std::rc::Rc;
use lazy_static::lazy_static;
use num_traits::cast::FromPrimitive;
use rand::rngs::OsRng;
use rand::rngs::StdRng;
use rand::thread_rng;
use rand::Rng;
use rand::SeedableRng;
use ring::digest;
use ring::hmac::Algorithm as HmacAlgorithm;
use ring::hmac::Key as HmacKey;
use ring::rand as RingRand;
use ring::rand::SecureRandom;
use ring::signature::EcdsaKeyPair;
use ring::signature::EcdsaSigningAlgorithm;
use rsa::padding::PaddingScheme;
use rsa::pkcs8::FromPrivateKey;
use rsa::pkcs8::ToPrivateKey;
use rsa::BigUint;
use rsa::PublicKey;
use rsa::RsaPrivateKey;
use rsa::RsaPublicKey;
use sha1::Sha1;
use sha2::Digest;
use sha2::Sha256;
use sha2::Sha384;
use sha2::Sha512;
use std::path::PathBuf;
pub use rand; // Re-export rand
mod key;
use crate::key::Algorithm;
use crate::key::CryptoHash;
use crate::key::CryptoNamedCurve;
// Allowlist for RSA public exponents.
lazy_static! {
static ref PUB_EXPONENT_1: BigUint = BigUint::from_u64(3).unwrap();
static ref PUB_EXPONENT_2: BigUint = BigUint::from_u64(65537).unwrap();
}
pub fn init(maybe_seed: Option<u64>) -> Extension {
Extension::builder()
.js(include_js_files!(
prefix "deno:ext/crypto",
"00_crypto.js",
"01_webidl.js",
))
.ops(vec![
(
"op_crypto_get_random_values",
op_sync(op_crypto_get_random_values),
),
("op_crypto_generate_key", op_async(op_crypto_generate_key)),
("op_crypto_sign_key", op_async(op_crypto_sign_key)),
("op_crypto_verify_key", op_async(op_crypto_verify_key)),
("op_crypto_subtle_digest", op_async(op_crypto_subtle_digest)),
("op_crypto_random_uuid", op_sync(op_crypto_random_uuid)),
])
.state(move |state| {
if let Some(seed) = maybe_seed {
state.put(StdRng::seed_from_u64(seed));
}
Ok(())
})
.build()
}
pub fn op_crypto_get_random_values(
state: &mut OpState,
mut zero_copy: ZeroCopyBuf,
_: (),
) -> Result<(), AnyError> {
if zero_copy.len() > 65536 {
return Err(
deno_web::DomExceptionQuotaExceededError::new(&format!("The ArrayBufferView's byte length ({}) exceeds the number of bytes of entropy available via this API (65536)", zero_copy.len()))
.into(),
);
}
let maybe_seeded_rng = state.try_borrow_mut::<StdRng>();
if let Some(seeded_rng) = maybe_seeded_rng {
seeded_rng.fill(&mut *zero_copy);
} else {
let mut rng = thread_rng();
rng.fill(&mut *zero_copy);
}
Ok(())
}
#[derive(Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct AlgorithmArg {
name: Algorithm,
modulus_length: Option<u32>,
public_exponent: Option<ZeroCopyBuf>,
named_curve: Option<CryptoNamedCurve>,
hash: Option<CryptoHash>,
length: Option<usize>,
}
pub async fn op_crypto_generate_key(
_state: Rc<RefCell<OpState>>,
args: AlgorithmArg,
_: (),
) -> Result<ZeroCopyBuf, AnyError> {
let algorithm = args.name;
let key = match algorithm {
Algorithm::RsassaPkcs1v15 | Algorithm::RsaPss => {
let public_exponent = args.public_exponent.ok_or_else(not_supported)?;
let modulus_length = args.modulus_length.ok_or_else(not_supported)?;
let exponent = BigUint::from_bytes_be(&public_exponent);
if exponent != *PUB_EXPONENT_1 && exponent != *PUB_EXPONENT_2 {
return Err(custom_error(
"DOMExceptionOperationError",
"Bad public exponent",
));
}
let mut rng = OsRng;
let private_key: RsaPrivateKey = tokio::task::spawn_blocking(
move || -> Result<RsaPrivateKey, rsa::errors::Error> {
RsaPrivateKey::new_with_exp(
&mut rng,
modulus_length as usize,
&exponent,
)
},
)
.await
.unwrap()
.map_err(|e| custom_error("DOMExceptionOperationError", e.to_string()))?;
private_key.to_pkcs8_der()?.as_ref().to_vec()
}
Algorithm::Ecdsa => {
let curve: &EcdsaSigningAlgorithm =
args.named_curve.ok_or_else(not_supported)?.into();
let rng = RingRand::SystemRandom::new();
let private_key: Vec<u8> = tokio::task::spawn_blocking(
move || -> Result<Vec<u8>, ring::error::Unspecified> {
let pkcs8 = EcdsaKeyPair::generate_pkcs8(curve, &rng)?;
Ok(pkcs8.as_ref().to_vec())
},
)
.await
.unwrap()
.map_err(|_| {
custom_error("DOMExceptionOperationError", "Key generation failed")
})?;
private_key
}
Algorithm::Hmac => {
let hash: HmacAlgorithm = args.hash.ok_or_else(not_supported)?.into();
let length = if let Some(length) = args.length {
if (length % 8) != 0 {
return Err(custom_error(
"DOMExceptionOperationError",
"hmac block length must be byte aligned",
));
}
let length = length / 8;
if length > ring::digest::MAX_BLOCK_LEN {
return Err(custom_error(
"DOMExceptionOperationError",
"hmac block length is too large",
));
}
length
} else {
hash.digest_algorithm().block_len
};
let rng = RingRand::SystemRandom::new();
let mut key_bytes = [0; ring::digest::MAX_BLOCK_LEN];
let key_bytes = &mut key_bytes[..length];
rng.fill(key_bytes).map_err(|_| {
custom_error("DOMExceptionOperationError", "Key generation failed")
})?;
key_bytes.to_vec()
}
_ => return Err(not_supported()),
};
Ok(key.into())
}
#[derive(Deserialize)]
#[serde(rename_all = "lowercase")]
pub enum KeyFormat {
Raw,
Pkcs8,
}
#[derive(Deserialize)]
#[serde(rename_all = "lowercase")]
pub struct KeyData {
// TODO(littledivy): Kept here to be used to importKey() in future.
#[allow(dead_code)]
r#type: KeyFormat,
data: ZeroCopyBuf,
}
#[derive(Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct SignArg {
key: KeyData,
algorithm: Algorithm,
salt_length: Option<u32>,
hash: Option<CryptoHash>,
named_curve: Option<CryptoNamedCurve>,
}
pub async fn op_crypto_sign_key(
_state: Rc<RefCell<OpState>>,
args: SignArg,
zero_copy: Option<ZeroCopyBuf>,
) -> Result<ZeroCopyBuf, AnyError> {
let zero_copy = zero_copy.ok_or_else(null_opbuf)?;
let data = &*zero_copy;
let algorithm = args.algorithm;
let signature = match algorithm {
Algorithm::RsassaPkcs1v15 => {
let private_key = RsaPrivateKey::from_pkcs8_der(&*args.key.data)?;
let (padding, hashed) = match args
.hash
.ok_or_else(|| type_error("Missing argument hash".to_string()))?
{
CryptoHash::Sha1 => {
let mut hasher = Sha1::new();
hasher.update(&data);
(
PaddingScheme::PKCS1v15Sign {
hash: Some(rsa::hash::Hash::SHA1),
},
hasher.finalize()[..].to_vec(),
)
}
CryptoHash::Sha256 => {
let mut hasher = Sha256::new();
hasher.update(&data);
(
PaddingScheme::PKCS1v15Sign {
hash: Some(rsa::hash::Hash::SHA2_256),
},
hasher.finalize()[..].to_vec(),
)
}
CryptoHash::Sha384 => {
let mut hasher = Sha384::new();
hasher.update(&data);
(
PaddingScheme::PKCS1v15Sign {
hash: Some(rsa::hash::Hash::SHA2_384),
},
hasher.finalize()[..].to_vec(),
)
}
CryptoHash::Sha512 => {
let mut hasher = Sha512::new();
hasher.update(&data);
(
PaddingScheme::PKCS1v15Sign {
hash: Some(rsa::hash::Hash::SHA2_512),
},
hasher.finalize()[..].to_vec(),
)
}
};
private_key.sign(padding, &hashed)?
}
Algorithm::RsaPss => {
let private_key = RsaPrivateKey::from_pkcs8_der(&*args.key.data)?;
let salt_len = args
.salt_length
.ok_or_else(|| type_error("Missing argument saltLength".to_string()))?
as usize;
let rng = OsRng;
let (padding, digest_in) = match args
.hash
.ok_or_else(|| type_error("Missing argument hash".to_string()))?
{
CryptoHash::Sha1 => {
let mut hasher = Sha1::new();
hasher.update(&data);
(
PaddingScheme::new_pss_with_salt::<Sha1, _>(rng, salt_len),
hasher.finalize()[..].to_vec(),
)
}
CryptoHash::Sha256 => {
let mut hasher = Sha256::new();
hasher.update(&data);
(
PaddingScheme::new_pss_with_salt::<Sha256, _>(rng, salt_len),
hasher.finalize()[..].to_vec(),
)
}
CryptoHash::Sha384 => {
let mut hasher = Sha384::new();
hasher.update(&data);
(
PaddingScheme::new_pss_with_salt::<Sha384, _>(rng, salt_len),
hasher.finalize()[..].to_vec(),
)
}
CryptoHash::Sha512 => {
let mut hasher = Sha512::new();
hasher.update(&data);
(
PaddingScheme::new_pss_with_salt::<Sha512, _>(rng, salt_len),
hasher.finalize()[..].to_vec(),
)
}
};
// Sign data based on computed padding and return buffer
private_key.sign(padding, &digest_in)?
}
Algorithm::Ecdsa => {
let curve: &EcdsaSigningAlgorithm =
args.named_curve.ok_or_else(not_supported)?.try_into()?;
let key_pair = EcdsaKeyPair::from_pkcs8(curve, &*args.key.data)?;
// We only support P256-SHA256 & P384-SHA384. These are recommended signature pairs.
// https://briansmith.org/rustdoc/ring/signature/index.html#statics
if let Some(hash) = args.hash {
match hash {
CryptoHash::Sha256 | CryptoHash::Sha384 => (),
_ => return Err(type_error("Unsupported algorithm")),
}
};
let rng = RingRand::SystemRandom::new();
let signature = key_pair.sign(&rng, data)?;
// Signature data as buffer.
signature.as_ref().to_vec()
}
Algorithm::Hmac => {
let hash: HmacAlgorithm = args.hash.ok_or_else(not_supported)?.into();
let key = HmacKey::new(hash, &*args.key.data);
let signature = ring::hmac::sign(&key, data);
signature.as_ref().to_vec()
}
_ => return Err(type_error("Unsupported algorithm".to_string())),
};
Ok(signature.into())
}
#[derive(Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct VerifyArg {
key: KeyData,
algorithm: Algorithm,
salt_length: Option<u32>,
hash: Option<CryptoHash>,
signature: ZeroCopyBuf,
}
pub async fn op_crypto_verify_key(
_state: Rc<RefCell<OpState>>,
args: VerifyArg,
zero_copy: Option<ZeroCopyBuf>,
) -> Result<bool, AnyError> {
let zero_copy = zero_copy.ok_or_else(null_opbuf)?;
let data = &*zero_copy;
let algorithm = args.algorithm;
let verification = match algorithm {
Algorithm::RsassaPkcs1v15 => {
let public_key: RsaPublicKey =
RsaPrivateKey::from_pkcs8_der(&*args.key.data)?.to_public_key();
let (padding, hashed) = match args
.hash
.ok_or_else(|| type_error("Missing argument hash".to_string()))?
{
CryptoHash::Sha1 => {
let mut hasher = Sha1::new();
hasher.update(&data);
(
PaddingScheme::PKCS1v15Sign {
hash: Some(rsa::hash::Hash::SHA1),
},
hasher.finalize()[..].to_vec(),
)
}
CryptoHash::Sha256 => {
let mut hasher = Sha256::new();
hasher.update(&data);
(
PaddingScheme::PKCS1v15Sign {
hash: Some(rsa::hash::Hash::SHA2_256),
},
hasher.finalize()[..].to_vec(),
)
}
CryptoHash::Sha384 => {
let mut hasher = Sha384::new();
hasher.update(&data);
(
PaddingScheme::PKCS1v15Sign {
hash: Some(rsa::hash::Hash::SHA2_384),
},
hasher.finalize()[..].to_vec(),
)
}
CryptoHash::Sha512 => {
let mut hasher = Sha512::new();
hasher.update(&data);
(
PaddingScheme::PKCS1v15Sign {
hash: Some(rsa::hash::Hash::SHA2_512),
},
hasher.finalize()[..].to_vec(),
)
}
};
public_key
.verify(padding, &hashed, &*args.signature)
.is_ok()
}
Algorithm::RsaPss => {
let salt_len = args
.salt_length
.ok_or_else(|| type_error("Missing argument saltLength".to_string()))?
as usize;
let public_key: RsaPublicKey =
RsaPrivateKey::from_pkcs8_der(&*args.key.data)?.to_public_key();
let rng = OsRng;
let (padding, hashed) = match args
.hash
.ok_or_else(|| type_error("Missing argument hash".to_string()))?
{
CryptoHash::Sha1 => {
let mut hasher = Sha1::new();
hasher.update(&data);
(
PaddingScheme::new_pss_with_salt::<Sha1, _>(rng, salt_len),
hasher.finalize()[..].to_vec(),
)
}
CryptoHash::Sha256 => {
let mut hasher = Sha256::new();
hasher.update(&data);
(
PaddingScheme::new_pss_with_salt::<Sha256, _>(rng, salt_len),
hasher.finalize()[..].to_vec(),
)
}
CryptoHash::Sha384 => {
let mut hasher = Sha384::new();
hasher.update(&data);
(
PaddingScheme::new_pss_with_salt::<Sha384, _>(rng, salt_len),
hasher.finalize()[..].to_vec(),
)
}
CryptoHash::Sha512 => {
let mut hasher = Sha512::new();
hasher.update(&data);
(
PaddingScheme::new_pss_with_salt::<Sha512, _>(rng, salt_len),
hasher.finalize()[..].to_vec(),
)
}
};
public_key
.verify(padding, &hashed, &*args.signature)
.is_ok()
}
Algorithm::Hmac => {
let hash: HmacAlgorithm = args.hash.ok_or_else(not_supported)?.into();
let key = HmacKey::new(hash, &*args.key.data);
ring::hmac::verify(&key, data, &*args.signature).is_ok()
}
_ => return Err(type_error("Unsupported algorithm".to_string())),
};
Ok(verification)
}
pub fn op_crypto_random_uuid(
state: &mut OpState,
_: (),
_: (),
) -> Result<String, AnyError> {
let maybe_seeded_rng = state.try_borrow_mut::<StdRng>();
let uuid = if let Some(seeded_rng) = maybe_seeded_rng {
let mut bytes = [0u8; 16];
seeded_rng.fill(&mut bytes);
uuid::Builder::from_bytes(bytes)
.set_version(uuid::Version::Random)
.build()
} else {
uuid::Uuid::new_v4()
};
Ok(uuid.to_string())
}
pub async fn op_crypto_subtle_digest(
_state: Rc<RefCell<OpState>>,
algorithm: CryptoHash,
data: Option<ZeroCopyBuf>,
) -> Result<ZeroCopyBuf, AnyError> {
let input = data.ok_or_else(null_opbuf)?;
let output = tokio::task::spawn_blocking(move || {
digest::digest(algorithm.into(), &input)
.as_ref()
.to_vec()
.into()
})
.await?;
Ok(output)
}
pub fn get_declaration() -> PathBuf {
PathBuf::from(env!("CARGO_MANIFEST_DIR")).join("lib.deno_crypto.d.ts")
}